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Granular materials (GM) are collections of discrete, dissipa-
tive, and athermal particles [1–4] and when dry, GM interact
through frictional and repulsive forces only. GM are impor-
tant in industry, engineering, and science, in daily life are
commonly encountered as bags of coffee, rice, sugar, etc.
Despite the apparent simplicity of particle–particle interac-
tion in dry GM, collections of even simple spherical particles
may exhibit complex rheological properties such as transi-
tioning between jammed and flowing states (see Ref. 5 for
a comprehensive overview). Study of GM is motivated by
industrial and engineering applications in addition to fun-
damental science research. Experiments on GM often use
simple table-top apparatus’ in which the forces and motion
can be visualized with visible light cameras, thus making GM
research very accessible. Lastly, GM can be simulated using
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the discrete element method (DEM), which enables tandem
computational and experimental studies of GM [6–11].

The study of how soft matter flows under external or
internal stresses is called rheology [1–4]. The development
of principles of granular rheology is a focus of GM research.
One area of granular rheology study is to understand how
the features of the granular particle—such as roughness,
shape, or material stiffness—may influence the material
properties (e.g., stiffness or yield strength) of the bulk GM.
The majority of such rheological studies have focused on
particles of convex shape [2, 12–14], and less research
has been focused on concave particles [15–17]. How-
ever, recent studies have shown that nonconvex particles
display rheological properties that may be desirable for
engineered GM, such as nonzero tensile strength, high
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Figure 17.1 Concave particle assemblies from the nanoscale to macroscale. (a) Macromolecular assemblies of rigid oligomers (insets)
interpenetrate depending on oligomer shape (top); Source: McKeown and Budd [24] and may form into large entangled networks (bottom);
Source: McKeown et al. [25]. Particle dimensions are in the nanometer scale. (b) Concave particle suspensions (top); Source: Brown et al.
[17] and concave colloids (bottom-left); Source: Manna et al. [22] and (bottom-right); Chen et al. [32]. (c) Concave particle assemblies found
in nature, living fire ants (top), and rigid branches of bald eagles nests (bottom). Source: Mlot et al. [28].

yield stress, and desirable compaction properties [18, 19].
Thus, a new focus on nonconvex GM will impact scientific
and engineering pursuits as diverse as jamming and soft
robotics [20], designed granular materials [19], industrial
granular processes, and a better understanding of soft matter
systems [21].

Examples of nonconvex particle assemblies can be found
at all scales of natural and industrial systems (Fig. 17.1).
While few nonconvex granular materials studies have been
performed, nonconvex particles are currently a focus of
engineering efforts at the microscale and nanoscale [22,
23]. For example, macromolecules with concave shapes
pack together with large voids in the bulk, which results in
materials with a high microporosity [24, 25] (Fig. 17.1).
Such high microporosity materials have applications ranging
from nanodrug delivery systems to gas trapping [24, 25].
Furthermore, the design of concave colloidal particles have
application to self-organizing, smart materials [26]. In
addition to engineered systems, concave particles are found
in biological systems (Fig. 17.1). The packing of actin or
other protein filaments within eukaryotic cells has been
modeled as concave granular materials [27]. The bridges
and rafts collectively built by ants [28–30] are held together
through the entanglement of ant limbs and mandibles, which
can be considered concave particles. Structures constructed
by animals from branches and twigs such as birds’ nests
may be considered as concave granular materials [31].

The goal of this chapter is to understand how the shape
of a simple nonconvex particle - a “u-particle” influences
bulk rheology. In experiment and computer simulation, we
systematically study how particle concavity affects bulk
properties of a granular material. The fundamental differ-
ence between concave and convex particle assemblies is the
ability for concave particles to interpenetrate, which we call
being entangled. Mechanical entanglement of particles alters
the rheology of particle assemblies through their resistance
to separate. In Section 17.1, we review previous studies
of convex granular materials. Additionally, we introduce
experimental techniques used to characterize granular
rheology. In Section 17.2, we describe our experiments
studying the stability of assemblies of U-shaped concave
particles in which we vary concavity. In Section 17.3, we
describe theoretical and numerical modeling of u-particle
assemblies and their implications for assembly stability. In
Section 17.4, we discuss the implications for these results to
other systems of concave particles.

17.1 GRANULAR MATERIALS

17.1.1 Dry, Convex Particles

Granular materials are assemblies of macroscopic particles
that are typically of size greater than 10 μm [33]. Particles
smaller than 10 μm are subject to thermal effects while
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granular materials are athermal [33]. Granular materials
come in many shapes and sizes [14]; however, in the
majority of physics studies granular materials are convex
(often spherical) particles.

A simple experiment with GM is to pour particles of a
known density and mass into a container and measure the
volume occupied by the assembly. This experiment measures
the fraction of total volume, V , versus the solid particle vol-

ume, Vp, and is called the volume fraction 𝜙 = Vp

V
. Mechan-

ically stable ensembles of spherical, dry granular materials
are found in a range of𝜙 from random loose-pack𝜙rlp ≈ 0.55
[4, 34] to random close-pack volume fraction 𝜙rcp ≈ 0.64
[4]. The maximum 𝜙 for ordered, uniform, spheres is that of
a face-centered-cubic lattice in which 𝜙fcc = 0.77. A loose,
ordered, packing is that of a simple-square lattice with 𝜙ssl =
0.52. Although the packing fraction of ordered ensembles
(i.e., on a lattice) may be analytically solved for, the calcula-
tion of the maximum 𝜙 of randomly distributed particles of
arbitrary shape must be done computationally [13].

A fundamental feature of granular materials is their
ability to act like solids, fluids, or gases [2]. The “phase”
of the granular material may spontaneously change under
an applied load or other perturbation. An avalanche down a
granular slope is an example of such a transition: the slope
begins as an inert solid until an external perturbation is
applied (tilting the slope for instance) after which a section
of the slope becomes unstable, and the grains are put into
motion. Avalanches typically occur above immobile grains
trapped below, an example of the coexistence between the
fluid-like and solid-like states of GM.

Dry granular materials consist of particles that interact
through frictional and repulsive forces only [1–4]. Forces
within a granular material are spatially heterogeneous and
are transmitted through filamentary force chains [35, 36].
Because of the absence of particle–particle attraction, dry,
spherical granular material cannot support tensile loading
[3]. Furthermore, since particle–particle interactions are
frictional, the force laws of granular flows are typically
rate insensitive at low speeds [3]. At higher flow speeds,
however, momentum transfer between particles becomes
important and force laws take on a velocity dependence
(with a force law dependent on the packing density of the
material [37]).

17.1.2 Cohesion through Fluids

When water is added to a granular material, particles can
cohere through the formation of capillary bridges (see Refs
38, 39 for comprehensive reviews). Unlike dry GM, wet
granular media can support tensile loading because of the
particle–particle attraction from capillary bridges [40, 41].
The attractive force from a capillary bridge between two
wettable granular spheres is proportional to the surface
tension of the fluid and inversely proportional to the radius

of curvature. Thus, the strength of the capillary bonds and
the rheology of the bulk in general are sensitive to the fluid
chemistry, the particle diameter, and the fluid volume.

The presence of even a small amount of water can dramat-
ically alter the rheology of a granular material. In a dry gran-
ular material, the maximum slope angle that can be formed
is ≈ 30∘. However, wet GM can be formed into piles and
structures with much steeper slopes of 90∘ or above [42, 43].
It is because of this property that sandcastles are able to be
built and structurally supported. The angle of repose of a
wet GM is a function of the fraction of water present [43]
and is a useful metric for determining the cohesion between
grains.

Another technique for characterizing the strength of capil-
lary bonds in a wet GM is to study the solid to fluid transition
of the ensemble under vertical vibration [44, 45]. When the
GM is in the fluid state, capillary bonds are repeatedly broken
and reformed. The parameters of the fluid–solid transition for
a given granular material are thus related to the strength of
the capillary bonds between grains. It has been shown that the
vibration energy (peak kinetic energy for sinusoidal vibra-
tions) at which the fluid–solid transition occurs in wet gran-
ular materials is linearly proportional to the capillary bond
energy [46]. Thus, vibration and relaxation experiments give
insight into the particle–particle interactions in wet GM, and
we look to these techniques for inspiration in the work we
describe next.

17.1.3 Cohesion through Shape

Addition of fluid to dry granular media is not the only way
to create cohesive effects. Numerous experiments studying
the packing of rods, granular chains, and more complex 3D
printed grains may support tensile stresses [19, 21, 47–59].
For a review of the packing and rheology of nonspherical,
elongated grains, see Ref. 59.

Rods within a granular assembly lack rotational freedom,
and through this frustration of motion, an effective tensile
strength develops. Granular rod piles may form with wall
angles of 90∘ or more because of this effective cohesion. The
stability and packing of rods is sensitive to the length to diam-
eter ratio of the rods [47, 48, 53]. Longer rods pack together
in lower volume fraction ensembles [47] and can be built
into taller stable ensembles [53]. Another example of a non-
spherical granular system is ensembles of granular chains,
solid spheres attached by flexible links. These chains form
bulk materials with yield strength that depends on the chain
length [60]. Longer chains entangle in the bulk, and through
experiment and simulation Brown et al. [60] showed that the
enhanced yield properties of these ensembles were due to this
entanglement.

The addition of bends at the rod ends creates a u-particle.
The u-particle shape is arguably the simplest particle shape
that possesses concavity. We define a concave particle as a
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Figure 17.2 u-Particle assemblies. (a) u-Particles interpenetrate to support tensile loading. (b) A free-standing column of entangled
u-particles. (c) Grasping the tower with tweezers illustrates the tensile strength of this granular assembly.

solid body where there may be found a line segment that
connects two sections of the particle while not being fully
contained within the solid body of the particle. For the
purposes of u-particles, line segments connecting points on
opposing barbs must pass through the free-space between
the barbs, and thus the particle shape is concave. The
concavity of a u-particle is defined as the total volume of the
concave internal region of the particle. For u-particles, the
concavity may be varied by changing the length of the ends
compared to the width of the opening. Clusters of u-particles
readily form mechanically entangled solids that are easily
formed into columns that maintain their shape under gravity
and, when pulled from the top by a pair of tweezers, may be
lifted as almost a solid plug (see Fig. 17.2).

17.1.4 Characterize the Rheology of Granular
Materials

Before we describe our experiments studying the stability
and packing of mechanical entangled u-particle ensembles,
we briefly review commonly employed experimental meth-
ods used to characterize the rheology and packing of granular
material.

17.1.4.1 Packing Measurements Mechanically stable
ensembles of spherical GM are found in a range of 𝜙

from random loose-pack 𝜙rlp ≈ 0.55 to random close-pack
volume fraction 𝜙rcp ≈ 0.64. Although the packing fraction
of ordered ensembles (i.e., on a lattice) may be analytically
determined, the prediction of the maximum volume frac-
tion for particles of arbitrary shape is a computationally
intensive process [13]. A primary goal of packing studies
is to understand how particles arrange in mechanically

stable configurations. Furthermore, 𝜙 may be used as a
measurement of the ensembles state and thus used to predict
the dynamical response of GM subject to shear [61], impact
[37], or intruder drag [62].

Study of the packing of granular media under mechanical
[63] or air-fluidized [64] perturbation has revealed that
the evolution of 𝜙 is dependent on the forcing parameters
such as peak mechanical acceleration or air pressure. The
relaxation dynamics of granular material are complex,
exhibiting signatures of multiple timescales [64] or stretched
exponential behavior [63]. A common feature of these
experiments is that compaction of granular material, and
subsequently the increase in 𝜙, occurs slowly, over many
thousands of iterations.

17.1.4.2 Stress–Strain Rheology Stress–strain exper-
iments are a fundamental tool used to develop and test
constitutive equations of material flow. The stress–strain
response of granular material subject to a wide variety
of tests in various geometries has been studied [1–4,
65]. The prototypical stress–strain experiment is sim-
ple shear in which granular material is placed between
two (semi-)infinite, horizontal, planes with the top plane
translated at constant velocity. An important note about
stress–strain experiments is that they effectively take place
in a steady-state in which the force along the moving plate
fluctuates about a mean value that will persist as long as the
experiment proceeds.

17.1.4.3 Vibration Experiments An important experi-
mental tool in understanding the relaxation dynamics and
steady-states of granular gases/fluids/solids results from
applying uniform vibration [2, 4, 66–68]. Vibro-fluidization
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has been used to study the properties of wet cohesive beads
by exploring the solid–liquid and liquid–gas phase transi-
tions that occur as a function of oscillation amplitude and
frequency [45, 46, 69]. A transition from a liquid to gaseous
phase occurs in wet cohesive granular media when the
injected energy from vibration exceeds the capillary bond
energy [69]. In avalanching experiments with dry granular
media, vibration has been used to mobilize particles and
thus cause the GM to relax under gravity faster or slower
depending on the amplitude and frequency of vibration
[68, 70]. Relaxation of slopes of granular material follows
a Boltzmann-like exponential function with vibration
amplitude analogous to a thermal energy [68].

17.2 EXPERIMENT

In this section, we describe a set of experiments to study
the packing and relaxation of “u-particle” columns. We
formed vertical, free-standing columns from collections
of u-particles of varied barb length to width ratio l∕𝑤. By
varying l∕𝑤, we vary the concavity of the particles with
l∕𝑤 = 0 being rods with no concave region and large l∕𝑤
particles possessing a large amount of concavity. We focus
on two properties of the u-particle columns: (i) the packing
behavior of u-particles studied through measurement of 𝜙

and (ii) the relaxation of columns under gravity and subject
vertical vibration from the floor (see Fig. 17.3).

17.2.1 Experimental Apparatus

U-Particles consisted of steel staples (Duo-fast; Vernon
Hills, IL) of constant width, 𝑤 = 1.17 cm, and variable
barb length, l (l∕𝑤 ∈ [0.02, 1.125]). The cross section of
all particles was rectangular with thickness of 0.5 mm and

width 1.27 mm, which corresponded to a rod-like aspect
ratio for l∕𝑤 = 0.02 particles of ≈ 14. We cut particles
to size l∕𝑤 = 0.02 ± 0.02, 0.13 ± 0.02, 0.15 ± 0.03, and
0.28 ± 0.04, and other particles were purchased at that size.

Collections of monodisperse particles with fixed l∕𝑤
were formed into free standing cylindrical columns with
column diameter, d = 4.4 cm or d = 5.6 cm, and height,
h0 = 3 cm. Columns were prepared by pouring particles
into the cylindrical container followed by a 20 s sinusoidal
vibration of the base at a frequency, f = 30 Hz, and peak
acceleration, Γ = 2 (in units of gravitational acceleration g).
We confirmed that steady-state volume fraction was reached
through our preparation protocol in separate experiments
conducted over a 60 s time period. Columns occupied
a volume V = 𝜋h(d∕2)2, and the volume fraction was
calculated as 𝜙 = M

𝜌stV
where M is total particle mass and

𝜌st = 7.85 g/cm3 is the density of steel.
Sinusoidal oscillation was generated by an electromag-

netic shaker (VTS; Aurora, OH; Fig. 17.1c). The shaker
piston was attached to a linear, square-shaft, air bearing,
which insured that the motion was primarily vertical. The
shaker was mounted to a thick aluminum plate through a col-
lection of springs. This mounting system reduced vibrational
coupling, which would occur if the shaker was mounted
to the ground. Vibration experiments were performed at
a frequency of f = 30 Hz and variable peak acceleration
Γ ∈ [1.2, 2.5] (in units of gravitational acceleration g). The
shaker was controlled by LabVIEW and a Tecron 7550
power amplifier. Acceleration of the vibration table was
measured by an accelerometer embedded in the vibration
table (PCB Piezotronics; Depew, New York).

Column collapse was monitored using a high-speed
camera (Point-Grey; Richmond, BC, Canada). Image
capture was triggered externally by a function generator
controlled by LabVIEW such that images were captured at a

Granular columnBacklighting

CCD camera

Linear air bearing

Electromagnetic
shaker

LabVIEW controlled 
function generator

Accelerometer signal

(a) (b)

w

l

Figure 17.3 Relaxation dynamics of U-particle columns are studied through a mechanical vibration experiment. (a) U-Particle geometry.
Width, 𝑤, is held constant and length, l, is varied. (b) A computer-controlled shaker table applies sinusoidal forcing to a granular column.
A high-speed camera records column collapse from the side.
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constant phase of the oscillation cycle, and at frequencies of
f , f∕2, and f∕4. Images were analyzed in Matlab. Columns
appeared black on a white background, and we extracted
the foreground column using an image threshold. We then
dilated the foreground region to insure that the column was
a singly connected region and finally measured the centroid
height, h(t), of the column and the projected 2D area A(t).

17.2.2 Packing Experiments

Particles were poured into the cylinder and came to rest
at an initial volume fraction 𝜙0, which was dependent on
particle packing (Fig. 17.4). Applying vibration for 60 s
resulted in a steady-state final volume fraction, 𝜙f , which
reached steady-state within approximately 20 s. As can be
seen in Figure 17.4b, 𝜙0 and 𝜙f decreased with increasing

l∕𝑤. Compaction, defined as 𝜒 = 𝜙f −𝜙0

𝜙0
, linearly increased

with l∕𝑤 and was fit by the function 𝜒 = 0.23(l∕𝑤) + 0.12
(R2 = 0.65). Larger l∕𝑤 particles likely exhibit a higher
compaction because their long barbs cause them to jam in
lower 𝜙0 initial states, while their large internal volume also
allows packing to high 𝜙f .

For a comparison with similar experiments, the value of
𝜙f = 0.28 ± 0.01 we observed for l∕𝑤 = 0.02 particles is
close to the range 𝜙f = 0.28–0.34, observed in cylindrical
rod packs with comparable aspect ratio (length/thickness

≈ 14) [48, 52, 71, 72]. The variation in cylinder rod values
was due to difference in preparation method. The lower
value observed in our l∕𝑤 = 0.02 particles is likely due to
the fact that our particle have a rectangular cross section
while the values we compare to are from cylindrical
cross-sectional rods.

The final volume fraction, 𝜙f , decreased monotonically
with increasing l∕𝑤. This is consistent with what is observed
in rod packing studies in which increasing the length (aspect
ratio) of rods decreases the volume fraction [48, 52, 71, 72].
For long rods, the volume fraction scales inversely with rod
length, and this behavior is described through a statistical
model of particle packing called the random contact model,
which we describe in Section 17.3. One way to qualitatively
understand this decrease in 𝜙f with increasing l∕𝑤 is that
larger l∕𝑤 particles have larger internal volumes and thus
pack less efficiently.

17.2.3 Collapse Experiments

After we formed cylinders of packed u-particles in the
packing experiment, we removed the confining container;
this left the column free-standing. During removal of the
confining cylinder, the l∕𝑤 = 0.02 particles were marginally
stable with partial column collapse occurring approximately
50% of the time, similar to the results reported in Ref. 53.
Spontaneous collapse of the l∕𝑤 > 0.02 columns was rarely

l/w
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Figure 17.4 Formation and packing of u-particle columns. (a) Experimental setup to form free-standing u-particle columns. Particles were
packed within a containing cylinder of diameter d = 4.4 cm or d = 5.6 cm, which was removed after the packing protocol. (b) 𝜙(t) during
column preparation for various u-particle assemblies. (c) Final packing fraction, 𝜙f , as a function of particle geometry in experiment (column
diameter d = 4.4 cm diamonds and d = 5.6 cm squares) and simulation (white circles). Line is theory prediction from the random contact
model.
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Figure 17.5 Column collapse dynamics. (a) The normalized centroid height, h(t)∕h0, of the column during collapse. Vibration parameters are
Γ = 2, f = 30 Hz, and images are separated by 90 oscillation periods. (b) Relaxation of h(t)∕h0 as a function of time is shown for l∕𝑤 = 0.379
for Γ = 1.23, 1.48, 1.70, 1.96, 2.20, 2.53, respectively (arrow denotes increasing Γ). Fit lines are stretched exponentials with equation given in
the text. (c) Change in projected area of the column, ΔA(t)

A0
, as a function of time. Γ corresponds to values in (b) with arrow denoting direction

of increasing Γ. Inset shows the peak area increase, max[ ΔA(t)
A0

], as a function of Γ averaged over all l∕𝑤 (error bars are standard deviation).

observed. To explore the dynamical stability of u-particle
columns, we next subjected them to vertical vibration from
the base and observed column collapse.

We applied sinusoidal vibration to the base of the
free-standing column and observed the collapse process
from a lateral view with our camera (Fig. 17.5a). We
characterized collapse dynamics by monitoring the centroid
height, h(t), and cross-sectional area, A(t), of the column
(Fig. 17.5b). The collapse dynamics of h(t) were well
described by a phenomenological stretched exponential
fit function h(t)

h0
= e[−(

t
𝜏

)𝛽 ]. The parameter 𝜏 is the char-
acteristic collapse time and 𝛽 is the stretching parameter
[73]. Consistent with previous studies [63, 74], 𝛽 was in
the range of 0.5–1 and decreased slightly as Γ increased
but was independent of particle geometry. The stretched
exponential function is frequently applied to the description
of relaxation dynamics of disordered systems [73]; however,
a physical interpretation of how it applies to the collapse of
geometrically entangled particles is an open question.

For fixed l∕𝑤, the collapse time of the column found from
the stretched exponential, 𝜏, decreased with increasing Γ.
This supports our intuition that larger perturbations cause a

more rapid collapse of the column. Furthermore, the loga-
rithm of 𝜏 increased linearly with 1∕Γ (Fig. 17.4a) and 𝜏

was fit by an exponential 𝜏 = f−1eΔ∕Γ with Δ as the single
fit parameter (f = 30 Hz).

The exponential fit is indicative of an Arrhenius-like
process observed in the relaxation of activated systems.
The Arrhenius process describes the escape probability of a
thermally or mechanically activated particle from a potential
well of depth Δ. In thermal systems, the escape time is
proportional to one over the Boltzmann factor exp (− E

kT
),

where E is the activation energy required to overcome
the potential barrier. In our system, thermal effects are
negligible, and instead mechanical excitation plays the role
of a thermal energy-like source (Γ analogous to kT) and
Δ is analogous to an energy barrier resulting from particle
entanglement.

The second quantity we measured during column col-
lapse was the change in projected cross-sectional area, ΔA(t)

ΔT
of the column. The cross-sectional area displayed an initial
increase during the first second of vibration indicating that
prior to collapse and particle shedding from the column, the
structure initially expands (dilates). The amount of dilation
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that occurred during collapse, max[ΔA(t)
A0

], was an increasing
function of Γ for all experiments (see inset Fig. 17.5b).

The stretched exponential fit (Fig. 17.5) suggests that
the column collapse process may be qualitatively similar
across varied Γ with only the timescale changing. However,
the variation in column dilation during collapse suggests
that the internal particle processes leading to collapse may
differ as a function of Γ. At small Γ, we hypothesize that
frictional contacts are mobilized through vibration and
thus particles can relax through a sliding process while
collisions are not important. At higher Γ, we observe that
particles appear highly mobilized and often collide with
each other, which likely leads to the dilation we observe
during the initial collapse process. Thus, we hypothesize
that in different regimes of Γ, the particle scale dynamics of
collapse may differ; however, the macroscale collapse time
is well described by the stretched exponential.

Column collapse occurred through the separation of
entangled particles during vibration. We therefore expected
that the hindrance of motion due to particle entanglement
– and thus Δ – would increase monotonically with the
size of the concave region and thus particle length. Instead
we found that Δ was a nonmonotonic function of l∕𝑤
(Fig. 17.6) with Δ reaching a maximum value at intermedi-
ate l∕𝑤 = 0.394 ± 0.045.1 Δ appears in an exponential, and,
thus, the relaxation time for fixed Γ displays a strong sensi-
tivity to the variation of particle shape (see inset Fig. 17.6).
We posit that the maximum in Δ is related to the statistics
of particle entanglement within the bulk, and we next study
entanglement propensity in theory and simulation.
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Figure 17.6 Timescale of collapse process. (a) The logarithm of
the relaxation time versus inverse acceleration with exponential fit
lines 𝜏 = f −1eΔ∕Γ (𝜏0 = 1 s). Curves are offset vertically for clarity.
Error bars are standard deviation of 4 or greater replicates. (b) Δ as
a function of l∕𝑤. Dashed line indicates estimated maximum of Δ
(see Ref. [16]). Error bars represent 95% confidence interval of the
best fit lines from (a). Source: Figure reprinted from Ref. [16].

1We estimate the maximum and standard deviation of l∕𝑤 in experiment
using a weighted average of points near the peak.

17.3 SIMULATION

In this section, we describe modeling of u-particle packing
and examine the ability of particles to mechanically entangle
as a function of particle shape. We discuss how excluded
volume plays an important role in particle ensembles in
which only steric interactions are important, such as our
macroscale granular particles. We introduce the random
contact model proposed for colloidal rods. We apply this
model to our u-particle system and obtain good agreement
between the model and our experimental results. Finally,
we generate u-particle ensembles in computer simulation
and investigate the statistical packing properties of particle
arrangements. We show that particles at intermediate l∕𝑤
display maximum particle entanglement. Lastly, we discuss
the relationship between the non-monotonic particle entan-
glement statistics from simulation, and the non-monotonic
relaxation dynamics of columns as measured in experiment.

17.3.1 Random Contact Model of Rods

The random contact model was originally proposed to
describe the packing of straight, rod-shaped colloids [72].
This model relates the bulk volume fraction, 𝜙, of the
ensemble to the particle volume, Vp, and excluded volume,
Ve, of the constituent particles. The random contact model
assumes only that particles are homogeneously distributed
in space and has been shown to work well for rod-shaped
particles over a large range of aspect ratios [48, 71, 72,
72]. In the following, we derive the random contact model
and explain how it is used in the calculation of “u-particle”
packing statistics.

The particle’s excluded volume is defined as the volume
of space that one particle excludes from another, averaged
over all possible particle–particle configurations. Another
definition of Ve is in relation to the probability of finding
two particles in contact within a larger volume, V . This can
be represented as

Ve = pV , (17.1)

where p is the contact probability. A simple example to
consider is a spherical particle of radius r. A spherical parti-
cle excludes a volume Ve =

4
3
𝜋(2r)3 from another identical

particle. Thus, there is a volume of space, Ve, in which
particles cannot be placed without overlapping the original
particle. This again is indicative of the probabilistic nature of
excluded volume since the probability to randomly place a
sphere in a position overlapping the original sphere is p = Ve

V
.

The relationship between volume fraction and Ve can be
determined by the following method. For a volume of space,
V with N particles of volume Vp, the solid volume occu-
pied by the particles is Vo = NVp. The volume fraction is

defined as 𝜙 = Vo

V
, which using Equation 17.1 we can rewrite
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Figure 17.7 Overview of simulation. (a) Three spherocylinders form a u-particle in computer simulation with dimensions given in the text.
(b) We compute the excluded volume of u-particles through a Monte Carlo simulation measuring the probability for two randomly placed
particles to overlap within a large volume V . (c) Excluded volume of u-particles as a function of l∕𝑤.

as 𝜙 = pN
Vp

Ve
. We interpret pN as the average number of con-

tacts per particle within the packing, C, and arrive at the
random contact equation2

𝜙 = C
Vp

Ve
. (17.2)

The random contact model describes the bulk packing
of homogeneously distributed particles in free space, with
particle properties Vp and Ve and average contact number
C. This model has been tested in experiment and simulation
with rod-shaped objects at the microscopic and macroscopic
scales [48, 52, 71, 72], and surprisingly all experiments
have found a similar contact number C ≈ 10. We note
that this model is applicable for particles that pack with
spatially uncorrelated contact points. Applying this model
to spheres fails because contact points between particles are
always spatially correlated (by definition a distance from the
particle location).

We compute Ve numerically for u-particles in a Monte
Carlo simulation by using the probabilistic definition of
excluded volume. We form u-particles from a combination
of three spherocylinders oriented at right angles with
each other to form a u-particle. u-Particle dimensions are
normalized by the spherocylinder cross-sectional diameter,
D. The width of the base spherocylinder is fixed at 14D
and the barb lengths are varied from 0 to 16D, consistent
with the u-particles used in experiment. In simulation, we
randomly place test-particles within a large volume, V ,
with respect to a focal particle fixed at the center. For each
iteration of the computation, we choose a random location
(x, y, z) and random orientation (defined by the Euler angles

2We note that in the original text of Philipse [72], the random contact model
is introduced with the prefactor 2⟨c⟩ instead of C. In this case, ⟨c⟩ is the
ratio of total number of contacts by the number of particles and multiplying
this value by two results in, C the average number of contacts per particle.
We use this form of the equation in the text and when comparing to studies
using the alternate version, we convert reported values of ⟨c⟩ to C.

of the particle, 𝜃, 𝛾, 𝜓) to place the test particle. We then
check if the test particle overlaps with the focal particle
at this location–orientation combination. To determine
the overlap of two u-particles, we must simply compute
the pairwise minimum distance between each particle’s
constituent spherocylinders. If any of these nine pairwise
distances are less than the spherocylinder diameter, D, the
particles overlap. To detect if particles overlap, we compute
the minimum distance between two line segments along the
centers of the spherocylinders. We compute the distance
between line segments using an algorithm originally devel-
oped for computer graphics [75].3 If particles are found to
overlap, we increment a counter No. After N iterations of
this algorithm, the fraction Nc

N
→ p and thus our calculation

converges on the excluded volume Ve = V Nc

N
.

We fit a polynomial to Ve and find that Ve =
0.460(l∕𝑤)2 + 0.530(l∕𝑤) + 0.148 (in units of W3, see
Fig. 17.7). We approximate the particle volume as
Vp = 𝜋W(D∕2)2 + 2𝜋L(D∕2)2 + 4

3
𝜋(D∕2)3. With a contact

number C = 9, the measured volume fraction in experiments
and the random contact model prediction are in a good
agreement. This value of C is close to the values reported for
rod packings of C = 8.4–10.8, which depends on preparation
[47, 48, 71]; this is surprising given the difference in particle
shape between rods and u-particles. We emphasize that the
random contact model may only be applied to particles in
which the spatial arrangement of contacts is suitably random
(i.e., cannot be used for spheres). This process does not
work for sphere or for near-sphere packings, which have a
lower contact number [76]. Having verified that the random
contact model works for u-particles, we may proceed with
the calculation of packing statistics for u-particle ensembles.

3We have uploaded a Matlab implementation of this algorithm to http://
www.mathworks.com/matlabcentral/fileexchange/32487-shortest-distance-
between-two-line-segments.
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17.3.2 Packing Simulations

We study the packing of u-particles in a computer simula-
tion to identify properties of the particle entanglement within
the pile. Particle packings were generated through a Monte
Carlo simulation. We do not perform molecular dynamics
in these simulations; instead we solely enforce the condi-
tion that particle configurations which result in an overlap
are not allowed. From these packings, we study the statistics
of u-particle entanglement.

To generate u-particle packings, we used a brute force
packing algorithm to generate close packings of nonoverlap-
ping particles. Packing proceeded in two steps: In the first
step, particles were placed at random position and orientation
inside a cubic volume of cross-sectional area (52 × 52D2)
such that the particles did not overlap. If a newly placed par-
ticle resulted in an overlap, this particle was removed and
a new position was randomly selected. If after 10,000 iter-
ations a suitable particle location was not found, then the
algorithm proceeded to step two. In the second step, parti-
cles in the volume were selected at random and displaced
downward a small random direction and distance D

10
. If the

new location of the particle resulted in particle overlap, the
particle was returned to the original location and a new parti-
cle chosen. The algorithm was halted after the center of mass
height of the ensemble appeared to reach a steady-state. The
volume fraction of the simulated packings was determined
by measuring the average height of the pile and multiply-
ing it by the areal dimension to obtain the occupied volume
and then dividing this by the total volume of particles. A
sample packing simulation and packing dynamics are shown
in Figure 17.8. In simulation, particles gradually approach a
steady-state volume fraction that is consistent with the exper-
imental data (Fig. 17.4c).

We hypothesized that particle entanglement within the
column would influence the relaxation time during vertical

vibration. Thus, we expected that the maximum in Δ
should correspond to a maximum in the density of particle
entanglements. In simulation, we defined two particles as
entangled when the center line of one particle intersected
the internal plane of the neighboring particle (see inset
Fig. 17.5a). We measured the number of entanglements per
particle, N, for each particle in simulation. The probability
distribution function, P(N), was sensitive to l∕𝑤 (Fig. 17.5a)
with mean value ⟨N⟩ increasing monotonically with l∕𝑤
(Fig. 17.5b). The increase was sublinear, indicating that⟨N⟩ grew slower than that of the particle’s convex area
(l − D)(𝑤 − 2D).

The scaling of ⟨N⟩ with l∕𝑤 can be determined by con-
sidering the solid volume occupied by the entangled particles
in the focal particles convex region (the convex area with
infinitesimal thickness 𝛿). Assuming a homogeneous pack-
ing, the solid volume in this region is Vent = 𝜙f (l − D)(𝑤 −
2D) 𝛿. Since each entangled particle contributes only a por-
tion to Vent in the shape of an ellipse of thickness 𝛿, on aver-

age Vent = 𝛼⟨N⟩𝜋𝛿 D2

4
where 𝛼 > 1 accounts for the nonpla-

nar crossings (Fig. 17.9). Solving the above relations yields

⟨N⟩ = 4C
𝛼

(Vp(l − D)(𝑤 − 2D)
𝜋VeD2

)
. (17.3)

With a single fit parameter, 𝛼 = 2.648 ± 0.108, we find
excellent agreement between the predicted number of
entanglements per particle and those measured in simulation
(Fig. 17.10b).

The spatial density of particle entanglements is
𝜌ent = ⟨N⟩𝜌 where 𝜌 = C

Ve
is the number density of

particles (Fig. 17.10b). Substitution for ⟨N⟩ yields

𝜌ent =
4C2

𝜋𝛼

(Vp(l − D)(𝑤 − 2D)

V2
e D2

)
(17.4)
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Figure 17.8 Computer simulated u-particle ensembles. (a) A computer-generated ensemble of u-particles of l∕𝑤 = 0.35. (b) Volume fraction
of particle ensembles as a function of simulation iteration. Particle ensembles are packed together in a Monte Carlo simulation until the volume
fraction reaches a steady-state. Particle l∕𝑤 is varied from 0 to 1.4 with increasing l∕𝑤 indicated by arrow.
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Figure 17.9 Entanglement counting in simulation. (a) A rendering of entangled particles within the ensemble. (b) To predict the number of
entanglements within the packing, we consider the infinitesimally thin volume of space within the concave region of the central focal particle
(dark gray). The intersection of entangled particles with this plane forms thin ellipses. (c) The cross-sectional area of the intersection region
can vary from a circle of diameter D to an ellipse with minor axis D∕2.
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Figure 17.10 Statistics of particle entanglement in simulation. (a) The probability distribution of entanglement number, N, as a function of
l∕𝑤. Curves are shifted vertically for clarity; l∕𝑤 = 0 at top and increases in increments of 0.036 down. (b) Mean values for N and 𝜌 measured
in simulation (circles) and the theoretical fit (black line). (c) Density of entanglements as a function of l∕𝑤 and the theoretical fit (black line).
Vertical dashed line and gray bar correspond to the mean and standard deviation of the estimated maximum of Δ from experiment. Source:
Figure reprinted from Ref. [16].

and again the simulation and theory are in a good agreement
(Fig. 17.10c) using the previously determined fit parameters
C and 𝛼. Furthermore, the experimental maximum max[Δ]
at l∕𝑤 = 0.394 ± 0.045 is close to the value obtained

in simulation and theory of l∕𝑤 = 0.340 ± 0.015, sug-
gesting that the large relaxation times for the intermediate
u-particle columns are due to the large density of mechanical
entanglements.
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17.4 CONCLUSIONS

Similar to rod-like particles [48, 52, 71, 72], columns
formed from u-particles are stabilized through the inhibition
of particle rotation and translation among the entangled
particles. The addition of the transverse ends, which form
concave u-particles, leads to mechanical entanglement
and increases column stability. However, the increase in
entanglement with increasing length is offset by the decrease
in particle-packing density. These two trends conspire to
generate a maximum in the density of mechanical entangle-
ments in collections of nonconvex particles of intermediate
l∕𝑤—thus columns of these particles most strongly resist
separation.

Relaxation processes studied under oscillatory pertur-
bations are found in many soft-matter systems such as
oscillatory shear experiments in colloids and suspensions.
Vibro-fluidization has been previously used to study the
relaxation of piles and columns of dry granular materials
under gravity [68, 70, 77]; however, this method has not
been applied to characterizing the strength of cohesive GM.
We envision that vibration–relaxation experiments similar
to those reported here will be useful to explore rheological
properties of fluid or electrostatic mediated cohesive GM.
Although granular materials in the natural world often
posses some interstitial fluids, there is still much to be
learned about cohesive granular materials.

Macroscale model systems similar to those described
here and elsewhere [60, 78] are useful tools within which
to explore how particle shape influences ensemble rheology
at other scales. Future study of the particle-scale dynamics
of nonconvex particles may provide further insight into the
rheology of entangled or crowded particulate systems. For
example, model systems such as granular particles may
help understand the particle scale dynamics of anomalous
diffusion within the crowded cellular environment [79–82].
Furthermore, particles found in nature are often nonspherical
[14]; thus, we hope that experiments like those described
here will advance the experimental and computational tools
used to study nonspherical or even nonconvex particulate
systems.

The random contact model utilized to explain the opti-
mum geometry for entanglement of U-shaped particles
assumes only uncorrelated particle contacts within the bulk.
Thus, we expect the results to apply to rigid nonconvex
particulate systems of all scales. A recent study of suspen-
sion rheology found that convex particles of differing shape
collapsed to a viscosity–stress master curve while concave
particle did not collapse to this curve; this difference was
attributed to particle entanglement effects [17]. At the
microscale, polymers with rigid pendants oriented perpen-
dicular to the polymer chain increase internal molecular
free volume and hinder polymer motion, which significantly
affects rheology similar to geometric entanglement [83].

At the macroscale, strain-stiffening of model polymers is
associated with entanglement [60]. Even organisms can
benefit from geometric entanglement. For example, the fire
ant Solenopsis invicta and the army ant Eciton burchelli
create waterproof rafts and shelters—which have been
described as akin to living chain mail [84]—through the
interlocking and entanglement of limbs and mandibles
[28, 30].
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