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Absence of inelastic collapse in a realistic three ball model
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Inelastic collapse, the process in which a number of partially inelastic balls dissipate their energy through an
infinite number of collisions in a finite amount of time, is studied for three balls on an infinite line and on a ring
(i.e., a line segment with periodic boundary conditjoriselastic collapse has been shown to exist for systems
in which collisions occur with a coefficient of restitutian independent of the relative velocities of the
colliding particles. In the present study, a more realistic model is assumed for 1 for relative velocity
equal to zero, and decreases monotonically for increasing relative velocity. With this model, inelastic
collapse does not occur for three balls on a line or a 1i8§063-651X%98)02404-0

PACS numbgs): 47.50-+d, 46.10+z, 03.20:+i

I. INTRODUCTION Il. THREE BALLS ON AN INFINITE LINE

Consider three balls of unit mass and lale]dvi, andR

Energy loss during collisions of macroscopic particles is(left, middle, and right The balls’ velocities are",u™,v ",
often described by a coefficient of restitutionthe magni- ~ and their relative velocities ang-=v-—v™, uR=oM-p~
tude of the ratio of the relative normal velocity of the par- Assume that the balls undergo instantaneous binary colli-
ticles after the collision to the relative normal velocity before sions and that the relative velocities of two particles before
the collision. Analyses of particle dynamics with constant and after theirith collision, u; andu; ., are related by a
have shown that for below a critical value ., many initial ~ Velocity-dependent coefficient of restitutiar(u;):
particle velocities and configurations lead to an infinite num-
ber of collisions in a finite tim§1—6]; both the relative spac- Ui+1=—T(Uju;. 1)
ings and velocities of the balls go to zero. Such a process is
called inelastic collapse. In addition to the collapse analysesyithout loss of generality, we assume that the system is
simulations[7—-9] and hydrodynamic analys¢6,10—-17 of  prepared such that the velocities of the left and right balls are
granular media have usually assunretd be constaninde-  directed in towards the middle ball, and that the velocities of
pendentof the relative collision velocityl. For real materi- the balls are such that the left and middle balls undergo the
als, howeverr is not constant; rather, it increases monotoni-first collision (i.e., u5>u§>0). After the collision between

cally with decreasing and approaches unity in the limit that the left and middle ball, the relative velocities dusing the

u—0 [18-21. conservation of momentum and the definitionr pf
To illustrate the problem with the usual assumption of
constantr, we examine the two simplest models in which uf=—r(ug)ug, (2

inelastic collapse has been shown to occur for congtant

three balls confined to an infinite lin&,3,4] and three balls 14 r(ub)

confined to a periodic line segmefring) [5]. For both of uR=ul+ —Ou(L,. 3
these models we find that if is a physically reasonable 2

function of the relative collision velocity, there is no collapse

state. This result builds on a conjecture of McNamara and he middle and right balls collide next. After the collision,
Young that collapse is an artifact of the idealized constant the final relative velocities can be written

model, and that a velocity-dependenimight eliminate this

artifact[1]. N r(uf) R
The reason for the absence of inelastic collapse with a Uz=ug+ — 2 Un 4
physical model forr is straightforward. If collapse is to oc-
cur, the relative velocities of all particles must go to zero. If
. : ul=—ruRulf (5
r—1 as the relative velocity— 0, then foru small enough, 2 ¥

a collision will occur for whichr>r.. From the previous

work, this ensures that collapse cannot occur. Thus collapsafter this collision, the system will be in a state such that the
in the line and ring geometries happens only for nonphysicabnly possible collision is between balls and M. If these
coefficients of restitution. Therefore the results obtained ircollide, then the next possible collision will be betwe@n
recent analyses of inelastic collagge-6], as well as work andM. Thus we can generate a map which returns the sys-
on the hydrodynamics of granular materidl§,10—17, tem to a potential collision betweénandM after every two
should be reexamined using a more physically accurate formollisions. This is done by substituting Eq®) and (3) into

ofr. Egs.(4) and(5) and generalizing to obtain
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1 1+r(up) uR=—r(uR+Dbu")(uR+Dbut). 9
ub, ,=—r(uhuk+ 5 |1+r ul+ %uh”
1+r(ub) These yieldbu-=0, so that eitheu"=0 or b=0. If b=0,
<UR+ —”UL)’ (6) the definition ofb implies thatr(u“)=—1, which is un-
: 2 " physical. Substitutingi“=0 into Eq.(9) leads to the condi-

. . tion uR[1+r(u®)]=0, giving eitheru®=0 or r(uf)=-1.
W= —r( WR4 1+r(uy) UL)( g 1tr(uy) uL) @ Again, the only physical result isR=0.
n+2 n 2 AL 2 nj To explore the long time behavior of the system, we cal-
culate the stability of the fixed point. Writing the map in
The iteration must stop if botli;<0 anduj<0 because matrix form for small relative velocitiedut and duR near
then bothL andR are moving away fronM, and there can the fixed point (I-,uR)=(0,0) gives[22]
be no more collisiondi.e., the range of the map contains
points that do not lie within its domainWe now investigate
the properties of this map. [1+r(0)]? 1+r(0)
The only fixed point of the map isuf,uR)=(0,0), for —

i ; ; dut 4 2 dut
which the three balls move together with both relative ve- R) = ( R) )
locities equal to zero. To show this, set, ,=u-=u" and du™/ 1, _10) 1+r(0) —1(0) du/
uR,,=uR=uR. Substituting into the above equations, rear- 2
ranging Eq.(6), and denotingp=[1+r(u‘)]/2 gives (10

3but=uR+r(uR+bu)(uR+bub), (8)  The eigenvalues of the matrix are

~1-6r(0)+r%(0)* [~ 1+6r(0)~r*0)]*~64r*(0)
== 8 :

(11)

The linearization of our map recovers the previous result of Ill. THREE BALLS ON A RING
the existence of a criticat [1,3,4, and shows that for

. . . The result for balls on an infinite line says nothing about
velocity-dependent coefficients of restitution, the only valu

) . ) ) Cwhat might happen if the balls were not allowed to go to
which determines whether a system will collapse(8), the jnfinity as soon as both relative velocities were negative.
value.ofr at the fixed point. Substltutlng(0)=_1 Into EQ.  Therefore we examine a model which allows continued in-
(12) gives the complex eigenvaluas. =(—1%iv3)/2. The  teraction with neighboring balls, specifically, three balls of
complex eigenvalues have magnitude unity, which impliesequal mass on a ring, i.e., confined to a line segment of unit
neutral stability; hence we must argue further to determingength with periodic boundary conditions. This geometry
the long time behavior of the linearized map around the fixedioes not allow the balls to escape collisions. Note that there
point. is no radial acceleration in this model; the ring merely im-
Sincer(0)=1, the analysis reduces to that for perfectly poses periodic boundary conditions. Grossman and Mungan
elastic collisions. If collisions are elastic, a collision between[5] have shown that collapse occurs in such a configuration
two identical balls acts as if the balls pass through eaclfior r<r..
other. Therefore a maximum of three collisions may occur However, if collapse is to occur on a ring, the distances
before the balls move away from the fixed point. As thebetween the balls and their relative velocities must go to
relative velocities approach zero, the balls act elastically, an@ero, so that one of the particles collides alternately with the
the dynamics must result in a state where all relative velociother two particles, which do not collide with one another.
ties are negative. Since the linearization of the map is valid NiS situation is indistinguishable from three particles col-
for small u, inelastic collapse cannot occur—the balls will lapsing on an infinite line. Since we have already shown that

never reach a state where all relative velocities and separg°!lapse does not occur on the line, collapse does not occur

tions are zero. This is because the ranges of both the full angf" the 1ng-
Ilnear!zed maps contain points that do not lie within their V. DISCUSSION
domains.
If r(0) is not unity, but re=r(0)<1, where We have shown that inelastic collapse, which was found

r.=7—4v3~0.0718, previous analysis has shown that thein previous analyses with a constant restitution coefficient,
fixed point is unstable, and collapse cannot occur. Collapsdoes not occur with a realistic model for the restitution co-
can only occur ifr(0)<r. [1,3,4]. In experiments, such a efficient. While we have considered only three particle sys-
situation can never be observed, since for real materialsems, we argue that collapse will not occur in Mrparticle
r(u)—1 asu—0. system. Such systems have been stuffiédor constant co-
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efficient of restitution withN particles on a line, and it was with a velocity-dependent[23] and experiment24] do not
found that whenr is near 1, the minimum number of produce collapse, but show particle clustering, a situation in
particles necessary to create collapse varies aghich variations in particle density spontaneously occur. It is
—[In(1-nJ(1-r). Thus, ag —1, N—. possible that clustering in granular media proceeds through
Studies predicting inelastic collapse have assumed instafrustrated collapses, situations in which the collision fre-
taneous collisions. More realistic models of binary particlequency increases rapidly until the relative normal velocities
collisions would have to account for the duration of colli- are such that Co”apse ceases. However, C|ustering may also
sions (particle contact time which diverges aui™® as  pe due to finite duration collisions, or the inelasticity of par-

u—0 [19]. Since inelastic collapse requires that the particlegicles may cause clustering through a scenario less cata-
undergo an infinite number of collisions in a finite time, col- strophic than inelastic collapse.

lapse cannot occur if the collisions are not instantaneous. For

small relative velocities, the duration of the collision signifi-
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