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Abstract: Smarticles, or smart active particles, are small robots equipped with only basic movement and sensing abilities
that are incapable of rotating or displacing individually. We study the ensemble behavior of smarticles, i.e., the behavior
a collective of these very simple computational elements can achieve, and how such behavior can be implemented using
minimal programming. We show that an ensemble of smarticles constrained to remain close to one another (which
we call a supersmarticle), achieves directed locomotion toward or away from a light source, a phenomenon known as
phototaxing. We present experimental and theoretical models of phototactic supersmarticles that collectively move with
a directed displacement in response to light. The motion of the supersmarticle is approximately Brownian, and is a result
of chaotic interactions among smarticles. The system can be directed by introducing asymmetries among the individual
smarticle’s behavior, in our case by varying activity levels in response to light, resulting in supersmarticle biased motion.
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1. INTRODUCTION

In developing a system of programmable matter, one
hopes to create a material or substance that can utilize
user input or stimuli from its environment to change its
physical properties in a programmable fashion. Many
such systems have been proposed (e.g., smart materi-
als, synthetic cells, and modular and swarm robotics)
and each attempts to perform tasks subject to domain-
specific capabilities and constraints. In this paper, we are
interested in active programmable matter, where the en-
ergy input takes place directly at the scale of each active
(matter) particle and allows for self-propelled movement1

[14]. We investigate how such a system can achieve di-
rected locomotion, wherein the individual particles move
together as a collective in a desired direction.

Specifically, we consider active programmable matter
ensembles composed of particles that individually are in-
capable of locomotion. However, when constrained to
remain in close proximity to other particles, we show
that the overall ensemble can generate movement. More-
over, external stimuli that introduce asymmetries into the
system with regards to individual particle activity can be
used to produce a mode of directed displacement, either
towards or away from a light source, known as phototax-
ing. We investigate this phenomenon through both exper-
imental and theoretical models.

We show, in Section 3, that phototaxing emerges in
testbed experiments on a constrained collection of smar-
ticles (that we call a supersmarticle). A smarticle is
a small, 3-link, planar robot, developed by Goldman’s

† Shengkai Li is the presenter of this paper.
1As opposed to passive programmable matter systems such as DNA
computing and tile self-assembly.

group, equipped with sensing abilities but is incapable of
rotating or displacing individually. A supersmarticle is a
collection of smarticles enclosed by an unanchored rigid
ring. One can think of a supersmarticle as a “robot made
of robots” which achieves capabilities greater than any
individual smarticle; phototaxing is one such capability.

To investigate phototaxing from a theoretical perspec-
tive, we utilize previous work on self-organizing particle
systems, that abstractly describes programmable matter
as a collection of simple computational elements (par-
ticles) with limited memory that each execute fully dis-
tributed, local, and asynchronous algorithms to solve
system-wide problems of movement, configuration, and
coordination (e.g., [8]). Recent work applying stochas-
tic approaches to algorithms for self-organizing particle
systems has yielded surprisingly fruitful results, produc-
ing local algorithms that are robust, nearly oblivious, and
truly decentralized. This approach was initially applied to
develop an algorithm for compression in self-organizing
particle systems under the assumptions of the geometric
amoebot model [4]. To solve the compression problem,
particles gather as tightly together as possible, as in a
sphere or its equivalent in the presence of some under-
lying geometry. This phenomenon is observed in natural
systems (e.g., fire ants forming floating rafts [13]).

1.1. Our Results

In this paper, we demonstrate how one can create a
phototaxing particle ensemble by giving an algorithm for
an abstract particle system under the amoebot model in
which phototaxing is observed. It is achieved, rather re-
markably, with just one very subtle modification to the
compression algorithm: particles become more (or less)
active when they sense light. In Section 4, we formally
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prove that phototaxing occurs for systems of two and
three particles; we also present simulation results of our
algorithms for much larger systems that demonstrate the
same behavior. We note that in the amoebot model, un-
like smarticles, individual particles are capable of move-
ment, but this will be undirected regardless of how active
they become in response to a light source. In contrast, we
show that groups of particles can achieve directed dis-
placement in response to light in the theoretical model,
similar to the smarticles.

Both the physical and theoretical systems we consider
have three components: (1) individual particles move reg-
ularly with no sense of direction, (2) there is a constraint
ensuring the particles remain in close proximity to one
another, and (3) particles’ activity changes in response to
light. In both cases, these basic requirements suffice to
produce phototaxing. Perhaps the most surprising result
is that phototaxing can be achieved without all particles
knowing the direction of the light source; the occlusion
of light by individual particles suffices for the ensemble
as a whole to “know” where the light is and move accord-
ingly, entirely via local distributed algorithms. We posit
that more generally, many other systems with these three
features should also be phototactic.

The remainder of this paper is organized as follows:
In Section 1.2, we present a brief overview of related
work. Section 2, we describe the physical smarticles and
the theoretical abstractions that we will use in this paper.
Section 3 presents our experimental testbed results on
phototactic supersmarticles, which were the inspiration
for the theoretical and simulation analysis on an abstrac-
tion of smarticle ensembles that we present in Section 4.
We present our concluding remarks, including directions
for future work, in Section 5.

1.2. Related Work
When examining the recently proposed and realized

systems of programmable matter, one can distinguish be-
tween passive (e.g., [2, 6, 19]) and active (e.g., [5, 7, 16,
21]) systems. Our work falls within the latter, which
distinguishes itself from passive systems due to self-
propelled motion at the particle level. Examples of active
programmable matter systems include swarm robotics,
various other models of modular robotics, and the amoe-
bot model, which defines our computational framework
(detailed in Section 2.2).

Swarm robotics systems usually involve a collection of
autonomous robots that move freely in space with limited
sensing and communication ranges. These systems can
perform a variety of tasks including gathering (e.g., [7]),
shape formation (e.g., [16]), and imitating the collective
behavior of natural systems (e.g., [5]); however, the indi-
vidual robots are more complex and have more powerful
computational capabilities than those we consider. Mod-
ular self-reconfigurable robotic systems focus on motion
planning and control of kinematic robots to achieve dy-
namic morphology (e.g., [21]). The nubot model [20]
seeks to provide a formal framework for rigorous algo-
rithmic study of molecular programming systems.

In our physical experiments, our supersmarticles
achieve phototaxing by changing the behavior of individ-
ual smarticles in response to light, making some of them
inactive. We believe that the inactive smarticles can be
approximated as a loose extension of the boundary, and
one whose collision model is softer than the normal rigid
boundary. This is consistent with previous work done
with randomly diffusing self-propelled particles in [10,
17]. These studies investigated systems of self-propelled
active particles enclosed in a boundary. The boundary’s
perimeter was divided into two sections, each composed
of distinct materials, one half with a softer potential and
the other half a more rigid potential. They found the ap-
plied pressure on the soft boundary from the particles was
larger than on the more rigid boundary. We utilize this
emergent response resulting from physical interactions,
shown previously in simulation, in experiment to gener-
ate directed motion from a collection of individually non-
motile robotic units.

2. PRELIMINARIES
We begin by describing both the physical smarticles

and the theoretical abstractions.

2.1. Smarticles
In order to explore emergent phenomena that result

from collections of entities with limited mobility and
sensing, we developed what we are calling “smarticles.”
Smarticles, or smart particles, are small 14 x 2.5 x 3 cm
robots which can change their shape in situ, but are inca-
pable of rotating or displacing individually. Each smarti-
cle is a three-link, two revolute joint, planar robot where
only the center link is in contact with the ground.

Each smarticle consists of two Power HD-1440A
MicroServos, a MEMS analog omnidirectional micro-
phone, two photoresistors, a current sensing resistor, and
a re-programmable Arduino Pro Mini 328-3.3V/8MHz,
which handles the ADC and servo control. The two ser-
vos control the smarticle’s two outer links, allowing the
smarticle to fully explore its two-dimensional configura-
tion space. The microphone, and pair of photoresistors,
represent two channels through which we can send basic
commands: using varying frequency ranges of sound or
controlling levels of light. The current sensing resistor
detects current draw from the servos, and thus the torque
they are experiencing, allowing each smarticle to sense
its own stress state. The links of the smarticles were 3D
printed, ensuring uniform construction between all smar-
ticles. Each smarticle is capable of performing predefined
shape changes in the joint space. When we place a col-
lection of smarticles placed inside an unanchored ring,
we call this a supersmarticle.

2.2. The geometric amoebot model
In order to study smarticle systems from a more for-

mal perspective, we turn to self-organizing particle sys-
tems, which abstract away from specific instantiations of
programmable matter to a more general model. This ap-
proach describes programmable matter as a collection of
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Fig. 1: (a) A supersmarticle composed of 5 individual
smarticles. A single smarticle, as viewed from the (b)
front and (c) rear.

simple computational elements (particles) with limited
memory that each execute fully distributed, local, asyn-
chronous algorithms to solve system-wide problems of
movement, configuration, and coordination. In the ge-
ometric amoebot model, space is modeled as the infinite
triangular lattice Γ (Fig. 2a). Each particle occupies a dis-
tinct lattice point and can move along lattice edges. Each
particle is anonymous, and there is no shared coordinate
system or global sense of orientation. Particles interact
only if they are neighbors, that is, if they occupy adjacent
vertices of the lattice. Every particle has a constant-size,
local, memory which both it and its neighbors are able
to read from and write to for communication. Due to
the limitation of constant-size memory, particles cannot
know the total number of particles in the system or any
estimate of this quantity. We assume that any conflicts
(of movement or shared memory writes) are resolved ar-
bitrarily. Full model details can be found in [4].

For phototaxing, we furthermore assume that each par-
ticle can sense light, and that particles can occlude that
light. More specifically, we consider point light sources
that broadcast along rays in Γ. The light from a source
is sensed only by the first particle in the lattice line along
which the light is shining, and not by any other particles
that may be in that lattice line (Fig. 2b).

2.3. Compression
Our local distributed algorithm for phototaxing under

the assumptions of the geometric amoebot model uses the

(a) (b)

Fig. 2: (a) A section of the triangular lattice Γ. (b) An
example particle system with some point light sources
broadcasting upward along lattice lines; the particles that
sense the light are outlined, while all others are occluded.

stochastic compression algorithm of Cannon et al. [4] as
a subroutine, so we present a high-level summary here.
We assume particles start in a simply connected config-
uration, and we design algorithms that ensure they stay
simply connected. Variants of the compression algorithm
in [4] produce a variety of other useful behaviors, includ-
ing expansion over as wide an area as possible, coating an
arbitrarily shaped surface, spanning fixed sites, and form-
ing shortcut bridges [1] (a behavior also observed in army
ants [15]); here, we show another variant produces pho-
totaxing. For all of these problems, tools from Markov
chain analysis and distributed algorithms allow us to re-
late local and global optimal behavior.

The stochastic algorithm in [4] achieves compression
by favoring moves that increase the number of edges in
the particle system configuration, where an edge of a
configuration is an edge of Γ where both endpoints are
occupied by particles. Since the total number of parti-
cles stays fixed, maximizing the number of edges within
a configuration is equivalent to minimizing the number
of edges on the perimeter. The compression algorithm
takes as input a parameter λ that controls how desirable
it is for a particle to have neighbors, where λ > 1 fa-
vors configurations with more neighboring pairs of par-
ticles and thus more edges. The distributed compres-
sion algorithm ensures the system converges to a distri-
bution that favors having more edges using a Metropolis
filter [9, 12], a tool from Markov chain analysis that al-
lows local probabilities of moves to be set so that global
convergence to a certain distribution occurs. Specifi-
cally, our algorithms incorporate carefully chosen prob-
abilities for particle moves so that the system converges
to a stationary distribution π over particle system con-
figurations σ where π(σ) ∼ λe(σ), where e(σ) is the
number of edges of configuration σ. When λ > 1, this
leads directly to distribution π placing the most weight
on configurations with the most edges, which provably
are the most compressed configurations. In particular,
for any λ > 2 +

√
2 ∼ 3.42, under π all but an ex-

ponentially small fraction of particle configurations will
be compressed. This means the Markov chain, and thus
the associated distributed local algorithm, converge to a
distribution over particle configurations where with very
high probability compression has been achieved.

Algorithm 1 is a simplified, high level description of
the local distributed algorithm executed by each particle
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Fig. 3: The compression algorithm for 100 particles ini-
tially in a line after (a) 1 million, (b) 2 million, (c) 3mil-
lion, (d) 4 million and (e) 5 million iterations of Markov
chainM with bias λ = 4.

in order to achieve system-level compression [4]; param-
eter λ, the input to the compression algorithm, is known
by each particle. A simulated asynchronous execution of
this compression algorithm is shown in Fig. 3.

Algorithm 1 (Compression for particle P )
1: Let ` denote P ’s current location; choose neighbor-

ing location `′ uniformly at random from the six pos-
sible choices in Γ.

2: if `′ is unoccupied and certain local connectivity con-
ditions hold in the neighborhood of ` ∪ `′ then

3: Generate a random number q ∈ (0, 1).
4: Let e be the number of other particles adjacent to

location ` and e′ be the number adjacent to `′.
5: if q < λe

′−e then Move to `′.
6: else Remain at `.

To analyze the limiting behavior of the algorithm, we
assume each particle activates and executes Algorithm 1
at a time drawn randomly from a Poisson distribution.
This has the benefit of indirectly ensuring that our par-
ticle activations are fair, in the sense that for any par-
ticle P and any time t, P will always be activated at
least once after t. Further details regarding resolutions
of the conflicts (of movement or shared memory writes)
that arise when nearby particles are activated at nearly the
same time are available in [4]; most importantly, these ef-
forts ensure that for the formal analysis, we may assume
that at most one particle is active (performing a bounded
amount of computation and at most one movement) at a
time. This follows the standard asynchronous model of
computation [11], which greatly simplifies analysis. In
particular, one can define the (centralized) Markov chain
M associated with Algorithm 1 as follows: M picks a
particle uniformly at random and then executes the steps
of Algorithm 1 for that particle. This enables the use of
techniques from Markov chain analysis to prove guaran-
tees about the behavior of the system when each particle

1α

2α

(b)
1α 2α

w

l

(a)

Fig. 4: (a) Configuration space of a single smarticle de-
fined by the angles α1 and α2 between the outer and in-
ner links. (b) The square gait with certain configurations
from the trajectory illustrated.

is independently executing Algorithm 1; we now summa-
rize those guarantees.

Theorem 1: Consider a self-organizing particle sys-
tem under the geometric amoebot model where each par-
ticle individually executes Algorithm 1 with some fixed
λ > 2 +

√
2. The particle system will always remain

simply connected and will converge to a distribution over
configurations π(σ) ∼ λe(σ) where with all but exponen-
tially small probability the system is compressed.

3. PHYSICAL PHOTOTACTIC
SUPERSMARTICLES

In this section, we describe the supersmarticle dis-
placement experiments and their results. For each experi-
ment, we place the supersmarticle, i.e., the smarticles and
ring, on a level plane and each smarticle performs a gait,
where a gait is a closed periodic trajectory in the joint
space of a smarticle. The smarticles used in the experi-
ments were programmed to exhibit two behavioral states:
one where the smarticle servos traced a square drawn in
the 2-dimensional joint space as seen in Fig. 4, called the
active state, and another where the servos were held at a
fixed position such that all links of the smarticle were par-
allel, called the inactive state. Smarticles will persist in
the active state until either photoresistors, one found on
either side of the smarticle, detect light above a certain
threshold. When above the threshold the smarticle will
persist in the inactive state until the light level sensed by
either of its photoresistors drop below the threshold and
will becomes active again.

The experimental setup is planar, and hence the smar-
ticle nearest to the light source occludes light from reach-
ing other smarticles behind it inside the supersmarticle.
Given the light sensor locations on the smarticle body and
the geometry of the straight configuration, typically only
one smarticle at a time is inactive, occluding the light
and keeping the others smarticles below the photoresis-
tor threshold. The occlusion of the light source effec-
tively produces a light gradient across the supersmarticle
which provides a decentralized, stigmergic communica-



tion method. Each smarticle’s behavior is a response to
the local environment, which in turn is a tends to affect
the local environment of its neighbors.

3.1. Experimental Methods
Two types of experiments were performed: one type

where all smarticles remained active and another type
with both active and inactive smarticles. In the second
experiment, one side of the system is illuminated with a
light source, thereby forcing certain smarticles into the
inactive state. All experiments were performed in a dark
room, so that smarticles only entered the inactive state
when subjected to the controlling light source input.

Experimental trials were initiated with the supersmar-
ticle at the center of a 0.4m2 test plate and ended when
the supersmarticle had translated to an edge of the test
plane. When internal supersmarticle configurations ex-
hibited slow displacement rates, trails were cropped at 10
minutes.

Multiple trials were taken with the light source at one
of four locations to minimize systematic error. In each
light experiment, one light source was placed at the cen-
ter of an edge of the test plate. The light source was di-
rected towards the nearest exposed photoresistor, thereby
rendering a single smarticle within the system inactive.

Trajectories of the supersmarticle center of geometry
were recorded using OptiTrack infrared video recording
technology, and the data were exported and analyzed in
MATLAB using a MSD analysis package [18].

3.2. Experimental Results and Discussion
The supersmarticle’s motion was dependent on the ac-

tivity within the ring. Diffusive behavior was observed
in both the control (Fig. 5.(a,c)) and directed experiments
(Fig. 5.(b,d)), but the presence of inactive smarticles near
the light source introduces a biased drift towards the light.
The light-controlled supersmarticle system consistently
diffused in the direction of the light source, with an aver-
age success rate of 82.3± 6.0% across all trials.

Mean squared displacement (MSD) curves are useful
for describing the types of diffusive behavior present in a
given dynamic system [3]. The MSD is defined as:

σ2 = 〈~x · ~x〉 − 〈~x〉 · 〈~x〉 = 4Dtγ

where γ is the diffusion coefficient for the system. Free
diffusive movement is seen for values of γ = 1, with
γ < 1 characterizing subdiffusive behavior and γ > 1
characterizing superdiffusive behavior, or active trans-
port. By fitting a line to the log-log plot of the MSD
curve, the slope of the resulting fit will be the diffusion
parameter γ.

The average MSD curve for each set of experimental
data was computed, and a linear approximations were fit
to the log-log plots. After performing out analyses across
all data sets, the mean slope for fully active system was
computed to be 0.99m2/s and the light-directed systems
were 1.04 ± 0.02 m2/s. The application of the light-
control algorithm results in a shift in diffusive behavior,
from a purely diffusive system to a superdiffusive system
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Fig. 5: (a) and (b) are trajectories of the supersmarticle’s
center of geometry for a non-biased motion and light-
biased motion respectively. Each colored trajectory rep-
resents a separate trial. (c) and (d) are shows lines con-
necting the initial and final position of the supersmarti-
cle for each experiment. (d) contains all light biased di-
rections data. Trials where the light was not originating
from the +x direction were rotated to allow comparison
between all trials. Illumination direction is shown via the
location of the flashlight with respect to the supersmarti-
cle image. All tracks begin from (0, 0) and end at the red
circles.

where the active transport phenomenon causes the system
to propagate towards the light source.

4. A PHOTOTACTIC ALGORITHM
To complement the physical experiments, we devel-

oped a local distributed algorithm for phototaxing in self-
organizing particle systems under the abstract geometric
amoebot model. We prove that the algorithm causes the
system to diffuse in a certain direction in reaction to the
light source when there are two or three particles, and we
present simulations that demonstrate this same effect for
larger particle systems.

We assume the particle system starts in some con-
nected2 initial configuration σ0. For phototaxing to occur,
we assume a collection of point light sources (sufficiently
far from the particle configuration to not interfere with its
motion) broadcast light along lattice lines in the same di-
rection. Specifically, we assume the light sources form an
infinite jagged line below all the particles and broadcast
light upwards, as in Fig. 2b. We define the height of a par-
ticle system to be the y-coordinate of its center of mass,

2The assumption of connectedness can be relaxed, but it simplifies the
proofs while maintaining the phototaxing behavior we desire. We can
think of connectivity and compression as playing a role analogous to
that of the ring in the physical model.
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Fig. 6: A system of two particles, and the probabilities
of each particle’s movement if it is activated next. (a)
If both particles are exposed to the light source, the ex-
pected change in height of the system after one iteration
is 0. (b) If one particle occludes the other from the light
source, the expected change in the height of the system
after one iteration is +3/32.

where all light sources are assumed to have y-coordinate
0 or −1/2; we assume all edges of the triangular lattice
are of length 1. We say that phototaxing occurs if there
is some fixed number of iterations after which the height
of the particle system has strictly increased or strictly de-
creased in expectation.

Our local distributed algorithm for phototaxing
(specifically, for locomotion away from a light source)
is remarkably simple; each particle executes Algorithm 2
when activated. The choice of 1/4 in the algorithm is be-
cause it seems to work well in practice. Smaller values
for that parameter can affect the compression algorithm’s
execution and cause different structural configurations to
emerge, while larger values (that are still less than 1) cor-
respond to even slower locomotion. Conflicts (of move-
ment or shared memory writes) are resolved just as they
are for compression; recall from Section 2.3 this allows
us to assume at most one particle is active at a time.

Algorithm 2 Phototaxing for a particle P
1: if P senses light then
2: P Executes Algorithm 1.
3: else
4: P Executes Algorithm 1 with probability 1

4 .

So far, we assumed all particles activate at the same
rate; under this assumption, we will see that the particle
system achieves the desired phototaxing when all the par-
ticles independently execute Algorithm 2. If instead we
assume that it is possible for particles’ activation rates to
change in response to light, as is the case for the physical
smarticles of Section 3, then phototaxing can occur when
each particle simply executes Algorithm 1. For instance,
if particles are four times more likely to activate when
exposed to light and each executes Algorithm 1 upon ac-
tivation, this system is equivalent to a system of particles
with uniform activation rates executing Algorithm 2.

4.1. Provable Phototaxing for Very Small Systems
Here, we formally verify the observed phototaxing for

very small systems (with 2 or 3 particles) by proving that
when the particles independently execute Algorithm 2,

the system exhibits a drift away from the light source.
We first consider a system of two particles, each acti-

vating at the same rate and then executing Algorithm 1.
In this case, Algorithm 2 simplifies to Algorithm 3:

Algorithm 3 Phototaxing for a particle P : 2 particles
1: Choose one of the two locations adjacent to both par-

ticles uniformly at random; call it `.
2: if P senses light then Move to `
3: else Move to ` with probability 1

4 .

Theorem 2: For system of two particles each execut-
ing Algorithm 3, phototaxing occurs.

Proof: We show that after two particle activations,
the expected height of the system has increased by at
least +3/64, which implies the particle system is mov-
ing away from the light source. Up to translation and
reflection, there are two possible states a system of two
particles can be in: either both particles are exposed to
the light (State 1), or one particle occludes the other from
the light (State 2); see Fig. 6. Regardless of state, both
particles are equally likely to activate next. In State 1,
case analysis shows the expected change in height after
one particle activation is 0. Furthermore, with probabil-
ity 1/2 the system remains in State 1 and with probability
1/2 it enters State 2. For a particle system in State 2, with
probability 1/2 the occluded particle activates next, and
with probability 1/4 it moves a distance of−1/2 in the y-
direction, causing the height of the system to decrease by
1/4. With the remaining probability 1/2, the particle ex-
posed to light is activated and moves a distance of +1/2
in the y-direction, causing the height of the system to in-
crease by 1/4. Overall, in this case the expected change
in the height of the system is:

1
2 ·

1
4 ·

(
− 1

4

)
+ 1

2 ·
(
+ 1

4

)
= 3

32 .

Beginning in State 1, we condition on the state of the
system after one activation and see that after two activa-
tions the expected height of the system has increased by
at least 3/64. Beginning in State 2, after two particle ac-
tivations the expected height of the system has increased
by at least 3/32 > 3/64. This proves the theorem.

Thus, for systems of two particles each executing Al-
gorithm 3 upon activation, the expected distance from the
light sources strictly increases over time, meaning photo-
taxing provably occurs.

The same result holds for systems of three particles, al-
beit with a slightly slower drift. For systems with exactly
three particles, Algorithm 2 simplifies to Algorithm 4, be-
low. Note that the compression bias parameter λ and the
movement probability filter based on the number of edges
in the system (Step 5 of Algorithm 1) begin to play a role.

Theorem 3: For a system of three particles each ex-
ecuting Algorithm 4 with bias parameter λ > 2 +

√
2,

phototaxing occurs.
Proof: We show that after three particle activations

the expected height of the system has increased by at
least 1/(64λ). Up to translation and reflection, there are
seven possible states the particle system could be in; all
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Fig. 7: The seven possible states for a system of three particles (up to reflection and translation) and the probabilities
of each particle’s movement if it is activated next; the expected change in the height of the system after one iteration
beginning in each of the seven states is also shown.

Algorithm 4 Phototaxing for a particle P : 3 particles
1: Determine possible valid locations to move to, of

which there are at most 2.
2: For each such location, set move probability to 1/2.
3: if move decreases number of edges in system then
4: Divide move probability by λ.
5: if P does not sense light then
6: Divide each move probability by 4.
7: Move to a possible valid location with the corre-

sponding move probability; with all remaining prob-
ability, don’t move.

are shown in Fig. 7. Doing a case analysis just as for two
particles, we see that the expected change in the height of
the system after one particle activation is nonnegative in
all seven states. For states (e,f,g), the expected increase in
height after one particle activation is more than 1/(64λ),
and as expected height is nondecreasing the same holds
after three particle activations. For the states (a,b,c,d),
the expected change in height after one particle activation
is zero, so we consider multiple particle activations at a
time. For state (a), after one particle activation there is a
positive probability it is in state (e) or state (g), and we
can use conditional expectation to calculate that after two
particle activations, beginning in state (a), the expected
increase in the height of the system is 1/(64λ). Simi-
larly, beginning in state (b), after two particle activations
the expected change in the height of the system is 1/96;
because λ > 2 +

√
2, that is, that we are in the regime of

compression, then 1/96 > 1/(64λ).
Beginning in states (c) and (d), it takes at least two

particle moves to reach a state where there is a positive
expected increase in height after the next particle activa-
tion; each reaches state (e) after two particle activations
with probability 1/18 + 1/(9λ) and state (g) after two
particle activations with probability 1/18+5/(72λ). The
total expected increase in height after three particle acti-
vations starting in either state (c) or state (d) is:(

1
18 + 1

9λ

)
1
48 +

(
1
18 + 5

72λ

)
1
24 = 1

288 + 1
192λ >

1
64λ ,

since λ > 3. Thus, for all possible states the system is
in, we have shown that after three particle activations, the
height of the system has strictly increased in expectation
by at least 1/(64λ).

(a) (b) (c) (d)
Fig. 8: An execution of Algorithm 2 with λ = 4 for a sys-
tem of 91 particles, with light sources that shine upwards
shown in red, after (a) 0, (b) 10 million, (c) 20 million,
and (d) 30 million iterations. Multiple executions all ex-
hibit a drift upwards, as seen here.

4.2. Phototaxing Simulations for Larger Systems
Algorithm 2 can be used to achieve phototaxing for ar-

bitrarily large systems of particles, not just systems with
two or three particles. Simulations for a system with 91
particles can be seen in Fig. 8. Though the motion is
largely random, it is clear there is a general trend away
from the light sources. This drift was consistent across all
simulations of Algorithm 2. In all simulations, including
the one shown in Fig. 8, the particle system also exhibited
lateral drift of varying magnitude and direction; that drift
is not shown in Fig. 8 due to space constraints.

5. CONCLUSION
This study presented the use of physical and simulated

atomic agents incapable of directed motion in confined
active matter systems which exhibit locomotion on the
collective scale. Moreover, the responses of the individu-
als of the system to external fields were used to introduce
asymmetries in the system, producing biased locomotion.

Robophysical studies of the supersmarticle system
were demonstrated to probabilistically favor the direc-
tion of the inactive smarticle, though the physics which
drives this behavior has yet to be fully explored. Future
work will probe the underlying system dynamics to re-
fine and develop a more comprehensive understanding of
the system interactions between active and inactive par-
ticles which generate biased locomotion. Physical vari-
ables such as the masses of the particles and the confin-
ing ring and the friction coefficients are expected to mod-



ulate the diffusive properties of the system. Additionally,
the interaction behaviors of the particles as they move
through their joint space trajectories may lead to various
system modes of oscillations characterized by hysteretic
displacement loops which lead to the biased locomotion
seen in our research.

These physical features will be explored by develop-
ing a reduced 1D model of the supersmarticle system in
which particles and the confining ring will be restricted
to movement along a linear track. This new 1D system
will be studied experimentally and through physics-based
simulations, with the intent of sweeping the physical and
interaction parameter space in order to identify the gov-
erning variables which characterize the system dynamics
and produce biased locomotion.

We plan to continue to complement the experimental
robophysical extensions with rigorous algorithmic stud-
ies of the systems to provide a better understanding on
how to program collections of smarticles to achieve the
desired collective behavior. Here, we extended a known
algorithm by changing particles’ probabilities of move-
ment; while the simplicity of this approach is one of its
strengths, new algorithmic ideas and approaches could
provide further insights into phototaxing behavior.
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