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Abstract—Snakes locomote through sophisticated coordinated

motions of their many degrees of freedom (DoFs). The exhib-

ited regularity of their body undulation implies the existence

of low dimensional representations of snake gaits. We posit

that investigating the underlying motion patterns will lead to

insights for understanding how animals control low-level joint

motions in a coupled fashion to achieve behavior-level control

targets. To study snake motions in a concise way, we develop

a novel modal decomposition algorithm called conditioned basis

array factorization (CBAF). Unlike most modal decomposition

algorithms, CBAF uses analytical bases which can be identified

with temporal, spatial, and behavioral (e.g., moving in a straight

line, turning, etc.) components of snake motions. Applying CBAF

to shape change data collected from a series of snake behaviors

results in analytical representations of the recorded motions.

These analytical representations provide insight into biological

system models, as well as generate families of gaits for snake

robots. Although this work focuses on snakes, the generality of

the analysis techniques suggest that a similar approach can be

used as an effective motion generation technique for any system

whose locomotion is kinematic in nature.

I. INTRODUCTION

Snakes, like other limbless organisms, manipulate their
internal degrees of freedom to locomote through challenging
environments. Snakes are unique that their locomotion are
dominated by friction, causing inertial effects to be dissipated
before significantly contributing to net motion. This implies
that snake locomotion is primarily determined by the body-
shape deformations. We hypothesize that, due to the inher-
ently kinematic nature of this type of locomotion, recording,
parameterizing, and playing back biological snake data can be
used as an effective tool to design more realistic biological
models as well as help us as researchers better explore the
potential modes of locomotion for snake-like robots. We show
that by leveraging intuitive analysis techniques, gait-based
controllers can be derived from biological data, which not only
endow snake robots with capabilities to simply replay data,
but parameterize entire families of gaits based on observed
biological motions.

Though the shape changes of biological snakes are observed
using a vision system, it is difficult to represent them in
an analytically concise fashion. Shape change information is
collected and stored in high-dimensional discretized arrays
that represent how points on the organism’s body move,
as a function of time. To uncover the working principles
of snake locomotion, tools that allow intuitive analysis of
data from a variety of sources are needed. To accomplish
this, we develop a modal decomposition algorithm called

Fig. 1. Comparison between the robot and animal trajectories. The trajectory
traced out by the snake robot (left) resembles the trajectory of the rattlesnake
(right). Note that the head portion of the rattlesnake is not considered for
motion reconstruction. See the supplementary video for more details.

conditioned basis array factorization (CBAF). We apply this
algorithm to the shape change trajectory data collected from
sidewinder rattlesnakes. The CBAF algorithm extracts motion
patterns from biological data which are represented in concise
analytical forms. With the analytical representations, we show
that it is possible to playback the extracted shape patterns on a
snake robot and reproduce biological motions. We also show
that these representations can be used to construct families of
gaits by varying the parameters in the analytical expressions.
The resultant gait models lend valuable insight into the process
of designing nontrivial sequences of motions. For example, the
CBAF approach produced a parameterized gait that allowed
the robot to sidewind along paths of varying curvatures (based
on the parameter). This allowed the robot to make tight
turns while moving forward, which improve performance in
confined spaces.

Our successful application of CBAF in this paper shows that
extracting information from biological systems is an effective
means of generating behaviors for systems, like sidewinding
snake robots, whose locomotion is predominantly governed by
the first-order effects of body shape change patterns.

The paper is structured as follows. Before explaining the
CBAF algorithm in mathematical detail, we provide the reader
with an example by demonstrating the application of CBAF to
motion tracking data collected from sidewinding rattlesnakes.
In Sec. III, we proceed to show the validity of the extracted ex-
pression through the derivation of an analytical, parameterized
gait demonstrated on a snake robot. Sec. IV then details the
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Fig. 2. An illustration of how the virtual joint angles are computed. Tracked
marker positions are used to estimate the shape of the biological snake. t and
n respectively denotes frame number and joint index.

derivation of the CBAF algorithm, the proof of NP-Hardness
for finding optimal reconstruction, and the sub-optimality
guarantee of CBAF. Finally, we conclude and present future
lines of research in Sec. V.

II. BIOLOGICAL MOTION PATTERN EXTRACTION

In this section, we focus on demonstrating the application of
CBAF to shape change sequences collected from sidewinding
rattlesnakes. The technical details of CBAF are presented in
Sec. IV.

A. Data Collection

We collected trajectory data from four sidewinder snakes
(Crotalus cerastes of length =48±8 cm, mass = 114±55 g)
in a customized sand bed (2 ⇥ 1m2), equipped with four
Optitrack Flex 13 IR motion capture cameras (at 120 Hz
frame rate). The cameras were used to track 3D positions
of 10 IR reflective patches attached to the snakes. The 3D
position information provided an estimate of the shape changes
as a function of time. Eleven total recordings of the snakes
executing a sidewinding gait were taken, within which the
snakes exhibited a variable sidewinding behavior, e.g., from
straight motion to turning.

Though the tracking system provides 3D information, we
focused our study on in-plane movement for two reasons. First,
biological snakes move with low ground clearance, making
out-of-plane movement hard to detect. Second, previous stud-
ies [12, 21] investigated the relation between the horizontal
undulation and lifting motion of sidewinding. Hence, the out-
of-plane motion can be inferred once the in-plane motions
have been determined.

B. Data Processing

We first trimmed the recorded videos to ensure that each
of them contains one full cycle of shape change, i.e., a single
period of a gait. In every video frame, we then computed a set
of virtual joint angles as follows. Given 10 tracker positions
on the body, the shape of the rattlesnake can be approximated
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Fig. 3. Wave surface of one trimmed data sequence. The joint angles present
a regular pattern across space (joint) and time while a rattlesnake performing
sidewinding.

by 9 straight segments, see Fig. 2. Let ~pt,n denote the in-plane
position of the tracker n at frame t. The orientation of link n
can be represented by the unit vector,

~lt,n =

~pt,n+1 � ~pt,n
||~pt,n+1 � ~pt,n||

(1)

Then the virtual joint angle is computed as

↵t,n = tan

�1

 
||~lt,n+1 � h~lt,n,~lt,n+1i~lt,n||

h~lt,n,~lt,n+1i

!
, (2)

where counter-clockwise rotations are defined to be positive,
e.g., in Fig. 2, ↵t=32,n=2 is negative. 8 (N=8) joint angles are
computed from each video frame, then be stored as a vector
~↵t. Every trimmed video sequence contains various number
of frames, thus the shape data contained in each video are
represented as a matrix Aj 2 R8⇥Tj , where Tj denotes the
number of frames in sequence j. The data matrix can be
visualized as a wave surface to lend insight into what the
system is simultaneously doing across space and time, see
Fig. 3. Every point on the surface denotes the angle of a joint
at a spatial location on the snake in a particular video frame.

In the final step of data processing, we grouped all the
video data into a single multi-dimensional array. To accom-
plish this, the sequences must have the same dimensions.
However, because the snake moves at varying speeds, the time
consumed to finish one gait cycle is in general never quite the
same. As a result, the data sequences had different lengths
(Tj1 6= Tj2 ). Interpolation was thus used to resize each video
sequence into 128 (T=128) frames, Aj 2 R8⇥128. The resized
sequences were then grouped together to form a single array
A 2 R8⇥128⇥11.

Representing the joint motion data as a multi-dimensional
array maximally preserved data variations across space, time
and various behaviors. The first index of the A denotes joint
angles sampled at different spatial locations on the snakes.
Data along this direction contains shape information along
the snake’s body, hence we call it the spatial-direction (basis
functions in this direction are called spatial-bases). Data
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Fig. 4. The accuracy of data reconstruction with respect to the number of
behavior-bases used. An over 75% reconstruction to the biological data can
be achieved with only two behavior-bases.

listed along the second direction of A captures the temporal
variations of the joint movements and is termed temporal-
direction (basis functions in this direction are called temporsal-
bases). The third direction encodes the shape change variations
across different observed biological behaviors and is called
behavior-direction (basis functions in this direction are called
behavior-bases).

C. Kinematic Motion Pattern Extraction

We applied the CBAF algorithm to A to extract motion pat-
terns underlying biological sidewinding. Fourier bases U (1),
U (2) were used as the basis functions to represent the spatial
and temporal variations. The column vectors (basis functions)
of U (1) and U (2) are expressed as

{e 2⇡k
N ni|k = 0, 1, ..., N � 1} spatial

{e 2⇡k
T ti|k = 0, 1, ..., T � 1} temporal

where i is the imaginary unit, N = 8 and T = 128. Fourier
bases are selected for three reasons, 1) sinusoids produce good
models of undulatory motion [13] , 2) phase shifts in periodic
data can be easily handled, and 3) parameterization in terms of
frequencies is unitless, hence it is insensitive to data collected
from biological snakes of different lengths.

The third direction (behavior direction) of the data array
captures the kinematic variations across the different behav-
iors, e.g., straight vs. turning sidewinding. Because there
were no pre-known bases across the behavior space, we used
singular-value decomposition (SVD) as a data driven method
to identify the bases.

The raw data A required 8 spatial-basis functions, 128

temporal-basis functions, and 11 behavior-basis functions for
a perfect reconstruction. After the application of CBAF, we
observed that two temporal V (2) 2 R128⇥2 and six spatial
bases V (1) 2 R8⇥6 were needed to achieve over 0.99 re-
construction accuracy. The two temporal bases mean that all
the joints moved at a temporal frequency equal to the gait.
The outer product (see Sec. IV for definition) of the two
temporal and six spatial bases spans a 12 dimensional spatial-
temporal space, which corresponds to a parameterization of
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Fig. 5. Wave surface of the first principal component. Note this surface
varies smoothly compared to Fig. 3.
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Fig. 6. Wave surface of the second principal component.

all the shape change sequences. The final reconstruction ac-
curacy with respect to the number of bases used in the third
behavioral direction is plotted in Fig. 4. We observed that two
behavior-bases V (3) 2 R12⇥2 are sufficient to achieve a good
approximation (> 75%). This result implies that the observed
biological motions are the compositions of two motion patterns
(motion modes), each of which is a function parameterized
as the linear combination of 12 spatial-temporal bases. Fig.5
and Fig.6 show the wave surfaces of the two extracted motion
patterns. The small number of modes associated with observed
biological behaviors further suggests that snakes achieve high
level control objectives through coupled low level control of
joint motions. This biological insight is useful for developing
control schemes for high DoFs systems.

III. ROBOT VALIDATION

In the previous section, we demonstrated the successful
application of the CBAF algorithm to trajectory data of
biological sidewinding. CBAF identified two dominant motion
patterns which capture the variations of the shape change
sequences observed from different animal behaviors. Because
the extracted motion patterns are represented as analytical
forms, we were able to derive compact, well-parameterized
families of gaits can be executed on snake robots.



Fig. 7. The modular snake robot (shown in the lower portion of the picture).
The cartoon above shows that the joints of the modular snake robot actuate
alternatively in the dorsal and lateral directions.

A. Platform

We conducted robot experiments on our16 DoFs modular
snake robot. The robot consisted of a chain of 16 identical
modules with a specialized head and tail, see Fig. 7. The
robot’s joint axes were arranged such that neighboring joints
alternate between actuating the dorsal and lateral degrees of
freedom. Joint-level position control was implemented, using
an on-board micro-controller, in each module to track desired
reference trajectories.

B. Prior Work on Sidewinding

Motion generation techniques that allow snake robots to
execute sidewinding motions have been long investigated. The
gait equation found in [21] is one technique for generating
the sidewinding gait. The gait equation couples the robot’s
DoFs and expresses the temporal and spatial variations of
joint angles as sinusoidal functions of time. In comparison
to biological models, the gait equation produces motions with
relatively small joint amplitudes. In addition, the gait equation
is only capable of producing straight-line sidewinding, while
the biological system can turn while sidewinding. In [10], it
was shown that the limitations of the gait equation impedes
generation of more complex modes of locomotion. The author
proposed an extended form of the gait equation [10] in order
to produce turning motion. Unfortunately, the derivation of the
extended gait equation is based on a small angle approximation
which limits the robot to move only through small amplitude
motions.

Geometric modeling is a more expressive alternative than
the gait equation for modeling sidewinding motion. The
derivation of the geometric model starts by assuming that
the robot is abstracted as a three-dimensional curve, called
a backbone curve [4]. Sidewinding is modeled as a helical
tread wrapping around the surface of an elliptically deformed
cylinder [12] for linear motion or a cone [9] for turning. A
fitting algorithm [11], which maps a discrete mechanism onto
a continuous backbone curve, is employed to compute the dis-
crete joint angles of the mechanical system. The resultant joint
trajectories are represented in the form of lookup tables. The

drawbacks of this approach are the reliance on interpolation
for smooth control inputs and its inability to generalize to
robots with different numbers of joints.

C. Gait Derivation
The motion generation technique we present in this work

overcomes many of the limitations of the methods discussed in
Sec. III-B. As pointed out, the gait expressions derived from
CBAF are analytical and are extendable to a wide range of
potential locomotive modes. The derivation of the CBAF gait
expressions is as follows. Recall from the previous section
that shape change information contained in every biologically
generated data sequence can be captured via a linear combina-
tion of two motion patterns which are analytically represented.
Hence, the joint trajectories of a gait are specified by only two
coefficients,

A~c
=

⇣
V (3)~c

⌘
·
✓
I ⇥1

⇣
V (1)

⌘T
⇥2

⇣
V (2)

⌘T◆

(3)

, (3)

where ~c is a 2 ⇥ 1 column vector which contains the two
coefficients associated with the two extracted motion patterns,
I 2 R6⇥2 is a constant matrix of elements all equal to 1 and
(...)(3) is a mathematical operator called unfolding (see Sec. IV
for more details). The outer product of the spatial bases in V (1)

and temporal bases in V (2) span a 12 dimensional spatial-
temporal space. And, the behavioral bases V (3) contain the
weights of the corresponding 12 spatial-temporal components.
Because here the spatial-bases in V (1) and temporal-bases
in V (2) are analytical functions (Fourier bases), Eqn. 3 is
a smooth, analytical function describing the spatial-temporal
variations of joint angles.

The expression derived above is for in-plane motions, which
corresponds to control inputs for the lateral degrees of free-
dom. Studies in snake robot locomotion [21] and biological
sidewinding [14] both suggest that the important vertical
undulatory motion can be established by adding a ⇡

4 phase
shift to A~c then multiplying a coefficient ⌘. In practice, we
set ⌘ = 0.2.

D. Replaying Biological Motion
To playback the biological behaviors, the recorded data se-

quences are projected onto the parameterized motion patterns.
According to Theorem. IV.1, the coefficients of a gait which
replays observed biological motions are computed as

wj
=

⇣
V (3)

⌘T
·
✓⇣

Aj ⇥1 V
(1) ⇥2 V

(2)
⌘

(3)

◆T

, (4)

where j is the index of the data sequence. The resultant gait
expression is

ˆAj
=

⇣
V (3)wj

⌘
·
✓
I ⇥1

⇣
V (1)

⌘T
⇥2

⇣
V (2)

⌘T◆

(3)

. (5)

Depending on which data sequence Aj has been used, the re-
produced motion exhibits different behaviors. Fig. 8 shows one
example of the trajectories traced out by the robot compared
to its biological counterpart. To study the relation between the
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Fig. 8. Comparison between the markers traces on the robot and snake.
The blue curves denote the marker trajectories, the red curves denote the
COM trajectories and the dashed circles are the best fit circles to the COM
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Fig. 9. Comparison of the radii of COM trajectories for snake trials and
robots emulating the gait of these trials. Note that the points are close to but
beneath the 1:1 line (dashed), indicating that robots accurately captured the
behavior and even achieved slightly sharper turns than the snakes.

robot motions and the corresponding biological motions, we fit
circles to the center of mass (COM) trajectories (approximated
as the average position of the markers), then we compared
the turning radii, as shown in Fig. 9. The turning radii of the
robot trajectories do not exactly match with that of the animals,
possibly due to the different body length and joint resolution.
However, the fact that the robot turning radii correlates with
the animals indicates that the parameterized gait expression
indeed captures the key elements which contribute to the
generation of versatile sidewinding behaviors.

E. Beyond Biological Motion

With the parameterized gait expression we were able to
execute biologically inspired motions which were not simply
generated by playing back recorded biological data. By tuning
the two parameters ~c in the Eqn. 3, we were able to steer
sidewinding motion. We observed that the motions built on
biological motion patterns outperforms the conical sidewind-
ing model [10]. Eqn. 3 is able to make the snake robot turn
faster than conical sidewinding (measured as the change of
heading in one gait cycle). We hand tuned the coefficients ~c
to find a gait for sharp turning motion and compared it with

conical sidewinding at maximal turning rate. On average (20
trials each), Eqn. 3 reorients the robot 55.2± 6.0 degrees vs.
30.1 ± 2.9 degrees of conical sidewinding in one gait cycle.
This improvement directly benefits applications like search and
rescue where a robot must make tight turns in confined spaces.

IV. CONDITIONED BASIS ARRAY FACTORIZATION

This section presents the technical details of a novel modal
decomposition algorithm, called conditioned basis array fac-
torization (CBAF). This algorithm can be applied to multi-
dimensional data array to extract patterns which are repre-
sented in analytical forms.

A. Related Work

Many pattern extraction techniques have been previously
proposed. Principal component analysis (PCA) has been used
to extract human gait patterns for the purpose of gait recog-
nition [23]. PCA has also be used in applications including
textual information retrieval [3], facial recognition [24] and
image classification [20]. One obvious limitation of PCA is the
requirement for data to be written in vector format. In order
to apply PCA, multi-dimensional data arrays first have to be
flattened into vectors. Vectorizing multi-dimensional data array
breaks data regularity and increases the risk of over-fitting [2].
A bilinear model was proposed to handle two-dimensional
data (matrix), and was employed to study gait content and
style [19]. Both PCA and the bilinear model cannot be directly
applied to multi-dimensional data arrays without breaking
original data structure. Array factorization [15] has been
developed to process multi-dimensional data arrays and has
a large range of applications including computer vision [22],
data mining [1] and graph analysis [16]. Higher-order singu-
lar value decomposition (HOSVD) [8] and alternative least
square (ALS) [17, 18] are two popular algorithms for array
factorization. However, they are computationally intractable
because they both take SVD as a subroutine to fit basis.
Besides computational disadvantages, patterns extracted using
these algorithms do not have an analytical representation,
impeding the ability to gain intuitive insights for the purpose
of understanding the fundamental components of biological
locomotions.

B. Mathematical Preliminaries

We here provide a brief review of array factorization. For a
comprehensive treatment on array factorization, readers are re-
ferred to [15]. We borrow the tools from the array factorization
community for the purpose of extracting dominant motion pat-
terns from shape change sequences collected from biological
snakes which are represented as a multi-dimensional (multi-
mode) array A 2 RI1⇥I2⇥...⇥IN . In many circumstances, data
are naturally represented as multi-dimensional arrays. Using
snake locomotion as an example, shape deformations sampled
at different positions (mode-1) along the snake, at different
time steps (mode-2), and from different behaviors (mode-
3) form a 3-dimensional array. In order to extend existing



techniques in linear algebra to multi-dimensional arrays, the
following operations have been defined.

Definition The mode-k unfolding of an array A 2
RI1⇥···⇥IN is a matrix denoted as unfoldk(A) = A(k) 2
RIk⇥(I1···Ik�1·Ik+1···IN ). The column vectors of A(k) are
called the mode-k vectors whose elements are ai1,...,iN with
i1, ..., ik�1, ik+1, ..., iN being fixed and ik = 1, 2, ..., Ik.

For example, for a 2-dimensional array (matrix), the column
vectors are the mode-1 vectors and the row vectors are the
mode-2 vectors. One can view the unfolding operation as
extracting all the mode-k vectors from A and collecting
them as the column vectors in A(k). By unfolding a multi-
dimensional array into a matrix, techniques like PCA can now
be applied to reduce the dimensionality of the vector space
spanned by the mode-k vectors.

Definition The mode-k folding is the reverse operation of
mode-k unfolding, denoted as foldk(A(k)), which reshapes a
matrix A(k) 2 RIk⇥(I1···Ik�1·Ik+1···IN ) into multi-dimensional
array A 2 RI1⇥...⇥IN .

The mode-k dimensionality of an array can be reduced through
an operation called mode-k multiplication.

Definition The mode-k multiplication between a multi-
dimensional array A 2 RI1⇥...⇥IN and a matrix U 2 RIk⇥Rk

is denoted as D = A ⇥k U 2 RI1⇥...⇥Ik�1⇥Rk⇥Ik+1⇥...⇥IN ,
whose elements can be computed as

di1...ik�1,l,ik+1...iN =

IkX

j=1

(uj,l)(ai1...ik�1,j,ik+1...iN ).

Mode-k multiplication A⇥k U is equivalently represented as
foldk(UT A(k)), where T denotes matrix transpose. Intuitively,
this process can be understood as first projecting all the mode-
k vectors onto a vector space spanned by the column vectors
of U, then reshaping the resultant matrix back into a high-
dimensional array. If Rk < Ik, the mode-k dimensionality is
reduced from Ik to Rk.

Definition The inner product between two multi-dimensional
arrays A 2 RI1⇥...⇥IN and B 2 RI1⇥...⇥IN is defined as

< A,B >=< B,A >=

I1X

i1

...
INX

iN

ai1...iN bi1...iN

Definition The multi-dimensional arrays A and B are called
orthogonal if < A,B >= 0.

Definition The norm of a multi-dimensional array A is

||A|| =< A,A >
1
2 (6)

Definition The outer product of two multi-dimensional arrays
A 2 RI1⇥...⇥Ip and B 2 RJ1⇥...⇥Jq is denoted as D = A⌦B,
whose elements are computed as

di1...ip,j1...jq = ai1...ipbj1...jq (7)

This is the operator used to construct a high-dimensional array
given basis vectors along every mode.

Definition A multi-dimensional array formed by the outer
product of N non-zero basis vectors (one along each mode)
~u(1) 2 RI1 , ..., ~u(N) 2 RIN is called a N -dimensional rank-1
array A = ~u(1) ⌦ ~u(2) ⌦ · · ·⌦ ~u(N).

Rank-1 arrays are the fundamental building blocks of multi-
dimensional arrays. An array can always be represented by the
linear combination of a set of rank-1 arrays.

Definition In this paper, we call a matrix U(k) 2 RIk⇥Rk the
mode-k basis matrix, if it has Rk mutually orthogonal, unitary
column vectors denoted by ~u(k)

ik
2 RIk . If Rk < Ik, we also

call it mode-k truncated basis matrix.

We consider the column vectors of U(k) as a set of basis
vectors along mode-k.

With all the definitions above, we now show some important
properties of multi-dimensional arrays.

Theorem IV.1 ([5]). Given R mutually orthogonal, unitary
rank-1 arrays Ti, the optimal approximation to the array A
is the linear combination T =

PR
i=1 �iTi such that ||A� T ||

is minimized. The optimal weights are computed by the inner
product, �i =< A, Ti >. The difference between the original
array and the optimal reconstruction A � T is orthogonal
to every rank-1 array, < A � T , Ti >= 0. The squared
reconstruction error can be computed as

||A� T ||2 = ||A||2 � ||T ||2 (8)

Theorem IV.1 describes how to compute an optimal recon-
struction given a set of rank-1 arrays.

Theorem IV.2 ([5]). Given (truncated) basis matrices for each
mode V(1) 2 RI1⇥R1 , ...,V(N) 2 RIN⇥RN , the array

C = A⇥1 V
(1) ⇥2 · · ·⇥N V (N), (9)

is called the (truncated) core array. And the best rank-
(R1, ...,RN) approximation to the original array is

ˆA = C ⇥1 (V
(1)

)

T ⇥2 · · ·⇥(N) (V
(N)

)

T (10)

Theorem IV.2 shows how to find an optimal low dimensional
approximation to an array with given basis matrices. The core
array represents the projection of A onto a lower dimensional
space spanned by the rank-1 arrays constructed from the basis
matrices, V(1), ...,V(N).

Theorem IV.3 ([7]). Minimizing the reconstruction error
||A� ˆA|| is equivalent to maximizing ||C||.

C. Conditioned Basis Array Factorization
Our conditioned basis array factorization (CBAF) algo-

rithm circumvents the limitation of ALS by using conditioned
bases [2]. We prove 1) finding an error minimizing factoriza-
tion is NP-hard and 2) the sub-optimality guarantee of CBAF.
We restrict our proofs to three-dimensional arrays, though they
can be easily generalized to higher order cases.



The purpose of array factorization is to find a low rank
approximation to a multi-dimensional array while minimizing
the reconstruction error. ALS spends a large amount of com-
putational effort in fitting bases to minimize reconstruction
error, running the risk of over-fitting.

One means to remedy the situation is to use conditioned
(pre-determined) basis [2]. The choice of a conditioned basis
matrix might come from domain knowledge for a specific
application or based on an evaluation of different candidates.
For example, the Fourier basis is often a good candidate for
cyclic data, like gaits. With known bases, array factorization
is reduced from a basis fitting problem to a basis selection
problem (choose a subset of the column vectors from the con-
ditioned basis matrix), which can be solved more efficiently.
One additional benefit is that the patterns extracted from
a multi-dimensional array can be represented in analytical
forms. And these analytical forms carry intuitive meanings
for understanding data variations.

Basis selection aims to minimize the reconstruction error
||A� ˆA|| or, equivalently, maximize the norm of the truncated
core array || ˆC||. Given the conditioned basis matrices U (1) 2
RI1⇥I1 , U (2) 2 RI2⇥I2 and U (3) 2 RI3⇥I3 , the core array can
immediately be computed as,

C = A⇥1 U
(1) ⇥2 U

(2) ⇥3 U
(3). (11)

At this point, no reconstruction error has been introduced be-
cause all the basis matrices are of full rank. In order to achieve
a rank-(R1, R2, R3) approximation, Rk column vectors are
chosen from U (k), which results in the truncated basis matrices
V (1) 2 RI1⇥R1 , V (2) 2 RI2⇥R2 and V (3) 2 RI1⇥R3 . The
truncated core array is then

ˆC = A⇥1 V
(1) ⇥2 V

(2) ⇥3 V
(3) (12)

Note the only difference between Eqn. 11 and Eqn. 12 is that
the basis matrices V(k) in Eqn. 12 are sub-matrices of U(k) in
Eqn. 11. Hence, Eqn. 11 is performing a change of coordinates
along every mode. Eqn. 12 can be understood as choosing
subspaces in the new coordinate frames.

The goal of basis truncation then can be restated as con-
structing three subsets J1 ✓ {1, 2, ..., I1}, J2 ✓ {1, 2, ..., I2}
and J3 ✓ {1, 2, ..., I3} s.t. |J1| = R1, |J2| = R2, |J3| = R3

which maximize

|| ˆC||2 =

X

i12J1

X

i22J2

X

i32J3

c2i1,i2,i3 (13)

We call this problem low rank optimal reconstruction (LROR).
It turns out that LROR is NP-Hard, see proof in Appendix. A1.
Though LROR is NP-Hard, our conditioned basis array factor-
ization (CBAF) algorithm efficiently finds a low dimensional
approximation to a given multi-dimensional array with a prov-
able sub-optimality bound. Before describing the algorithm,
we first define a quantity called energy as a heuristic to
estimate the important of a basis. The energy of a mode-k

Algorithm 1: Conditioned Basis Array Factorization
1 compute core array: C;
2 for mode k = 1 to N do

3 for basis i = 1 to Ik do

4 compute energy: E(k)
ik

;
5 end

6 sort basis according to E(k)
ik

from high to low;
7 chose the first Rk basis as V(k);
8 end

conditioned basis ~u(k)
ik

is computed as

E(k)
ik

=

X

jk=ik
j1,...,jN

c2j1,...,jN (14)

Intuitively, the energy of a basis can be understood as
the amount of data variations captured by the basis vector.
The CBAF algorithm is described in Algorithm. 1. In Ap-
pendix A2, we prove CBAF guarantees a factor-3 suboptimal
solution. This theoretical guarantee ensures the quality of the
extracted motion patterns for kinematic gait modeling.

V. CONCLUSION

The successful application of the CBAF algorithm verifies
that studying shape changes of biological organisms is an
effective means of generating gaits for physically similar
robots whose locomotion is approximately kinematic. The
analytical representation of extracted motion patterns allowed
us to derive compact, analytical gait expression for a snake
robot to reproduce observed biological behaviors, as well as
produce a variety of motions beyond mimicking biological
snakes. The underlying low dimensionality associated with
the observed biological sidewinding motions suggests a bio-
inspired method to control high DoF systems through coupling
the joint movements.

The kinematic motion patterns extracted from biological
sidewinding motivate us to further investigate their physical
meanings and the underlying control principles of biological
systems. With CBAF as an analysis tool, we can more closely
inspect the complicated shape changes of biological systems
in a concise way and gain further insights into the working
principles of kinematic locomotion of biological systems.

APPENDIX

A. Conditioned Basis Array Factorization
1) NP-Hardness of LROR: To prove low rank optimal

reconstruction (LROR) is NP-Hard, we first define the decision
version of the LROR problem.

Definition The decision version of LROR is defined as
follows. Given a 3-dimensional array A, conditioned basis
matrices U(1) 2 CI1⇥I1 ,U(2) 2 CI2⇥I2 ,U(3) 2 CI3⇥I3

and integers R1, R2, R3, does there exist a rank-(R1, R2, R3)

reconstruction with the squared norm of the truncated basis
array ˆC greater or equal to L, || ˆC||2 � L.



Theorem A.1. Low rank optimal reconstruction is NP-Hard.

Proof: To prove low rank optimal reconstruction is NP-
Hard, we show a reduction from Exact Node Cardinality
Decision Problem (ENCD) [6] of biclique. ENCD is stated
as follows: Given a bipartite graph G(V1 [ V2, E) and two
positive integers R1, R2, does G contain a biclique (complete
bipartite graph) which has R1 nodes from V1 and R2 nodes
from V2. ENCD is known to be NP-Complete.

Reduction: Given a bipartite graph G(V1[V2, E), construct
a array (matrix) A 2 C|V1|⇥|V2|. For every pair of nodes
(v1, v2), v1 2 V1 and v2 2 V2, if (v1, v2) 2 E, set
the entry av1,v2 in A to be 1. Otherwise, let av1,v2 = 0.
Let the conditioned basis matrices U (1) 2 C|V1|⇥|V1| and
U (2) 2 C|V2|⇥|V2| be identity matrices. Then the original
ENCD is formulated as the LROR problem: whether A has a
rank-(R1, R2) reconstruction with energy no less than R1R2.
This reduction is done in polynomial time.

Equivalence: Suppose G(V1[V2, E) has a biclique G0
(V 0

1[
V 0
2 , E

0
) with |V 0

1 | = R1, |V 0
2 | = R2 and |E0| = R1R2. It is

equivalent to saying,
X

v12V 0
1 ,v22V 0

2

av1,v2 = R1R2 =

X

v12V 0
1 ,v22V 0

2

a2v1,v2
(15)

which results in a yes-instance of LROR. The second equiva-
lence in the equation above has used the fact that av1,v2 = 1.
In the other direction, suppose there exists a rank-(R1, R2)

reconstruction with energy no less than R1R2. Because the
conditioned basis matrices are selected to be identity matrices,
there exists a sub-array A0 2 CR1⇥R2 with entries all being
1. Therefore, according to how A has been constructed, there
exists a biclique G0

(V 0
1 [ V 0

2 , E
0
) with |V 0

1 | = R1, |V 0
2 | = R2.

In conclusion, LROR is NP-Hard.
2) Sub-optimality Guarantee of CBAF: Given the con-

ditioned basis matrices U (1) 2 CI1⇥I1 , U (2) 2 CI2⇥I2

and U (3) 2 CI3⇥I3 , CBAF constructs sub-matrices V (1) 2
CI1⇥R1 , V (2) 2 CI2⇥R2 and V (3) 2 CI3⇥R3 . Denote the
reconstructed array after mode-1 basis truncation as

A(1)
= A⇥1 V

(1) ⇥1 (V
(1)

)

T (16)

The residual array is

B(1)
= A�A(1) (17)

The reconstruction error after mode-1 basis truncation can be
computed as

✏(1) = ||B(1)|| (18)

In the same manner, after mode-1 and mode-2 basis truncation,

A(1,2)
= A(1) ⇥2 V

(2) ⇥2 (V
(2)

)

T (19)

B(2)
= A(1) �A(1,2) (20)

✏(2) = ||B(2)|| (21)

After mode-1, mode-2 and mode-3 basis truncation,

A(1,2,3)
= A(1,2) ⇥3 V

(3) ⇥3 (V
(3)

)

T (22)

B(3)
= A(1,2) �A(1,2,3) (23)

✏(3) = ||B(3)|| (24)

Lemma A.2. The reconstruction error ✏ of CBAF is bounded
by,

max{✏(1), ✏(2), ✏(3)}  ✏  ✏(1) + ✏(2) + ✏(3) (25)

Proof: The reconstruction error of CBAF can be com-
puted as

✏ = ||A�A(1,2,3)|| = ||A�A(1,2)
+ B(3)||

= ||A�A(1)
+ B(2)

+ B(3)||
= ||B(1)

+ B(2)
+ B(3)||

 ✏(1) + ✏(2) + ✏(3) (Triangle Inequality) (26)

which proves the upper bound. For the lower bound, it can be
easily shown B(1), B(2) and B(3) are mutually orthogonal as
a fact of Theorem. IV.1. As a result,

✏2 = ||B(1)
+ B(2)

+ B(3)||2

= ✏2(1) + ✏2(2) + ✏2(3)

� max{✏2(1), ✏2(2), ✏2(3)}

Lemma A.3. The reconstruction error of the optimal solution
to LROR is bounded,

✏⇤ � max{✏(1), ✏(2), ✏(3)}

Proof: Let ✏̄(k) denote the reconstruction error after basis
truncation along mode-k. Note ✏̄(k) denotes the reconstruction
error resulted from only truncating mode-k bases while ✏(k) de-
notes the additional reconstruction error after basis truncation
along the first k�1 modes. Clearly, ✏̄(k) � ✏(k). According to
the CBAF algorithm, because the criterion of basis truncation
along each mode is minimal energy loss, the reconstruction
error of the optimal choices of basis ✏⇤ � ✏̄(k) for every mode-
k. Therefore,

✏⇤ � max{✏̄(1), ✏̄(2), ✏̄(3)} � max{✏(1), ✏(2), ✏(3)}

Theorem A.4. CBAF is a factor-3 approximation algorithm.

Proof: From Lemma. A.2 and Lemma. A.3, it can be
shown,

✏  ✏(1) + ✏(2) + ✏(3)
 3max{✏(1), ✏(2), ✏(3)}  3✏⇤
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