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Persistent Holes in a Fluid
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We observe stable holes in a vertically oscillated 0.5 cm deep aqueous suspension of cornstarch. Holes
appear only if a finite perturbation is applied to the layer for accelerations a above 10g. Holes are
circular and approximately 0.5 cm wide, and can persist for more than 106 cycles. Above a ’ 17g the
rim of the hole becomes unstable, producing fingerlike protrusions or hole division. At higher
acceleration, the hole delocalizes, growing to cover the entire surface with erratic undulations. We
find similar behavior in an aqueous suspension of glass microspheres.
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FIG. 1. Top view of a vibrated layer of an aqueous suspension
of (a)–(c) cornstarch and of (d)–(f) glass microspheres (image
diameter, 9.4 cm). White corresponds to the highest points, and
black to depressions that reach near the container bottom.
Holes without Faraday waves: (a) a�12g, f�150Hz; (d) 30g,
through an insulating rod to avoid heat transfer from
the shaker to the container. The layer depth was 0.5 cm

100 Hz. Holes with Faraday waves: (b) 12g, 60 Hz; (e) 27:3g,
92 Hz. Delocalized state: (c) 30g, 120 Hz; (f) 30g, 60 Hz.
The free surface of a fluid at rest in a container is flat.
Departures from flatness induce a restoring flow whether
the fluid is Newtonian, viscoelastic, or liquid crystalline:
poke the surface, and the resulting indentation will be
filled by the ensuing flow. In contrast, we have discovered
that a vibrated aqueous suspension of cornstarch or glass
microspheres can permanently support holes and vertical
fingerlike protrusions.

The catalog of interface morphologies in accelerated
fluids is broad and well documented. Sinusoidal accelera-
tion produces Faraday waves [1], solitons [2,3], and jets
[4]. Impulsive acceleration produces the Richtmyer-
Meshkov instability [5,6], and continuous acceleration
the Rayleigh-Taylor [7] instability, characterized by
spires and bubbles [8]. In contrast, holes and fingers do
not exhibit the oscillation about a flat state of Faraday
waves and solitons, the finite lifetime of jets, or the
unbounded growth of the Richtmyer-Meshkov or
Rayleigh-Taylor instabilities.

Figure 1 shows holes in vibrated aqueous suspensions of
cornstarch 1(a) and 1(b) and glass microspheres 1(d) and
1(e). Depending on the container acceleration and fre-
quency, the initial fluid surface is either flat or corrugated
by Faraday waves. Above a critical acceleration, a finite
localized perturbation of the fluid surface grows into a
stable cylindrical void that extends from the top to nearly
the bottom of the fluid layer. The most noteworthy feature
of holes is their permanence: they do not close despite the
hydrostatic pressure of the surrounding fluid, persisting as
long as our observations (>106 cycles). At yet higher
accelerations, the holes lose stability to a temporally
and spatially erratic state [see Figs. 1(c) and 1(f)].

Experiment.—A layer of cornstarch or glass micro-
spheres in liquid was vertically oscillated sinusoidally
with a frequency f from 50 to 180 Hz and a peak accel-
eration a up to 27g (controlled to �0:01g). The container
had an aluminum base plate, acrylic sidewall (inner di-
ameter 9.4 cm), and acrylic top. The container was sealed
to reduce evaporation and was attached to the shaker
0031-9007=04=92(18)=184501(4)$22.50 
for the cornstarch mixture and 0.2 cm for the glass
microspheres.

The patterns were recorded with 30 and 2000 frames/
second cameras. Lighting in Fig. 1 was provided by a ring
2004 The American Physical Society 184501-1



P H Y S I C A L R E V I E W L E T T E R S week ending
7 MAY 2004VOLUME 92, NUMBER 18
of light-emitting diodes strobed at f or f=2. The illumi-
nation was such that peaks on the surface appear bright
and valleys dark. The layer was lit from above for the
measurements of the size of the holes. The hole shape was
determined by illuminating a narrow section of the hole
with a sheet of laser light projected perpendicular to the
layer surface, and photographing from an angle the devi-
ations from straightness of the laser line.

We used cornstarch consisting of 27% amylose and
73% amylopectin from Sigma Aldrich. The powder was
dried at 50 �C for a week and stored in a desiccator. A
mixture was prepared daily by combining 23.22 g of
cornstarch and 36.78 g of a density-matched aqueous
solution of CsCl with a density of 1:68 g=cm3. The quan-
titative results we present are for cornstarch, but we also
used glass microspheres in an aqueous solution for the
qualitative comparison in Fig. 1. The glass mixture was
prepared with 29.37 g of glass balls (1–20 �m) from
Jaygo (Union, NJ), and 18.36 g of an aqueous solution
of sodium polytungstate with a density of 2:55 g=cm3.

Hole dynamics and size selection.—The interface of a
vibrated fluid is flat at low accelerations and rippled by
Faraday waves above a critical acceleration [1]. Holes
persist in the cornstarch mixture only if an indentation
deeper than about 50% the layer depth and 0.4–2.0 cm
wide is applied to the surface. Holes were generated with a
puff of air through a nozzle pointed at the surface. The
subsequent evolution of a hole depends on the parameters
a and f. For all parameter values explored, the hole may
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FIG. 2. Phase diagram for a vibrated aqueous cornstarch
suspension as a function of acceleration and frequency. In either
the metastable or stable region, a surface perturbation forms a
persistent hole. In the metastable regime these holes always
collapse within 105 container oscillations; in the stable regime
some holes last for more than 105 oscillations. In the areas
marked unstable, holes collapse in less than 104 cycles. In the
delocalized regime the surface is highly irregular, as shown in
Fig. 1(c). Faraday waves appear with increasing acceleration at
�, and disappear with decreasing acceleration at �.
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close within seconds. In the region of the phase diagram
(Fig. 2) marked ‘‘unstable’’ all holes decay in this way. In
regions marked ‘‘stable’’ and ‘‘metastable,’’ holes adjust
to a size that has a fairly well-defined average value
(Fig. 3), but over extended periods of time the size slowly
wanders within a 30% band. At f � 120 Hz the charac-
teristic hole diameter is 0.4 cm, and at f � 180 Hz,
0.6 cm. Holes have a broad distribution of lifetimes,
even for fixed f and a; in the metastable phase the
maximum lifetime is less than 105 cycles, and in the
stable phase it is greater than 105 cycles. The value of
105 cycles was selected as the cutoff for stable holes
because holes that live that long will almost always live
for more than 106 cycles.

Short-lived holes collapse within a few seconds by a
uniform contraction. Holes lasting longer than about 104

oscillations develop a hump on their rims, which then
falls onto the hole, either covering it or rendering it so
small that it collapses rapidly by uniform contraction. On
occasion this latter mechanism causes the hole to divide
rather than collapse.

Holes typically have a nearly circular horizontal cross
section [see Fig. 1(a)].Vertical cross sections through hole
centers are shown in Fig. 4(a). At the base of the hole,
there is usually a ribbon of material about 0.1 mm high
and 2 mm wide that bisects the shaft, as seen in the solid
line in Fig. 4(a). This feature is not visible in all of the
radial profiles because it is not azimuthally symmetric
and may be missed in a single profile of the hole. At
accelerations immediately above the stability line the
material surrounding a hole remains level with the rest
of the layer, while at higher acceleration, the hole’s rim
rises about 0.5 mm above the surrounding fluid.
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FIG. 3. Time evolution of the radii of six holes formed with a
2 s long puff of air. Holes grow during the forcing and then
rapidly shrink after the air is cut off. Inset: hole diameter
oscillates synchronously with the forcing; note time scale (a �
15g, f � 150 Hz).
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FIG. 5. Side view of the first steps toward the delocalized
state in cornstarch. These photographs were taken every 0.9 s;
time increases from left to right and top to bottom. An initial
hump on the rim begins growing upward, reaches a maximum
height, and then topples outward, enlarging the area of fluid
motion. This process repeats until the entire surface of the
liquid is active in the creation and destruction of vertical
structures and voids [see Fig. 1(c)] (a � 25g, f � 80 Hz).
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FIG. 4. (a) Vertical cross sections of holes at a � 14:5g
(dashed and dotted lines) and a � 17g (solid and dot-dashed
lines) for f � 150 Hz. The two profiles for each acceleration
show the extremes in a hole’s shape, separated by one-half
cycle. (b) The tangent of the phase lag versus frequency at a �
15g. The solid line is a fit to �=	1� �f=f0�

2
, where � and f0
are fitting parameters.
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In addition to a slow variation over hundreds of oscil-
lations, the radius r�t� of a hole oscillates synchronously
with the driving frequency (inset of Fig. 3): r�t� � r�

r sin�2�ft� ��, where r is the mean radius, 
r is the
amplitude of the oscillation, and � is the phase relative to
the container motion z�t� � z0 sin�2�ft�, where z0 �
�a=�2�f�2 and z > 0 when the container is above its
rest point. 
r is typically 0:15r. The phase lag is shown as
a function of frequency in Fig. 4(b).

Holes do not interact when their centers are separated
by more than about two diameters. Therefore, as shown in
Fig. 1(a), holes do not form regular patterns. Further, they
can be located anywhere in the container. Holes occa-
sionally come sufficiently close to interact, and then they
merge or annihilate.

Faraday waves.—Though Faraday waves are excited in
cornstarch suspensions, the formation of holes is unre-
lated to these waves, as can be seen from the existence of
holes when no Faraday waves are present [Figs. 1(a) and
1(d)]. Further, the phase boundaries for holes and Faraday
waves are distinct. The Faraday transition is hysteretic,
and, moreover, the flat and surface wave state can coexist.
As a is increased at a fixed f, small patches of surface
waves appear at the boundary ‘‘Faraday wave onset’’ in
Fig. 2. As a is raised further, the patches grow and
184501-3
ultimately engulf the entire surface at a values typically
50% higher than onset. With decreasing a, the surface
waves break up into patches that finally disappear at the
boundary ‘‘Faraday wave extinction’’ in Fig. 2.

Delocalization.—In the ‘‘delocalized’’ region in Fig. 2,
a perturbation generates a hole that immediately grows a
protrusion from its rim, as Fig. 5 illustrates. The protru-
sions can rise as high as 2 cm and remain upright for
thousands of oscillations before falling and nucleating a
new hole. The process continues until the entire surface
writhes with fingers and holes, yielding the spatially and
temporally erratic state shown in Figs. 1(c) and 1(f). The
transition from the metastable hole region to the delocal-
ized state is not hysteretic. If a is decreased through the
value for delocalization onset, the erratic motion ceases
and the irregular pattern imprinted by the delocalized
state evolves according to hole dynamics.

Shear thickening.—We attribute the stability of holes
to shear thickening, i.e., an increase of viscosity with
shear rate. We measured the viscosity of the cornstarch
suspension (Fig. 6) and found a behavior typical of shear
thickening fluids [9]; i.e., an initial decrease of the vis-
cosity for increasing shear rate is followed by a rapid
increase at a critical shear rate, which in this case is _��c �
8 s�1. Our conclusion is predicated on four observations:
the critical shear rate is similar in magnitude to the shear
rate at the throat of a hole; the phase lag of the hole’s
radius relative to the driving force indicates the material
response is primarily viscous; holes are unstable in a
nonshear thickening fluid; and holes are stable in shear
thickening fluids other than cornstarch suspensions.
184501-3
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FIG. 6. Apparent viscosity as a function of the maximum
shear rate _�� for two cornstarch suspensions prepared in the
same manner as in Fig. 1. Measurements were made with a
plate-plate rheometer (Paar Physica TEK 150) with radius R �
2:5 cm and gap 0.1 cm. The apparent viscosity was calculated as
for a Newtonian fluid: � � 2�=�� _��R3� where � is the torque.
Since the shear rate increases with the radius, our measurement
of the viscosity is a convolution of the geometry and the
response of the fluid. The dashed extension of the curve
represents measured values that are not reliable due to an
instability in the flow (temperature, 27:6� 0:2 �C).
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We can estimate the shear rate for an oscillating hole
(inset of Fig. 3). The root-mean-square shear rate at throat
of the hole is approximately the interface speed,
�2�=

���

2
p

�
rf, divided by a length scale of order the depth
of the layer h. Using 
r=r �� 0:15, f � 100 Hz, and
r=h �� 0:4, we obtain _�� �� 27 s�1. The similarity of this
value to the critical shear rate strongly suggests that shear
thickening is an essential ingredient for holes.

The frequency dependence of the phase lag � indicates
a combined viscous and elastic response of the fluid.
Modeling the hole motion as a spring in parallel with a
dashpot (i.e., a Voigt element; see [10], for example)
yields tan� � �=	1� �f=f0�

2
, where � is a constant
proportional to the dissipation and f0 is the resonant
frequency. As shown in Fig. 4(b), the data are well
modeled by this equation; the resonance frequency is
around 58 Hz. Since the Voigt element is primarily vis-
cous at high frequency, the phase data indicate that at
frequencies above 60 Hz the material response becomes
dominantly viscous; it is noteworthy that stable holes
form only in this high frequency region.

We also tried to form persistent holes in a Newtonian
fluid (silicone oil with a viscosity of 3.4 P) and viscoelas-
184501-4
tic fluids (polybutadienes with viscosities of 8.3, 28, and
72 P). In all cases, however, an initial hole was backfilled
within a few hundred container oscillations.

Barnes [9] states that any sufficiently concentrated
suspension of solids in a fluid will shear thicken. If shear
thickening is crucial for hole formation, then any suffi-
ciently dense suspension of solids ought to support
persistent holes. Indeed, we conducted experiments on a
dense suspension of glass microspheres and found the hole
and delocalized states, as shown in Figs. 1(d) and 1(e).

Conclusions.—We have shown that a vertically vi-
brated aqueous suspension of cornstarch displays a
number of unexpected patterns — holes, fingers, and a
delocalized state — that can be attained only by the
application of a finite perturbation. Holes vibrate syn-
chronously with the container and are unrelated to the
well-known Faraday waves. At higher acceleration the
hole becomes unstable to the creation of fingerlike struc-
tures, which at even higher accelerations are respon-
sible for the transition to an irregular delocalized state.
Outstanding questions include the following: How do
holes stay open? What sets their size? How can the finger-
like protrusions grow and remain upright? What drives
the transition to the delocalized state?
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