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Materials and Methods

Sandfish X-ray Experiments
Sandfish lizards (Scincus scincus) were obtained from a commercial supplier (LLL Reptile, CA,
USA), housed in a dedicated animal care facility, and kept in a 12 hour day/night light cycle.
The average snout vent length (SVL), which we denote as body-length L in the manuscript
and which is ≈ 75% of the snout-tip to tail-tip length, was 8.3 ± 3.3 cm. The average mass
was 16.2 ± 4 grams. High speed (250 fps) x-ray and visible light video of the sandfish were
taken as they moved on and within a 10 cm deep layer of granular material (0.27 ± 0.04 mm
diameter spherical glass beads, density ρ ≈ 2.4 g/cm3 ) held in a container (21.5 cm × 18
cm). The granular material was prepared in two volume fractions (φ = 0.58 and φ = 0.62),
loose and close packings for dry grains. The material state was set using an air fluidized bed,
a counter flow of air to a collection of granular media. Below a critical flow rate (the onset
of fluidization), grains are stationary; above it, the material is fluidized and grains flow. To
generate loosely packed states (φ = 0.58) the flow is increased to above the fluidization onset
and then slowly decreased to zero. To generate closely packed states the air flow is repeatedly
pulsed. Increasing the number of pulses increases φ; typically we delivered over 200 pulses to
achieve the closely packed state (φ = 0.62).

The x-ray system (Radiological Imaging Systems, OEC 9000) energy was varied in the
range of 85 − 100 kV at 20 mA. After the x-ray beam was turned on, a gate to a holding pen
was rapidly raised to release the animal onto the surface of the granular media. A thin above-
ground plexiglas barrier (visible in Movies S1 and S2) forced the animal into the dive at the
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same location in the bed. The animal consistently took a few steps and then dove into the
material. The sandfish appears dark in the above ground x-ray images since the radiation must
travel through the sand and the animal, while below ground it appears lighter since sand has
been displaced horizontally by the body of the organism. Experiments were conducted between
30 and 35 ◦C.

The x-ray (Movies S2 and S3) and visible light (Movie S1) videos were synchronized to
determine when the sandfish was moving subsurface. The temporal frequency and forward ve-
locity of the animal were measured from this section of video. Displacement was calibrated
using a grid. X-ray visible natural body markers (the snout and lungs) as well as the silhouette
of the animal were used to estimate the mid-line of the animal and track it using MATLAB. The
digitized undulation profiles of the animal were fit with the equation of a sinusoidal traveling
wave to obtain the spatial and temporal characteristics of the animal. We collected representa-
tive runs with opaque markers bonded to the body midline and limbs of the sandfish to verify
the lack of limb use subsurface (Movie S3). The total mass of the markers was 0.04 g, much
less than the 16 g animals, The inter-limb distance measure allowed us to determine the nature
of limb use subsurface and contrast it with the diagonal gait used in surface locomotion. The
visible light video was used to determine the sandfish burial time.

Our model (explained later) suggests (Fig. S3) that the variability in the animal (the spread
in velocity for a given frequency) is a result of the sensitivity of the swimming speed to small
changes (within experimental variation during a swim) in both the amplitude and the wave-
length.

Resistive Force Theory for Granular Media
We developed our Resistive Force Theory for sandfish locomotion in granular media based on
work by Gray & Hancock (S1) for non-inertial low Re swimmers. The animal is modeled as a
flexible cylinder with a sinusoidal traveling wave progressing from head to tail (Fig. 3A) such
that:

y = A sin
2π

λ
(x + vwt), (S1)

where y is the displacement away from the midline of a straight animal, A the amplitude, λ the
wavelength, f the wave frequency, and vw = fλ the wave speed. For a given forward velocity
vx, other quantities characterizing the motion can be calculated:

vy =
dy

dt
=

2Aπvw

λ
cos

2π

λ
(x + vwt)

tan θ =
dy

dx
=

2Aπ

λ
cos

2π

λ
(x + vwt)

ψ = arctan(
vy

vx

)− θ,

(S2)
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where θ is the angle of the axis of an infinitesimal cylindrical element with respect to the forward
direction and ψ the angle between the axis of the element and its instantaneous velocity.

We assume that the forces FN and FL (see Fig. 3A for the force diagram, and text and Rod
Drag Empirical Fitting Function section for discussion of the force model) on an infinitesimal
element of the animal are proportional to the area of the longitudinal cross section δA = 2rδs
and are functions of ψ. The resultant force on the element in the forward direction (+x-axis) is:

δFx = (PN sin θ − PL cos θ)2rδs, (S3)

where PN and PL are the forces per cross section area normal and parallel to the axis of the
element. Then the total force on the body Fbx in the direction of motion can be expressed as

Fbx =

∫ λ

0

(PN sin θ − PL cos θ)
√

1 + tan2 θ2rdx. (S4)

Although the angle of each element changes in time, since the integral is over one full wave-
length the integral in Equation S4 is time invariant.

Equation S4 accounts for forces acting on the body but not the head. To account for the
head we use two limits, a flat head that produces maximum drag and no head which produces
no drag. For the flat head model (FH), we assume that the drag on the head Fh is the same
as the drag on the flat end face of a rod in our experiment. This drag is decomposed into two
orthogonal components F T

N and F T
L and its form is approximated by Equation S8, setting the

length l = 0 and r as the average radius of the sandfish. The net force in the forward (+x)
direction on the head is:

Fhx(t) = F T
N sin θ − F T

L cos θ. (S5)

The drag force on the head is set to zero for the no head model (NH).
The time average of the force on the head (F̄hx) is equal to the spatial average:

F̄hx =
1

T

∫ T

0

Fhxdt =
1

λ

∫ λ

0

(F T
N sin θ − F T

L cos θ)dx. (S6)

Combining the head drag with the body force we obtain the total time averaged force on the
sandfish:

F̄x =

∫ λ

0

[(PN(ψ) sin θ − PL(ψ) cos θ)
√

1 + tan2 θ2r

+ (F T
N sin θ − F T

L cos θ)/λ]dx.

(S7)

At constant average velocity, F̄x is zero. The forward velocity vx can then be found numerically
if vw, A, λ, PN(ψ) and PL(ψ) are known. Since the wave and body velocities in Equation
S7 only appear as ratios (see Equation S2) and do not appear in expressions for PN or PL, a
proportional relation between vx and vw is expected. We can thus solve for the wave efficiency
η = vx/vw. Figure S3 shows that η increases rapidly with increasing A/λ for A/λ / 0.3 and
increases slowly for A/λ ' 0.3.
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Drag Experiments in Granular Media
To obtain expressions for the forces on the sandfish, we moved a stainless steel cylindrical
cylinder representing a sandfish body element through granular media at constant velocity (10
cm/s) and measured the resulting normal and lateral forces for angles ψ between the element
and its displacement direction ranging from 0◦ to 90◦ (Fig. 3 C and D, and Fig. S2 C). We used
a fluidized bed (filled to a depth of 12 cm) to set the initial volume fraction (φ) of the media.
We chose stainless steel because a previous study (S2) as well as our measurements have shown
that sandfish skin and stainless steel have about the same friction coefficient with sand (∼ 0.2).
The diameter of the cylinder (2r = 1.58 cm) is similar to that of the sandfish body (1.75 cm). To
avoid effects on the drag due to the finite size of the container, the cylinder is small compared
to the size of the fluidized bed but large compared to the size of the grains. The cylinder is
attached to a robotic arm (CRS Robotics) via a thin but stiff supporting rod which moves the
structure at constant depth and velocity while a 6 d.o.f. force sensor (ATI industrial) mounted
between the robotic arm and the supporting rod measures the net force generated during the
drag motion (accurate to 0.06 N). The force on the supporting pole is also measured separately
and subtracted to obtain the force on just the cylinder.

Previous studies show that drag in granular media is independent of speed (S3, S4) and
increases proportionally to depth (S3). To test if this effect persisted in the regime relevant to
the sandfish (0-40 cm/s), we dragged the cylinder perpendicular to velocity at 1, 5, 10, 20, and
30 cm/s (which covers the sandfish’s range of speeds) at a fixed depth of 7.62 cm and found
that over an order of magnitude change in speed, force only changed by 10% (Fig. S2 B);
consequently we assumed force is independent of speed. We also dragged the cylinder oriented
perpendicular to velocity at different depths (1.27, 2.54, 3.81, 5.08, 6.35, and 7.62 cm) at 10 cm/s
and confirmed that as seen previously (S3) drag is proportional to depth (Fig. S2 A). Therefore,
we measured drag force on the cylinder as a function of angle (for input into the Resistive Force
Theory model) by dragging the cylinder at a fixed depth (7.62 cm) and a constant speed of 10
cm/s for different φ.

Before each trial, the initial state of the medium was set using a fluidized bed and the test
rod rotated to the desired angle using the robotic arm. For each angle the rod was pushed
into the material to a depth of 7.62 cm and, after a 2 second pause, was dragged for 15.24 cm
through the medium and then extracted. Both the force and position of the rod were recorded at
140 Hz. The forces parallel (FL) and perpendicular (FN ) to the surface of the rod were resolved
by the force sensor and averaged over the steady state drag region (Fig. 3 B). Three trials were
conducted for each ψ and φ.

Rod Drag Empirical Fitting Function
To characterize the relation between the measured values of normal and lateral drag force on
the rod and its orientation ψ relative to the direction of motion we developed an empirical
fitting function inspired by soil mechanics (S5). Because there is a drag induced normal force
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perpendicular to the front half of the surface of the rod, there are two contributions to the
resistive force in the horizontal plane of the motion. The first is the in-plane component of the
normal force, characterized by CS , and from the velocity independence of force (Fig. S2 B)
we expect to be constant. The second is the in-plane component of the frictional force acting
everywhere tangential to the surface of the rod characterized by CF . We expect the planar
normal force to be larger than the frictional force because the friction between the grains and
the rod is less than unity. The total force has contributions from the sidewall of the cylinder
and the flat ends. For a cylinder with length l and radius r, the total forces F T

N and F T
L can be

written as:
F T

N = 2lr(CS sin β0 + CF sin ψ) + πr2CF sin(ψ)

F T
L = 2lrCF cos ψ + πr2CS sin β′0,

(S8)

where tan β0 = cot γ0 sin ψ and tan β′0 = cot γ0 sin(π/2 − ψ) and γ0 is a parameter related to
the internal slip angle in granular media (S5).

The total forces F T
N and F T

L are determined as the averages over the shaded region in Fig.
3B. The fits to the measurements of F T

N and F T
L determine the three parameters CS , CF and γ0.

These parameters are given in Table S1 and are used in Equation 1 to approximate the forces on
the body FN and FL as the forces on the sidewalls of the cylinder without contributions from
the flat ends (subtracting terms proportional to the flat end area, πr2).

Approximate Analytic Solution of the Resistive Force Model
To gain insight into how η depends on kinematic parameters and features of the force model,
we develop an approximate analytic expression assuming small amplitude oscillations such that
θ is small, and small slip (high η) such that we approximate arctan(vy/vx) as vy/vx. Using
Equation S2, ψ can be approximated as

ψ = arctan(
vy

vx

)− θ

ψ ≈ vy

vx

− θ

ψ ≈ 1

vx

2Aπvw

λ
cos

2π

λ
(x + vwt)− 2Aπ

λ
cos

2π

λ
(x + vwt),

(S9)

and since η = vx/vw,

ψ = (
1

η
− 1)

2Aπ

λ
cos

2π

λ
(x + vwt). (S10)

The equation above shows that ψ decreases as η increases and ψ oscillates along the body.
For a sandfish swimming in a horizontal plane, the forces are only functions of ψ and the sum
of thrust and drag forces on the body is found from Equation S4.
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Assuming large η, we approximate PN and PL as the low ψ region of the curves in Fig. 3C
and D. Thus the force per unit area is approximated as,

PN = CNψ

PL = CL,
(S11)

where CN and CL are constants characterizing the granular medium’s drag.
Using these approximations, the integral becomes:

Fbx =

∫ λ

0

(CNψ sin θ − CL cos θ)
√

1 + tan2 θ2rdx

Fbx =

∫ λ

0

{CN(
1

η
− 1)

2Aπ

λ
cos[

2π

λ
(x + vwt)] sin θ − CL cos θ}

√
1 + tan2 θ2rdx

Fbx ≈
∫ λ

0

{CN(
1

η
− 1)

2Aπ

λ
cos[

2π

λ
(x + vwt)]

2Aπ

λ
cos[

2π

λ
(x + vwt)]− CL}2rdx

Fbx = [
1

2
CN(

1

η
− 1)(

2Aπ

λ
)2 − CL]2rλ.

(S12)

Note that vwt does not appear in the final form because the integral over a wavelength is
independent of the initial phase. If we assume that for small θ the head drag is a constant Fhx,
and we set the net force to zero:

Fxnet = [
1

2
CN(

1

η
− 1)(

2Aπ

λ
)2 − CL]2rλ− Fhx = 0. (S13)

The wave efficiency η can be found analytically. With Fhx = 0 the form of the solution is
straightforward:

η =
1

1 + 2CL

CN
( λ

2πA
)2

. (S14)

Estimating CN/CL ≈ 4 and taking A/λ ≈ 0.2 from the measured kinematics, Equation
S14 gives η = 0.76. If the coefficient for head drag is estimated as CN , then η = 0.65. The
overestimate is likely due to the poor approximation of arctan(vy/vx) ≈ vy/vx, since for typical
swimming speeds when vy is maximal, vy/vx ≈ 2.5 and thus arctan(vy/vx) ≈ 1.2.

Assumptions and Error Analysis
There are several assumptions in our model of sandfish swimming, including those in the RFT,
in the estimates of FN and FL from the rod drag experiments, in the empirical fitting function, in
the body shape, and in the form of the drag on the head. 1) The RFT assumes that the organism
swims in a horizontal plane, while in reality it moves into the material in a plane inclined at
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22◦ relative to the surface (S6). Since both drag and thrust are distributed over the body and
are linear with depth (S4), we use the force on the central element as the average for the whole
body. From x-ray data, the sandfish’s head is ∼ 3 cm and its central element about ∼ 2 cm
below the surface when the sandfish stops. Thus the force per area for the head is estimated
to be 1.5 times larger than on the middle of the body. We assume FN(ψ) and FL(ψ) are the
same as for horizontal drag. The projected force of gravity on the sandfish along the plane is
neglected as it is small compared to the resistive force from the material (the ratio is estimated
to be under 2%). We scaled the measured wavelength by 1/ cos(22◦) = 1.08 to account for
the projected wavelength on the horizontal plane of the x-ray images. 2) The forces used in
the model are measured as the rod is dragged at constant velocity. In reality the velocity of
each point on the body varies sinusoidally as the animal moves forward. 3) The diameter of the
sandfish changes from head to tail, while a single diameter of 1.75 cm is used for the model.
We approximated the sandfish as a single cylinder of fixed radius for simplicity of the model
and calculation (i.e. time invariance of Equation S4). Since in the animal the radius shrinks
near the head and tail, the surface of the body is not parallel to the spine of the sandfish. Our
model predicts that the change in the diameter near the head (which results in a smaller ψ than
in the uniform cylinder), causes decreased FN and increased FL. The taper of the tail results
in larger ψ compared to the uniform cylinder which results in increased FN and decreased FL.
We hypothesize that these effects result in a cancelation that makes the uniform cylinder a good
approximation. 4) Since we did not have an estimate for the drag on the shovel shaped head of
the sandfish, we computed η for two cases of head drag. We considered drag on the head zero
(NH in Fig. 4A and S3) or that of a flat disk of radius comparable to the sandfish (FH). These
predictions in conjunction with the model for body drag bound the experimentally measured η.
With the model assumptions in place, the major contribution to the uncertainty in η comes from
the experimentally measured run to run variation in the spatial parameters A and λ.
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X-ray source 

X-ray image 

 intensifier 

Visible light high speed camera 

Mechanical gate 

Holding pen Fluidized bed with 

granular substrate  

High speed camera

Air flow direction

Figure S1: Experimental setup: a fluidized bed is placed between the source and image inten-
sifier of a c-arm x-ray system. The initial state of the granular media (0.3 mm spherical glass
beads) used to fill the fluidized bed is set using air pulses. Once the material is prepared the
sandfish is released from the holding pen using a mechanical gate. Simultaneous x-ray and vis-
ible light video (250 fps) are recorded as the animal moves above and then below the surface.
Drawings are not to scale.
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Figure S2: Force on a stainless steel cylinder as it is dragged at different depths, velocities,
and angles through granular media of low and high φ . In (A) and (B) the cylinder is oriented
perpendicular to the direction of motion. Average force vs. (A) depth and (B) speed for closely
(red) and loosely (blue) packed preparations. (C) Average total forces (including sidewalls and
end-faces) F T

N (closed symbols) and F T
L (open symbols) on the cylinder where the color of the

symbols denote closely (red) and loosely (blue) packed preparations. Solid and dashed lines
are model fits described by Equation S8. All forces are calculated by averaging instantaneous
forces over steady state motion (e.g., see gray region in Fig. 3B); there is a 94% probability that
the mean forces fall within the error bars (which are comparable to the symbol size).
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Figure S3: The wave efficiency predicted by the RFT model (numerical integration of the full
model, Equation S7) is plotted against the spatial characteristic (A/λ) of the sinusoid. The blue
and red curves correspond to predictions for LP and CP respectively. The red and blue squares
with error bars show η measured from the kinematics of the sandfish in the x-ray experiments.
Curves show model predictions using flat head (longer dash) and no head (shorter dash) limits.
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Packing φ CS (N/m2 × 10−4) CF (N/m2 × 10−4) γ0 (degree)
LP 0.58 0.51 0.28 13.84
CP 0.62 0.77 0.59 12.21

Table S1: The coefficients of the rod drag model: quantities related to the yield stress of the
granular media (CS), the flow resistance coefficient (CF ), and the internal slip angle of the
granular media under gravity (γ0).
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