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Abstract—Snake robots can contact their environments along
their whole bodies. This distributed contact makes them versatile
and robust locomotors, but also makes controlling them a chal-
lenging problem involving high-dimensional configuration spaces,
with no direct way to break their motion down into “driving” and
“steering” actions. In this paper, we use concepts from geometric
mechanics—e.g., expanded Lie bracket analysis—to simplify the
problem of controlling a snake robot moving across a granular
surface. Without needing force laws that model the interaction
of the snake robot with the granular surface, the relationship
between shape and body velocities can be experimentally derived
by perturbing the robot’s shape from a sampling of initial
configurations, which allows us to: 1. Generate an intuitive and
visualizable relationship between gait cycles and the motion they
induce; 2. Make accurate predictions about the most efficient
gaits available to the robot; and 3. Identify an effective turning
gait for the robot that to the best of our knowledge has not
previously appeared in the snake robot literature. This geometric
analysis of snake robot locomotion serves as a demonstration
of how differential-geometric tools can provide insight into the
motion of systems that do not have the analytic models often
associated with such approaches.

I. INTRODUCTION

Locomotion over sand and other loose, flowing material
is an ongoing challenge in mobile robotics. Snake robots,
which can contact the ground along their whole body, have the
potential to perform better in these environments than systems
relying on wheels, tracks, or even legs for propulsion [1].
A major challenge in controlling snake robots, however, is
coordinating their many degrees of freedom into useful mo-
tions; on granular media, this challenge is compounded by a
lack of fundamental physical models for the robot-environment
interaction.

In this paper, we investigate snake robot locomotion over
granular surfaces via an empirical-geometric approach [2]:
First, we project the high-dimensional shape space of the snake
robot onto a two-dimensional set of serpenoid waves, which
capture the body shapes seen in biological snakes [3]. Second,
we use a series of small test motions to build up an empirical
model of the local relationship between changes in the robot’s
shape and changes in its position. Finally, we fit this model to a
differential-geometric framework that is amenable to analysis
and optimization.

In particular, adopting the geometric model allows us to
use its curvature—which measures how the model changes

Fig. 1. A snake robot on a bed of small plastic spheres. The cameras mounted
to the ceiling track the robot’s position changes as it changes shape. The joints
on the snake are series-elastic actuators that allow for force measurements.

across the robot’s configuration space—to identify the gait
patterns required to translate and rotate the robot in different
directions. Combining this curvature with a Riemannian metric
that captures the energy use of the system, then allows us
to identify the the optimally-efficient amplitudes at which to
execute these gaits.

By applying this procedure to the snake robot illustrated in
Fig. 1, we:

• Derive an geometric model empirically, without having
to have a force model of the environment;

• Represent this model via a set of height functions, whose
topography dictates the effectiveness of different gait
patterns;

• Use these height functions to identify the optimal wave
amplitude for slithering across the medium; and

• Identify a quick-turn gait that we do not believe has been
previously reported in the snake robot literature.
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II. BACKGROUND

A. Geometric Locomotion Model

When analyzing a locomoting system, it is convenient
to separate its configuration space Q (i.e. the space of its
generalized coordinates q) into a position space G and a shape
space M , such that the position g ∈ G locates the system in
the world, and the shape r ∈M gives the relative arrangement
of the particles that compose it.1

Taking the canonical three-link system in Fig. 2A as an
example to illustrate the language that is used throughout the
paper, the position is the location of center of mass and mean
orientation of three links, g = (x, y, θ) ∈ SE(2), and its shape
is parameterized by the two joint angles, r = (α1, α2).

A useful model for locomotion in kinematic regimes where
no gliding can occur, and which we employ in this paper, is
that at each shape, there exists a linear relationship between
changes in the system’s shape and changes in its position,

◦
g = −A(r)ṙ, (1)

in which ◦
g is the body velocity of the system (i.e., the world

velocity ġ expressed in the system’s local coordinates), and
the local connection A acts like the Jacobian of a robotic ma-
nipulator, mapping from joint velocities to the corresponding
body velocity.2 Each row of A can be regarded as a local-
coordinates gradient of a position component with respect to
the system shape, as illustrated for a swimmer in a viscous
fluid in Fig. 2B.

Equation (1) is a reconstruction equation, in that it can be
integrated to reconstruct a position trajectory from a known
shape trajectory. By an extension of Stokes’ theorem [15], the
net displacement over a closed loop φ (i.e., a gait cycle) can
be approximated3 by integrating the curvature of A over a
region enclosed by the loop,

∆g =

∮
φ

−A(r) dr ≈
∫∫

φ

curvature︷ ︸︸ ︷
−curlA +

[
A1,A2

]
dr (2)

where the curl of A is taken row-wise and the local Lie bracket
of the columns of A evaluates as

[
A1,A2

]
=

Ay
1A

θ
2 −Ay

2A
θ
1

Ax
2A

θ
1 −Ax

1A
θ
2

0

 . (3)

Together, these terms measure how the constraints encoded
by A change during the cycle in ways that prevent the
net integral from being self-canceling, and thus capture the
net displacement induced by the cycle. As is also discussed

1In the parlance of geometric mechanics, this assigns Q the structure of a
(trivial, principal) fiber bundle, with G the fiber space and M the base space.

2This kinematic condition has been demonstrated for a wide variety of
physical systems, including those whose behavior is dictated by conservation
of momentum [5, 6], non-holonomic constraints such as passive wheels [6–
9], and fluid interactions at the extremes of low [10–12] and high [11–14]
Reynolds numbers.

3In this explanation, we have glossed over some formalisms regarding Lie
group theory and exponential coordinates, see [15] for more details in this
regard.
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Fig. 2. (A) Three link kinematic vehicle with two actuated joints α1, α2. (B)
Local connection vector field corresponding to body velocity x component
with a viscous-swimming locomotion model. The shape motion indicated by a
is aligned with the field, and so induces positive x displacement, while shape
motion b is orthogonal to the vector field, and so induces no x displacement.
(C) The displacement- and efficiency-optimal strokes for the three-link viscous
swimmer found in [4], overlaid on a contour plot of the x row of the curvature
of the local connection. Units on the curvature plot are body-lengths per square
radian.

in [15], this approximation is most accurate in minimum
perturbation coordinates, which place the body frame roughly
at the center of mass and aligned with the system’s principle
moment of inertia, and can be completely identified through
a Hodge-Helmholtz decomposition of the system dynamics.

Over two-dimensional shape spaces, each component of
the constraint curvature can be plotted as a height function,
as illustrated in Fig. 2C for the x component of a viscous
swimmer. Plotting the system dynamics makes the nature
of effective gaits immediately apparent: gaits which enclose
large sign-definite areas of the height functions produce large
displacements, and the largest displacement-per-cycle gaits lie
along the zero contours of the height functions [16], as shown
in Fig. 2C.

The maximum-efficiency gait, which minimizes the me-
chanical cost of transport or maximizes speed at a given power,
is a contraction of this zero-contour, as shown in Fig. 2C. In
a dissipative system the power consumed by a shape change
is proportional to its pathlength through the shape space, and
contracting the zero-contour minimally affects the area integral
while significantly reducing the pathlength. The system is then
able to execute more cycles in a given time or at a given power,
moving further or faster at the same energetic cost [17].

B. Serpenoid Mode Functions

Height functions provide an intuitive tool for designing
gaits to achieve large movement in the workspace. However,
because of the difficulty of visualizing geometric structures
in high-dimensional spaces, they are currently most useful
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Fig. 3. (A) If all the joints of a locomoting system are independent, its
configuration can be spanned by a standard basis of the same dimension as
number of joints. (B) With a pair of continuous sine and cosine basis functions,
the joints are coupled and the dimension of shape space for a continuous
serpenoid swimmer can be reduced to 2. (C) The waveforms of a continuous
swimmer in the serpenoid space are visualized in the right panel.

for two-dimensional shape spaces. By using mode functions,
the tools of geometric mechanics can be readily applied to
study behaviors of complex living systems, such as a snake’s
slithering. Hirose proposed the serpenoid curve to model the
wave geometry for a snake’s planar slithering motion, where
the body curvature (or joint angle in a discrete system) varies
sinusoidally along the backbone [3]. Such curves can be
described as weighted sums of sine and cosine modes, shown
as f1 and f2 in Fig. 3B, and angle α of the nth joint is

α(n) =
[
sin(Ωn) cos(Ωn)

] [w1

w2

]
, (4)

where Ω is the spatial frequency of the curve, and the weights
w serve as shape parameters that describe the amplitude
and phase of the wave. The body shapes corresponding to
different values of w are shown in Fig. 3C. Given this shape
parameterization, we can then build a reconstruction equation
of the form in (1) that maps changes in the shape parameters
to changes in the body position as

◦
g = −Ã(w)ẇ, (5)

where Ã(w) is the local connection with respect to the
serpenoid shape space.

III. EMPIRICAL DERIVATION OF LOCAL CONNECTION
AND POWER METRIC

In this study, our goal was to characterize and optimize
the motion of a snake robot over a bed of granular particles.
Although we had no constitutive model for this medium, and
certainly not one that met the theoretical standards normally
encountered in geometric mechanics literature, we were able
to empirically derive the local connection for an N-link snake
robot swimming on a granular surface by (1) sampling a
configuration w, (2) commanding a small shape velocity ẇ,

TABLE I
PROPERTIES OF SNAKE ROBOT AND PLASTIC BALLS SUBSTRATE

number of joints 8
snake robot total length 0.89 m
snake robot intersection diameter 0.051 m
snake robot mass 4.61 kg
plastic ball diameter 0.006 m
plastic ball mass 0.12 g
robot-ball friction coefficient 0.50 ± 0.03

(3) measuring the resultant body velocity ◦
g and power con-

sumption, and (4) fitting the local connection Ã(w) and power
metric to the data. We repeated this procedure over a uniform
sampling of the shape space to generate a comprehensive
model of the system.

A. Experimental Setup

The granular bed was composed of 6mm plastic BB balls in
a 2.6m×1.2m×0.23m pool as a test bed. Four OptiTrack Flex
13 cameras were installed to track the IR reflective markers
uniformly attached on the snake robot, shown in Fig. 1. After
each run, we manually smoothed out the surface of the pool
to avoid any memory effects of the granular material.

B. Empirical Height Functions

For every configuration, we first take a snapshot of the snake
robot, logging the initial center of mass position and mean
orientation in the workspace as a homogeneous representation
g(0) ∈ SE(2) . Then we perturb the snake along both w1 and
w2 directions independently, and log the new center of mass
position and mean orientation g(t) ∈ SE(2) in the workspace.
With the knowledge of initial configuration g(0) and final
configuration g(t) of snake robot, we can calculate the body
velocity ◦

g in a twist form [18]:

g(t) = g(0) exp(
◦
gt) ⇔ ◦

g =
log(g-1(0)g(t))

t
(6)

Then we can extract all three body velocity components for
the planar locomotion from the twist:

◦
g =

0 −θ̇ ẋ

θ̇ 0 ẏ
0 0 0

 (7)

After evaluating body velocity at every sampled shape
configuration, the local connection can be derived by linear
regression as the best-fit linear map from shape to body
velocity. In addition, as explained in §II we used Hodge-
Helmholtz Decomposition to transform the local connection
to an optimal body frame. By evaluating curvature of the
vector field, we derived the empirical height functions, as
shown in Fig. 4. Red areas indicate that the local connection
vector field has positive curvature, while black areas indicate
negative curvature. The intensity of either color represents the
magnitude of the curvature of the local connection vector field
and white regions are where the curvature is zero.
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Fig. 4. Empirical local connection vector field and height function of an 8-
link snake robot slithering on the surface of 6mm plastic particles, represented
in minimal perturbation body frame. The range of the curvature plots is
±0.0152 body-lengths or ±0.0483 radians per square unit of shape. Red,
white and black indicate positive, zero and negative values respectively.

C. Power Metric

Our model for the energy and power consumed by the snake
robot as it changes shape is a dissipative Riemannian metric
of the form (

dE

dt

)2

= P 2 = ẇTMpẇ, (8)

where the metric tensor

MP =

[
a 1

2c
1
2c b

]
(9)

encodes the surrounding media’s resistance to motion along
different shape directions.4 The energetic cost of a gait cycle
is then

E2
cost =

∫
dwTMpdw, (10)

which is the pathlength of the cycle in the parameter space,
weighted by MP .

4This model is a Coulomb-friction equivalent to the viscous-friction metric
discussed in detail in [17].

Fig. 5. (A) Power dissipation metric in shape coordinates is shown. The
long axis in the ellipse corresponds to less energy consumption per change in
shape. (B) The metric as it appears in under a power-normalizing cartographic
reparameterization [17].

To evaluate MP experimentally, we used the high-fidelity
joint-torque sensors5 on the snake robot to measure the me-
chanical load on the joints during a sequence of test motions
similar to those used to find the local connection in §III-B.
Under our model, we would expect to see the energy consumed
for small motions around a given starting shape to fit a conical
function whose coefficients correspond to the elements in the
metric tensor,

a(dw2
1) + b(dw2

2) + c(dw1)(dw2) = P 2dt2, (11)

and we find the set of coefficients that best fit our observations
using a linear regression of the data: For each set of n values
for dw, P, and dt around a given starting shape, our model
expectation is

A︷ ︸︸ ︷
(dw2

1)1 (dw1dw2)1 (dw2
2)1

(dw2
1)2 (dw1dw2)2 (dw2

2)2
. . .
. . .

(dw2
1)n (dw1dw2)n (dw2

2)n


X︷︸︸︷ab
c

 =

Y︷ ︸︸ ︷
P 2dt21
P 2dt22

.

.
P 2dt2n

, (12)

which is overconstrained but has a best fit solution via the
pseudo-inverse,

X = A+Y, (13)

giving a set of components for the metric tensor at that shape.
The metric tensors at different shapes can be visualized via

the Tissot indicatrix [17, 20], which illustrates the extent to
which lengths according to the metric are distorted by the
working parameterization. In these plots, unit circles according
to the metric are displayed as ellipses, with the long axes of
the ellipses corresponding to directions in which motion is
“easiest” (i.e., for which a unit amount of effort changes the
parameters the most). In Fig. 5A, we can see that moving
around the shape space (passing a wave down the body) is eas-
ier than crossing the center of the shape space (straightening
out the body and then curving it again). We can also see that
it is slightly easier to move in the w1 sine mode direction than
the w2 cosine mode direction, which parallels the observations

5Series elastic mechanisms as described in [19].
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Fig. 6. (A) Body length normalized forward displacement and inverse of
mechanical cost of transport per gait cycle vs. relative curvature. Both plots
are predicted by empirical height function: displacement is estimated by area
integral of height function and cost of transport is estimated by pathlength
of the gait in the shape space normalized by area integral of the enclosed
height function. Error bars represent robot swimming experiment data, where
we sample joint angle amplitude for slithering on the surface of plastic balls.
(B) Maximum forward displacement gait (red) and minimal mechanical cost
of transport gait (blue) is visualized in serpenoid shape space. Colormap of
the height function is the same as in Fig. 4.

in [17] that bending into a “C” shape costs more energy than
bending into an “S” shape because the “C” motion sweeps the
body through more of the surrounding medium.

To remove some of the metric distortion captured by the
Tissot indicatrices from the shape space, we can use a car-
tographic reparameterization [17] to find a set of coordinates
that match the metric as much as is possible, in the same way
that a conical map projection is a best-fit flat parameterization
of the globe. This operation treats the metric distortions as
pre-strains in an elastic sheet and relaxes these strains as
much as possible while maintaining continuity in the space.
As illustrated in Fig. 5B, applying this reparameterization to
the shape space significantly reduces the distortion.

IV. DESIGNING GAITS

A. Forward locomotion

A slithering gait of constant curvature amplitude can be
represented by a circle centered at the origin in the serpenoid
shape space, with the radius representing the wave curvature
amplitude. From the empirical height function corresponding
to forward displacement in Fig. 6B, we observe that as the
wave curvature amplitude increases from zero, forward dis-
placement per gait cycle increases as the circle encloses more
red (positive) area. After a certain point, forward displacement
is maximized and then begins decreasing as the radius keeps
increasing, because the gait starts enclosing black (negative)
area. This observation of how forward displacement changes
as a function of body curvature matches what we saw when
conducting a manual sweep of the parameter space, as shown
in Fig. 6A. Moreover, the maximum forward displacement
gait found in the latter exactly encloses the most signed area
in the empirical height function as the red circle marked in
Fig. 6B. The relatively poor agreement in the magnitude of
displacement for relative curvature less than 6 is discussed in
section V.

Fig. 7. Periodic turning gait in serpenoid space. Seven key frames are
extracted (index is marked in yellow) and linked with shape configurations.
The first frame and the seventh frame have the same shape configuration but
rotated 90 degrees clockwise, showing the success of the turning maneuver.
Colormap of the height function is the same as in Fig. 4.

In the experiments, the robot’s mechanical efficiency6

peaked at a lower gait amplitude than did the net displacement.
This data matched our prediction from the geometric model
that the efficiency should be equal to dividing the area integral
of the height function by its metric-weighted perimeter length.
As illustrated by the inner blue curve in Fig. 6B, the experi-
ments also matched our prediction that the most-efficient gait
would be a contraction of the maximum-displacement cycle,
giving up the low-yield regions at the edge of the red central
area.

B. Turning gait

As shown in Fig. 7, we can use the θ height function to
intuitively identify good turning gaits. Semi-circles, on either
the upper half or lower half of the shape space, can enclose a
close-to-maximal signed area. Moreover, we observed that as
the stroke amplitude (radius of the semi-circle) increases from
zero, turning rate increases little at first as the circle encloses
light colored area. After a certain point, the turning rate begins
to increase significantly, because the semi-circle gait begins to
enclose dark colored area. This observation of how turning rate
changes as a function of body curvature matches what we saw
when conducting a manual sweep of the parameter space, as
shown in Fig. 8. The discrepancy in the magnitude of turning
is discussed in section V. In Fig. 7, the semi-circle turning
gait achieves about 90◦ per gait cycle, which is an effective
motion and to the best of our knowledge has never been found
by optimal motion planning or exploring the parameter space,
which usually requires a clever heuristic parameterized gait
model.

6The robot’s weight multiplied by average velocity divided by average
mechanical power; reciprocal to the mechanical cost of transport.
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Fig. 8. Turning rate vs. max relative curvature for fast turning gait shown in
Fig. 7. The red curve is predicted by area integral of empirical height function
corresponding to rotation, whereas the points with error bar represent robot
swimming experiment data, where we sample joint angle amplitude for turning
on the surface of plastic balls.

C. Lateral translation

The average magnitude of the empirical height function
corresponding to the lateral direction (y) is about 10−3 times
smaller than that of the forward direction. Therefore, it would
appear that we cannot design an effective periodic planar gait
that achieves significant lateral translation in serpenoid shape
space. However, with effective forward motion and in-place
turning motion, we can represent the snake robot as a differ-
ential drive car, and then take advantage of noncommutativity
to design a lateral translation gait that consists of a sequence
of simple motions: in-place turn 90◦, slither forward, and in-
place turn −90◦. It is also worth noting that by commanding
two orthogonal independent serpenoid waves along the body,
the snake robot can sidewind laterally [1, 21].

V. DISCUSSION AND CONCLUSION

Snake robots are potentially versatile and robust locomotion
platforms, capable of traversing many kinds of terrain. The
challenge in making effective use of this potential is in
managing their many degrees of freedom and the complexities
of whole-body interaction with the environment. In this paper,
we have explored how geometric control theory can provide a
path through these difficulties. In particular, fitting a geometric
model to a set of small test motions allowed us to:

• Bypass the lack of governing force models of environ-
ments;

• Garner a deep understanding of the relationship between
gait amplitude and the size and efficiency of the displace-
ment it induces;

• Reduce the space of gaits we needed to consider for
translation to simple traveling waves along the body;

• Identify a turn-in-place gait that to the best of our
knowledge has not previously appeared in the snake robot
literature; and

• Rule out any chance of finding an effective “simple” gait
for lateral motion, but identify a set of forward-and-rotate
gait cycles that will achieve this motion.

We achieved these insights despite the lack of an ideal differ-
ential geometric model for the system dynamics, emphasizing
that the principles of geometric gait analysis apply beyond the
physics models that they are normally paired with.

Further robot swimming experiments show strong agree-
ment with the predictions of empirical height function for the
locomotion performance versus stroke amplitude. We chiefly
attribute the discrepancy in the magnitude to a memory effect
in the granular substrate. When experimentally determining the
local connection, the surface is flattened after each “twitch” to
ensure uniform surface contact. However, for robot swimming
experiment, the granular surface has already been disturbed
by the previous motions and the contact pattern for the robot
can hardly be guaranteed to be uniform during the whole
swimming motion.

In our ongoing work, we are expanding on these ideas.
Avenues we are exploring include incorporating these tech-
niques into model-based predictive control as in [22], the use
of higher-dimensional equivalents to height functions, so as
to allow the use of more shape modes, and the application
of these techniques to animal models as well as robots. To
address the “memory” effect in the granular medium, we are
developing a sampling protocol that extracts the connection
along a standardized test trajectory (instead of resetting the
experiment for each sample); this procedure will thus produce
a model that better-reflects the experimental protocol.
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