
Geometric Visualization of Self-Propulsion in a Complex Medium

Ross L. Hatton,1 Yang Ding,2,* Howie Choset,3 and Daniel I. Goldman4

1School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331, USA
2School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

3Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
4School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

(Received 27 August 2012; published 14 February 2013)

Combining geometric mechanics theory, laboratory robotic experiment, and numerical simulation, we

study the locomotion in granular media of the simplest noninertial swimmer, the Purcell three-link

swimmer. Using granular resistive force laws as inputs, the theory relates translation and rotation of the

body to shape changes (movements of the links). This allows analysis, visualization, and prediction of

effective movements that are verified by experiment. The geometric approach also facilitates comparison

between swimming in granular media and in viscous fluids.
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Introduction.—Locomotion of animals and robots
emerges through the interplay of body deformations
coupled to an environment. Finding this relationship is
often a challenge: for example, in Newtonian fluids,
although researchers have long analyzed [1–3] the
Navier-Stokes equations and simpler representations [4]
to gain insight into flight and swimming, analytic inves-
tigation is often impossible and high fidelity approxima-
tions are computationally costly. Studying the motion of
organisms [5] and robots [6] that maneuver through
complex environments, like sand, rubble, and debris, and
microscopic organisms [3] that move through complex
biomaterials can be even more complicated—often such
materials are not even described by equations at the level
of Navier-Stokes.

Certain kinds of movement are kinematic, in that the
net displacement is a function of the deformation and is
independent of its rate. Taking advantage of this property
for low Reynolds number (Re) swimming in viscous
Newtonian fluids, Shapere and Wilczek [7] introduced a
geometric approach using the notion of gauge symmetries,
which are equivalencies in the system dynamics across
different configurations. These symmetries reduce the
effective dimensionality of the system and facilitate
interpretation of dynamics in terms of geometric concepts
such as areas, lengths, and curvatures. The geometric
approach has been further developed [8,9] and now enables
evaluations [10] of systems’ locomotion capabilities in
the form of low-dimensional, readily visualizable repre-
sentations of the system’s motion for any gait (cyclic
change in body shape). These tools allow useful gaits to
be identified by inspection, without costly trial-and-error
optimization [11]. However, the insights afforded by these
geometric tools have been restricted to systems—including
viscous swimmers [7,9,12,13] and planar reorienting
satellites [14]—with analytically describable linear
dynamics.

Previously, we studied [15] the sand swimming of a
sandfish lizard and a robot model in dry granular media
(GM), arguably the simplest flowing terrestrial material.
In theory, simulation, and experiment, we demonstrated
that the GM surrounding an immersed undulatory
swimmer could be modeled as a ‘‘frictional fluid’’ in which
forces are dominated by Coulomb friction, making them
insensitive to rate, and in which inertial effects are small.
However, our analysis could only hint at the range of
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FIG. 1 (color online). Three-link swimmers. (a) The robot
resting on a granular medium (GM), a bed of plastic spheres.
The lit masts at the ends of the links are markers for tracking the
robot when its body is submerged. The rubber skin on the front
section has been removed to display the mechanical structure.
Each link is 5:4� 2:8� 14:7 cm3. (b) Analytical three-link
model with a body frame corresponding to a weighted average
of the link positions and orientations. (c) Force relations for a rod
dragged in GM (adapted from Ref. [6]) (solid) and a long slender
rod dragged in a low Re fluid (dashed). Scaling is chosen such
that the maximum values of Fk are equal for the GM and low Re

systems.
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behaviors possible in sand swimming. Here we demon-
strate the efficacy of the geometric approach to reveal
principles of swimming in GM, despite a lack of funda-
mental equations of motion. We empirically generate a
geometric swimming model in GM for the three-link
swimmer (Fig. 1) first introduced by Purcell [16] as a
simple swimmer to study locomotion in viscous fluids
[17]. We use this model to analyze different locomotor
behaviors and to compare swimming in GM to swimming
in a viscous fluid.

Geometric mechanics, the resistive force model, and the
three link swimmer.—The key ingredient in applying
geometric theory to motion in GM is the ansatz that at
any given shape [with joint angles specified by the vector
� ¼ ð�1; �2Þ], the swimmer’s body velocity � is linearly
proportional to its shape velocity _�, such that the relation-
ship between shape, shape velocity, and body velocity can
be expressed as

� ¼ Að�Þ � _� ¼ ðAxð�Þ � _�;Ayð�Þ � _�;A�ð�Þ � _�Þ; (1)

where Að�Þ is referred to as the local connection
(or Jacobian) matrix [18]. Local connection models
have been identified for diverse locomotion modes
[7–9,12,14,18–20], in particular, for swimmers in low
Re [7,12,20], viscous environments that qualitatively
resemble those seen in granular swimming [15]. The exis-
tence of such a model for motion in GM is further sug-
gested by our previous results [15] showing that sand
swimming is kinematic. Local linearity between shape
and position velocities suffices to produce kinematic
motion, and is only slightly stronger than the necessary
condition, proportionality between body and shape
velocities.

GM lack equations equivalent to Navier-Stokes, so ana-
lytic derivations of the local connection used previously
are not applicable. In their place, we have developed a
numerical means of identifying A, based on our empiri-
cally obtained granular resistive force laws [6,15] and the
observation that inertial forces on a low-speed swimmer
are sufficiently small that the swimmer moves quasistati-
cally. The force laws (Fig. 1) resemble those in low
Re fluids [21], although forces perpendicular to body seg-
ments are enhanced relative to those in true fluids.
Integrating these forces along the swimmer’s body at
different �, _�, and � combinations and solving for the
combinations that give force equilibria yields mappings
from shape velocity to body velocity at each shape.

We find that across the space of shapes, graphs of the
components of � as functions of _� are nearly planar, as
in Fig. 2. This planarity means that, despite the lack of
an analytic linear relationship between shape and body
velocities, there exists an implicit linear relationship to
which we can fit a local connection of the form in
Eq. (1). Each row of Að�Þ is then obtained by finding the
best-fit planes for each component of the body velocity at

each shape � [22]. Taking these components over the set
of shapes, we visualize each component of A as a vector
field on the shape space (Fig. 3(a)), termed a connection
vector field.
Testing the linear theory.—To test if the linear approxi-

mation (local connection approach) of the system dynam-
ics can accurately compute movement over different gaits,
we constructed a three-link robot in both experiment and
multiparticle discrete element method (DEM) simulations,
using identical techniques and parameters to those reported
in Ref. [6]. The robot (Fig. 1) consists of three wooden

FIG. 2 (color online). The components of � for a particular
initial shape (inset), with � ¼ ð0:85;�1:14Þ radians; velocities
are given in terms of body-lengths (�x and �y) or radians (��) per

second. The components of the equilibrium � (shown here for a
body frame attached to the middle link) are almost linear
functions of the shape velocity, and so can be characterized by
the gradient vectors of the best-fit planes (black arrows). The
color map shows the agreement between the equilibrium � and
the fitted plane, with light regions exhibiting the least error.

FIG. 3 (color online). (a) The local connection vector fields
[Eq. (1)] Ax, Ay, A�. The gray (red) path through the shape
space denotes a circle gait, and the smaller gray circle identifies
the gradients taken from Fig. 2. (b) Sequence of shapes and
displacements along the gait shown above. The vertical red line
is a reference position for displacement. (c) Along the gait, the �
and net displacement predicted by the linear model (thick red
line), the DEM simulation (dotted line), and robot experiments
(thin black line) for a representative experiment at frequency
0.5 Hz. Lengths and angles are given in terms of body-lengths
and radians, respectively. Time is in fractions of a gait cycle.
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segments connected by two servomotors (Hitec, HSR
5980SG); the total mass of the robot is 0.56 kg. The seg-
ments are covered by a thin latex sleeve giving the robot a
body-particle coefficient of friction of 0.4. The robot is
fully immersed in a large bed of 5:87� 0:06 mm diameter
plastic spheres at a depth of 5.5 cm from the top of the
robot. Motion was tracked through a camera via the posi-
tion of LED masts. Data were collected and averaged over
3 runs. The DEM simulation used 6 mm diameter particles
and a particle-particle and particle-body collision model
incorporating Hertzian contact, normal dissipation, and
tangential Coulomb friction, with parameters previously
validated against experiment [6].

Integrating the linear model’s prediction of the
swimmer’s motion during a shape change is equivalent to
taking line integrals on the connection vector fields along
paths the system traces. For example, consider a gait in
which the joints oscillate sinusoidally with a quarter-phase
offset, producing a traveling wave of deformation along the
body. This gait traces out a circle in the space of joint
angles, shown in Fig. 3(a), generating positive and negative
� as it flows along and against the vector fields, depicted in
Fig. 3(c); these velocities can then be integrated into net
displacements relative to the starting body frame. As illus-
trated in Fig. 3(c), the x and � components of the velocities
and integrated positions predicted by the linear model
agree with those found in experiment and DEM. The y
component of the velocity and displacement from the
linear model qualitatively agree with those from the
experiment and DEM but the magnitudes are reduced.
We will return to this point.

Constraint curvature functions.—The local connection
model of granular swimming simplifies evaluation of the
displacement produced by a gait, but its greater usefulness
derives from the ability to calculate the associated con-
straint curvature functions (CCFs). These functions (calcu-
lated following the procedure in Refs. [9,20]) are plotted
for GM in Fig. 4(a). CCFs are closely related to the curls of
the connection vector fields. In an extension of Stokes
theorem, this curl-like nature means that the net displace-
ment induced by a gait corresponds to the area integrals of
the CCFs over the region the gait encloses in the shape
space. Stokes theorem only applies for systems where the
integrations are commutative and so does not directly
apply to our swimmers, for which body-frame translations
and rotations do not commute. CCFs circumvent this limi-
tation by augmenting the curl with a Lie bracket term that
linearly approximates the effects of noncommutativity. We
introduced [10] coordinate optimization techniques that
minimize the error in this linearization; for the granular
swimmer considered here (as in Refs. [10,23]), the error is
negligible.

By visualizing gaits as enclosures of area, the CCFs pro-
vide a comprehensive overview of how gait patterns interact
with system constraints to produce net displacement.

For example, we can explain the net forward displacement
for the gait in Fig. 3(a) by overlaying it on the xb CCF
from Fig. 4(a) [see inset of Fig. 5(a)]. The large negative
region at the center of the xb plot indicates that cycles in
this region produce net x translation relative to the starting
frame, with clockwise (negatively oriented) cycles generat-
ing positive displacement. See movie 1 in the Supplemental
Material [24].
The CCFs also give insight into the relationship between

net displacement and magnitude of the joint motions. For

FIG. 4 (color online). Fundamental geometric diagrams, the
constraint curvature functions (CCFs) for the (a) granular three-
link swimmer and (b) low Re swimmer of equivalent dimensions
(bottom). Each swimmer’s body frame is optimized to a
weighted average of the three link frames; see Ref. [28]. The
units of the field values are ðbody-lengthsÞ=ðjoint-radiansÞ2 for
xb and yb and ðorientation-radiansÞ=ðjoint-radiansÞ2 for �b.
Values on the xb and yb fields have been multiplied by 100.

FIG. 5 (color online). Predictions of movement for the three-
link swimmer. (a) CCF estimate of displacement compared to
experimental and DEM results as a function of stroke amplitude
(radius of the circle traced in the shape space). Dashed horizontal
lines indicate displacements for the butterfly gait in DEM and
resistive force theory. The inset shows the circle gait overlaid on
the xb CCF, along with a graphically optimized ‘‘butterfly’’ gait
(dashed path). (b) CCF estimate of net rotation for figure-eight
gait of different stroke amplitudes, the radius of one circle of the
figure-eight gait overlaid on the �b CCF in the inset. Frequency
was 0.5 Hz in (a) and 0.17 Hz in (b).
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small amplitude circular gaits, where the sign is negative,
the net displacement scales approximately quadratically
with amplitude, tracking the rise in the enclosed area. At
large amplitudes, the gait includes positive regions near
the corners of the plot, reducing the area integral. These
behaviors point to the optimal amplitude as that which
encompasses as much of the central negative region as
possible while avoiding the outlying positive regions.
This geometric interpretation also suggests gaits, such as
the butterfly in the inset of Fig. 5(a), that produce more
displacement than any circle by better conforming to the
sign-definite regions; such a gait was created by fitting a
polynomial curve to a set of points that were on the zero
set, symmetric about the origin, and avoided extreme joint
angles [25].

Agreement between theory, experiment, and simulation
is excellent at small amplitudes and good at larger ampli-
tudes. However, while the CCFs qualitatively predict for-
ward movement at the highest amplitudes, quantitative
agreement is lacking. Previous work [10,12] suggests a
cause for this error. The velocity error is largest when joint
angles are near the �1 ¼ �2 line and away from the origin,
i.e., with links in a ‘‘C’’ shape. This error appears in Fig. 3(c)
as the system experiencing greater-than-expected velocity
in the body x and y directions in the vicinity of this line
(near t ¼ 0:5). In similar systems (e.g., the ‘‘kinematic
snake’’ [10,19]), this line is a kind of kinematic singularity,
which forces constraints to slip. For granular swimming, in
which forces are inherently nonlinear, we postulate that
the singularity makes the system reach different equilibria.

The CCFs facilitate study of movements that are rela-
tively unexplored in swimming locomotion, for example,
turning in place; see movie 2 in the Supplemental Material
[24]. To design this gait, we observe that the x component
of the CCF is evenly symmetric around both the �1 ¼ �2

and �1 ¼ ��2 lines, the y component is odd around
�1 ¼ �2 and even around �1 ¼ ��2, and the � compo-
nent is even around �1 ¼ �2 but odd around �1 ¼ ��2.
The figure-eight gait depicted in the inset of Fig. 5(b) will
therefore produce a net rotation of the system—the two
loops are in opposite directions in oppositely signed
regions, and so their effects add in � while canceling in x
and y. In this gait, agreement between theory and experi-
ment or DEM is excellent; we hypothesize that here the
singularity described above is avoided.

The CCFs also facilitate comparison of swimming in
different environments. The granular swimmer’s CCFs in
Fig. 3(a) share a structure with those of other three-link
swimming systems [10,12]: a central well and bi-even
symmetry in the xb function, and odd symmetry in the yb

and �b functions. Comparing them with equivalent plots
for the low Re system [12] [Fig. 3(b)] highlights the
differences between the environments. Most significantly,
the xb function’s magnitude is 1.5–2 times larger for the
granular swimmer than for the low Re system, in accord

with the relatively larger F? in the granular medium.
Interestingly, this relationship is reversed for the �b

functions, indicating that turning gaits produce less rota-
tion for swimmers in GM relative to those in low Re fluids.
We note that the zero sets we identify on the CCFs repre-
sent the optimal solutions discovered by the parametric
optimization methods in Ref. [11].
In summary, CCFs advance our understanding of loco-

motion by substituting geometric insight for laborious
calculation. Since the technique requires only empirical
force laws, we argue that this method lays the groundwork
for geometric analysis of biological and robotic locomo-
tion in environments that are not yet (and may never be)
described by comprehensive equations of motion. We
propose that the geometric insight gained by CCFs for
locomotion will be analogous to insight into complex
dynamical systems provided by low-dimensional maps
[26]. Future investigations will advance the linear model
to represent dynamics near geometric singularities and
incorporate effort-based distance metrics [13] to describe
locomotive efficiency. It will also be interesting to compare
optimal locomotor strategies in different media combining
the CCF analysis with effort metrics to identify maximally
efficient gaits. Finally, the use of continuous curvature
modes [13] will allow application of our framework to
continuous systems like the biological sandfish, snakes
that move within yielding substrates like loose soils, and
even nematodes and spermatoza in complex biofluids [27].
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