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Collective clog control: Optimizing
traffic flow in confined biological and
robophysical excavation
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Groups of interacting active particles, insects, or humans can form clusters that hinder the
goals of the collective; therefore, development of robust strategies for control of such
clogs is essential, particularly in confined environments. Our biological and robophysical
excavation experiments, supported by computational and theoretical models, reveal that
digging performance can be robustly optimized within the constraints of narrow tunnels by
individual idleness and retreating. Tools from the study of dense particulate ensembles
elucidate how idleness reduces the frequency of flow-stopping clogs and how selective
retreating reduces cluster dissolution time for the rare clusters that still occur. Our results
point to strategies by which dense active matter and swarms can become task capable
without sophisticated sensing, planning, and global control of the collective.

D
iverse living (1) and artificial (2) active ma-
terials (3) and swarms spontaneously form
clusters that can persist for long durations.
However, for tasks that demand steady
flow, such formations can be disadvan-

tageous: Confined active systems such as pedes-
trian or vehicular traffic jams (4), competing
bacterial biofilms (5), high-density migrating
cells (6), jammed herds (7), and robot swarms
(8) can produce high-density clogs that read-
ily form glasslike arrests of flow (9). In such
systems, the ability to dissolve clusters and pre-
vent their formation (9), particularly in the ab-
sence of global knowledge of the state of all
elements, is crucial.
Social insects (10) perform many tasks that

demand clog minimization and mitigation. Sub-
strate excavation specialists such as fire ants
(Solenopsis invicta) cooperatively create nests
of complex subterranean networks (Fig. 1A)
consisting of tunnels in soil that support bi-
directional traffic without lanes (11). Our pre-
vious laboratory experiments (12) revealed that,
in the early stages of nest construction, the few-
millimeter-long ants construct vertical tunnels
approximately one body length in diameter (13).
These narrow tunnels benefit the climbing ants
as they transport bulky pellets, because close
proximity to walls allows limbs, body parts, and
antennae to aid slip recovery (12). But although

the structure of the tunnels seems to benefit
individuals, physical-model experiments make
it clear that excavation can suffer as a result of
clogging during high-traffic conditions [e.g., (14)
and Fig. 1C]. Here we use biological, theoretical,
computational, and robophysical systems to
show that counterintuitive behaviors—individual
idleness and retreating—help optimize tunnel
density by limiting the severity and prevalence
of clogs, thereby enabling rapid excavation by
the collective.
In laboratory experiments, we monitored the

activity of fire ants as they excavated a cohesive

granular medium. Groups of ~30 workers were
placed in transparent containers containing
particle-water mixtures (13) consisting of 0.25-mm-
diameter glass particles (Fig. 2A) with a soil
moisture content, defined as the ratio of total
water weight to total solid weight, of 0.01 or
0.1 (three trials each) (13). Ants excavated for
48 hours, with individual ants entering and exit-
ing the tunnel hundreds of times. As in our pre-
vious study (12), ants constructed narrow vertical
tunnels by means of a stereotyped process of
grain and multigrain (pellet) removal and trans-
port, followed by tunnel ascent and substrate
deposition upon exit (13). A camera mounted
to a motorized linear stage tracked a region
within about three body lengths from the tun-
nel face (Fig. 2A and supplementary materials).
We distinguished individual ant activity by mark-
ing ant abdomens with different colors (Fig. 1B).
We recorded tunnel length over time (Fig. 2B),
and the presence of each worker was logged
when in the camera’s view (Fig. 2C).
Ants exhibited a variety of behavioral tasks

during collective excavation. A large fraction
(0.22 ± 0.1 for soil moisture content of 0.01 and
0.31 ± 0.13 for soil moisture content of 0.1) of
ants never entered the tunnel to excavate during
the 48-hour period of observation; we refer to
these as “nonvisitors.” As seen in Fig. 2C, ants
that visited the tunnel face (“visiting” ants) varied
in activity level. Inspired by work in honey bees
(15), we quantified activity inequality among vis-
itor ants using Lorenz curves. Points on the
Lorenz curves in Fig. 2D link the cumulative
fraction of workers in the population to the cumu-
lative share of activity by that fraction. Although
visitor ants’ trips did not always result in the ex-
traction of a pellet (see movie S1 and discussion

RESEARCH

Aguilar et al., Science 361, 672–677 (2018) 17 August 2018 1 of 6

1School of Mechanical Engineering, Georgia Institute of
Technology, Atlanta, GA 30332, USA. 2School of Physics,
Georgia Institute of Technology, Atlanta, GA 30332, USA.
3School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA 30332, USA. 4Max Planck
Institute for the Physics of Complex Systems, Nöthnitzer Str.
38, 01187 Dresden, Germany. 5Department of Physics,
University of Colorado Boulder, Boulder, CO 80309, USA.
6School of Biological Sciences, Georgia Institute of
Technology, Atlanta, GA 30332, USA.
*These authors contributed equally to this work.
†Corresponding author. Email: daniel.goldman@physics.gatech.edu

Fig. 1. Confined and crowded
biological and robotic excava-
tors. (A) X-ray reconstruction
of S. invicta fire ant excavation
in a large container (25 cm
wide) filled with 240- to
270-μm-diameter glass particles
(supplementary materials).
(B) Painted S. invicta workers
excavating a single tunnel along
the wall of a transparent con-
tainer with 0.25-mm-diameter
wet glass particles. (C) Auton-
omous robotic diggers excavat-
ing in a simulated environment
with cohesive granular media
(diameter of 1.8 cm). The inset
shows the number of pellets
(defined as a cohesive group of
grains) deposited versus time
(T) by a robot excavating alone
(red dots) and the net excava-
tion of four robots (blue
circles), whereby each robot
attempts to excavate maxi-
mally. Orange dashed line indi-
cates the hypothetical performance of the group of four robots in the absence of confinement.
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below), we included these “reversals” in the Lorenz
curve calculations because these animals expended
energy in a trip to the tunnel face and contributed
to tunnel traffic.
To characterize the Lorenz distributions, we

calculated the Gini coefficient, G, defined as
the ratio of the area between the Lorenz curve
and the line of equality to the area under the
line of equality (15). G is a measure of the de-
viation of the workload from perfectly shared
(G = 0, all workers work equally) to completely
unshared (G = 1, a single worker performs all
work). Lorenz curves were characterized by
G = 0.75 ± 0.10 and displayed similar func-
tional forms across a variety of experimental
conditions (see Fig. 2D and fig. S2).
In the presence of competing tasks, like

foraging or brood care, task allocation in ants
can change depending on colony needs (16). To
investigate temporal variation in ant excavation
workload, we divided 48-hour experiments into

12-hour “epochs” (time periods). Although indi-
vidual activity varied among epochs (Fig. 2C
and fig. S3), the cumulative workload distri-
bution was independent of epoch [one-way
analysis of variance (ANOVA) F3,20 = 0.85, P =
0.48] and soil moisture content (one-way ANOVA,
F1,23 = 2.54, P = 0.13) (Fig. 2D, figs. S1 and S2, and
table S1). Furthermore, when themost active excava-
tors were removed from the group, remaining
workers increased their activity and compensated
for the loss, preserving the shape of the Lorenz
curve and therefore producing similar Gini co-
efficients (one-way ANOVA, F1,4 = 1.13, P = 0.35)
(Fig. 2D, inset; table S2; and supplementary
materials). Thus, given the consistency of the
workload distribution, we hypothesize that var-
iations in idleness (low activity levels) within a
population may play an adaptive role in mod-
ulating the crowded conditions of confined
tunnels and could have been important in the
earliest social insect colonies (17).

Reversal behaviors were characterized by ants
entering the tunnel and returning to the exit with-
out carrying soil pellets. During the first 3 hours of
the experiments, reversals occurred for 26 ± 13%
of trips for soil moisture content of 0.01 and 18 ±
3% of trips for soil moisture content of 0.1. These
events were often associated with local crowd-
ing at the excavation face (Fig. 2E) (16 ± 12% of
trips for soil moisture content of 0.01 and 10 ±
2% of observations for soil moisture content of
0.1). Reversal behaviors in crowded conditions
occur on foraging trails (18), and similar phenome-
na have been observed in swarming bacteria (5).
The incidence of this seemingly unproductive
behavior increased with increasing overall ac-
tivity of ants (Fig. 2F), suggesting that this be-
havior serves as a feedback mechanism for
mitigating clogs during excavation.
To systematically examine the effects of idle-

ness and individual retreating behaviors on ex-
cavation performance, we developed a cellular
automata (CA) excavation model (Fig. 3A and
supplementarymaterials). Suchmodels are use-
ful in elucidating the dynamics of biological and
vehicular traffic (9, 19). The model consists of a
lattice (the “tunnel”) with a width of two cells
[similar to S. invicta tunnel widths (20)] occu-
pied by soil, empty space, an ascending CA “ant,”
and/or a descending CA ant (Fig. 3A). The CA ants
can move, change directions, excavate, deposit a
pellet, or rest. As in the biological experiments,
activity for the workload distribution in the CA
model was measured by counting instances
when CA ants visited the tunnel within three
body lengths (cells) of the excavation site.
We simulated the behavior of CA ants using

both equal workload distributions (which we
refer to as “active” CA ants) and unequal work-
load distributions (which we refer to as “Lorenz”
CA ants) with identical reversal probabilities
(movie S2). In unequal workload distributions,
individual CA ants were assigned individual
“entrance probabilities” defined as the prob-
ability that a CA ant will enter the tunnel. The
initial entrance probability distribution for the
30 CA ants was taken from the biological dis-
tribution. Output workload distributions of CA
simulations closely matched the input entrance
probability distributions (as measured by the
Gini coefficient, fig. S25). During a time-step, if
its path toward the excavation area was blocked,
a CA ant would reverse direction toward the exit
with a probability, R, of 0.34 (supplementary
materials); R was set by the proportion of total
reversal events observed for 0.01 soil moisture
in the biological experiments.
The CA model that used unequal workload

distribution and reversals reproduced experi-
mentally observed biological ant digging rates
(Fig. 2B). To determine if these rates represented
an optimal workload distribution, we used a ge-
netic algorithm (GA) (fig. S24) to select for
entrance probability distributions (supplemen-
tary materials) that maximized excavated tun-
nel length within a given duration. Regardless
of the initial population distribution (either
similar to the ants or highly unequal), within a
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Fig. 2. Biological
observations reveal
workload inequality
and reversal behaviors
in ants. (A) Experimen-
tal apparatus to track
ant excavation; the inner
diameter of the con-
tainer is 5.21 cm. (B) The
growth of tunnel length
over time. Shown are
average experimental
results ± SD/2 for
S. invicta workers (black)
and simulations for
groups with equal (pur-
ple) and unequal (green)
workload distribution.
Error bars denote 1 SD in
each direction. (C) “Visi-
tation” map derived from
experimental data. Each
point in the map indi-
cates the presence of a
particular ant (out of
30 ants), ordered from
most active to least
active (y axis) in the
tunnel at a time t [soil
moisture content (W) of
0.1]. (D) Lorenz curves
for workload distribu-
tions obtained in wet
0.25-mm-diameter glass particles with soil moisture content of 0.1 (blue) and 0.01 (red) and a CA
model (green) whose excavation rate was optimized with a GA. Shaded areas correspond to
standard deviation from three experiments. cum., cumulative. The inset shows average Lorenz
curves ± SD/2 for a workload distribution within the group before (control, purple) and after
(removal, blue) the most active diggers are removed from the group. Error bars correspond to
standard deviations from three experiments. (E) Illustration of observed reversal behavior.
(I) Ant Y’s path to excavate is blocked by ant Z. (II) After Z collects a pellet, it reverses, (III) forcing Y
to reverse without excavating. (F) Total number of reversal events versus total ant visitors for the
first 3 hours of ant excavation (soil moisture content of 0.1). Each data point represents total reversal
events and total entries counted for 30-min segments collected from three experiments. Linear fit
(blue line) with coefficient of determination (R2) = 0.69.
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few generations, the GA simulation converged
to an unequal workload distribution (Fig. 3B,
for a 30-ant example), which was similar to the
experimentally observed biologicalworkload dis-
tributions (Fig. 2D, green).

The CAmodel also revealed the importance of
the reversal behavior in conjunctionwith unequal
workload distributions. Although the active exca-
vation could be improved by sufficient reversal
probability, only a small amount of reversal was

needed to increase the excavation performance
in the unequal distribution (Fig. 3D). Thus, in
addition to the benefits narrow tunnels provide
for climbing and pellet transport (12, 13), we hy-
pothesize that the ants benefit fromnarrow tunnels
by expending less energy to dig wider tunnels to
the same depth. Such benefits would be useful in
the early stages of new nest construction (e.g.,
after the colony is flooded out) during which
establishing the colony underground is critical.
To gain insight into other benefits and con-

straints set by such narrow tunnels, we simulated
30 CA ants with varied workload distributions
(characterized by distinct Gini coefficients) in
tunnels of different widths. These distributions
were created through a randomized Monte Carlo
process, such that the Lorenz curves resulted in
desired Gini coefficients. A peak in excavated
length, L, versus Gini coefficient was observed
in a tunnel two cells wide (Fig. 3C). Wider tun-
nels (three and four cells wide) resulted in
broader performance peaks, indicating a de-
creased sensitivity in performance owing to
workload distribution. This indicates that use
of a narrow tunnel necessitates the “discovery”
of the unequal workload distribution of ants.
We hypothesized that the unequal workload

distribution and reversals were linked to uniform
flow of CA ants in the tunnel. We therefore
measured the average flow rate of successful
excavators, �q, versus the average tunnel-width-
normalized occupancy of excavators, �l (the ratio
of average number of ants in the tunnel to tun-
nel width measured in ant body widths). To gen-
erate a wide range of average occupancies, we
varied the population size of the CA system.
The flow rate was optimal at an intermediate

occupancy (Fig. 3E). This nonmonotonic trend
in �q versus �l is characteristic of various multi-
agent systems, including bridge-building army
ants (21) and vehicle traffic (22, 23), and is
referred to in traffic literature as the “funda-
mental diagram” (24). Active ants, which do not
modulate their workload distribution, increase
tunnel occupancy with increasing population
and thus exhibit optimal flow rates for only a
few population sizes. By contrast, GA-optimized
Lorenz ants produced tunnel occupancies in the
ideal range by generating increasingly unequal
workload distributions for increasing CA ant
population sizes. Of particular importance, fire
ants produced tunnel densities in the ideal range
(Fig. 3E, orange-shaded region).
The ability of the ants to operate at the op-

timum in the fundamental diagram and the
rapidity by which the GA model converges
(Fig. 3B) indicate the existence of a simple gov-
erning principle for traffic control in confined
task-oriented systems. To elucidate this principle,
we formulated a minimal model of ant traffic in
the narrowest (single-lane) tunnel: the one-at-
a-time (OAT) model. This model, which builds
on recent work on traffic of motor proteins on
microtubules (25), allows us to estimate ana-
lytically how the excavation rate varies with the
rate of ants entering the tunnel (supplementary
materials) for various work-distribution strategies.
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Fig. 3. Models reveal optimized traffic flow in narrow tunnels by means of selective retreating
and workload inequality. (A) Schematic showing the main components of the CA model. Cell
colors denote soil (light gray), tunnel (white), ants moving toward the excavation site (orange), and
ants exiting the tunnel (dark gray). T, simulation time-step. (B) Gini coefficient over time under GA
optimization for groups started with a completely equal (purple), completely unequal (blue), and
random (green) workload distribution. Lorenz curves (inset) for groups that begin with complete
equality or inequality rapidly reach a similar workload distribution. (C) Excavated tunnel length, LT,
after 24-hour simulation time versus Gini coefficient for tunnels of different widths, WT, for a 30–CA
ant population. BL, body length; BW, body width. (D) Excavated tunnel length after 24-hour
simulation time versus reversal probability for equal and unequal (optimized for 30 CA ants)
workload distributions. (E) Simulated traffic flow (q, number of ants divided by time in seconds times

tunnel width) versus CA ant occupancy (l, number of ants divided by tunnel width, measured in
excavator body widths) for groups of equally (squares) and unequally (circles) active ants. Color
bar indicates the size, n, of the excavating group. The theoretical fundamental diagram of the OAT
model (yellow curve) illustrates the need to limit tunnel traffic to one worker per body width of tunnel
width to optimize flow and prevent deleterious clogs. Experimental ant observations reveal an
average occurrence around this density (orange-shaded region, where the orange centerline is the
mean and the extents are one standard deviation away from the mean).
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In the OAT model, ants enter the tunnel and
move toward its face; descending ants reverse
direction if they either reach the end of the tun-
nel or collide with an ant moving in the other
direction (supplementary materials). We ini-
tially modulated occupancy by varying the en-
trance probability of all ants equally; as in the
CA model, the flow rate of the OAT model was
optimal at an intermediate width-normalized
ant occupancy (Fig. 3E, yellow curve, and sup-
plementary materials)—in particular, one exca-
vator for every excavator that can fit along the
width of the tunnel. Although the peak in the
fundamental diagram has been associated with
the transition between steady flow and prop-
agating traffic jams (24), the OAT model high-
lights a key feature of confined tunnel excavation:
Traffic dynamics are driven by tunnel width.
Given the task-oriented nature of the system,
successful traffic flow is only possible if a worker
can travel the entire length of the tunnel and
back. Thus, if there are enough workers in the
tunnel to clog the path to or from the excavation
site, traffic is likely to slow down. The OAT
model highlights this scenario, as such clogs
are unavoidable if more than one ant is in the
single-lane tunnel. Because ants cannot pass each
other or change lanes, only the first ant to enter
can reach the end to excavate, whereas other
workers collide with the first worker, reverse,
and impede traffic.
Mechanisms that target a specific number

of excavators occupying the tunnel given the
tunnel’s width promote ideal traffic flow. When
individual ants in the OAT model were pro-
grammed to modulate their rate of reentry
according to how often they reversed without
excavating, the OAT model rapidly converged
to Lorenz curves similar to the biological and
GA-optimized CA ants (supplementary materials
and fig. S23). Such rapid convergence highlights
the benefit of targeting a specific number of ants
(in this case, by establishing unequal workload
distributions) in narrow tunnels.
We next used a system of excavating robots

(fig. S9) to test if the above theoretical strategies
could improve traffic in confined experimental
situations with more complex, unpredictable
interactions. Because, presently, robot mobility
in real-world environments is poor relative to
biological systems and because real collisional
interactions not modeled in CA and OAT are
typically neglected in swarming robot studies
(2), such robophysical (26) studies can aid ro-
bot design and control for real-world robot
swarms, as well as suggest hypotheses for
studies of ant traffic (18), adaptive behaviors,
and morphological features for crowded exca-
vation and movement.
Groups of roughly elliptical robots (movie S3)

with similar aspect ratios to the biological ants
were tasked with excavating a model cohesive
granular medium of hollow plastic spheres con-
taining loose magnets; this design allows clumps
of media to be formed, analogous to the pellets
of cohesive soil formed by the biological ants
(13). Our robots followed simple instructions

triggered by onboard sensory feedback of the
surrounding environment (supplementary ma-
terials). Previous work in swarm robotics (27)
used similar decentralized strategies in conjunc-
tion with collision-avoidance schemes (2, 28)
to produce emergent flocking behavior. By con-

trast, our robots detected collisions with push
switches on their outer shell, which triggered
navigation strategies such as steering away and
readjusting to promote clog resolution (movie S4).
To challenge the robots, we constructed a

tunnel (Fig. 4A) with a width of three robot
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Fig. 4. Traffic flow and local dynamics during robot excavation. (A) Schematic of the
excavation arena indicating the tunnel length, LT (excluding the excavation area); robot width,
WR; robot length, LR; and tunnel width, WT. A pink centerline along the tunnel was monitored by
the robots’ onboard cameras, enabling them to follow the tunnel path. (B to D) Experimental
space-time overlap heat maps of robot positions (x axis) for four-robot trials of (B) active
digging, (C) Lorenz digging, and (D) reversal digging. Color indicates the number of robots
occupying a particular space and time: one (purple), two (orange), three (yellow), and four
(white) robots. Histograms above the graphs show the frequency of occurrence of clusters with
two or more robots at different lateral positions. (E) Average flow rate, q, ± SD measured in
deposits per minute versus number of robots in the experiment, N, for active (green), Lorenz
(light blue), and reversal (maroon) strategies. (F) Illustration of various collision scenarios
encountered by robots owing to movement toward guide trail (top), turning (middle), and
forward-backward translation (bottom). Orange starbursts indicate collisions. (G to I) Relaxation
times for all strategies: active (green), Lorenz (light blue), and reversal (maroon). (G) Relaxation
time versus cluster size, Nc, for three-robot (solid) and four-robot (dashed) trials. The inset shows
sample average correlation curves, Q(τ), that measure how Nc = 1 (purple), 2 (orange), 3 (yellow),
and 4 (white) robot clusters dissolve over time during four-robot reversal trials; shaded region
indicates average curves ± SD/2 (standard deviations for τ* range from 100 to 500 s).

(H) Relaxation times versus linear aggregation density, lc, for four-robot trials and (I)
corresponding number of cluster occurrences, Ic, versus linear aggregation density.
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widths (or 1.5 robot lengths), which, combined
with the oblong robot shape, forced a challenge
of turning around in confined spaces. We tracked
the positions (supplementary materials and
fig. S10) of the robots in the main tunnel area
(i.e., excluding the excavation site) to generate
space-time overlap maps of robot positions (see
Fig. 4, B to D), which give visual insight into robot
flow during excavation.
We first examined systematically how exca-

vation performance changed as numbers of
robots increased for our active protocol (as in
Fig. 1C and fig. S6), which assigned equal work
“desire” to all diggers: After soil deposition, each
robot immediately returned to the tunnel to ex-
cavate. Despite constraints on maneuverability,
sensing, and morphology, the robophysical ex-
periments demonstrated qualitatively similar per-
formance to the ants and the computational
and theoretical models. For example, measure-
ment of the average flow rate, �q, of successful
excavators (which we quantify here as the num-
ber of deposits per minute) revealed that excava-
tion performance increased with an increasing
number of robots in the trial (N) until the sys-
tem became sufficiently crowded (Fig. 4E).
To characterize how clustering led to per-

formance degradation in the active protocol,
we measured the frequency of cluster occur-
rences, denoted Ic. Here we defined clusters as
groups of robots of number Nc, whose center
positions were within a robot length of each
other (supplementary materials). Such clusters
occurred most frequently at the excavation site
(histograms in Fig. 4, B to D), yielding phase
separation (29) in the system, whereby a portion
of robots were jammed at high density, whereas
others moved smoothly through the tunnel at
low density.
As in (9), we also measured the character-

istic “relaxation” times for clusters using a tool
from the study of glassy systems, the density over-
lap correlation function Q(t). Q(t) compares the
spatial overlap of a cluster at a specific time
to the overlap of the cluster’s original lateral
segment at a later time, t. Assuming a one-
dimensional tunnel, we calculated the spatial
overlap of robots by tracking their centroid po-
sition laterally (along the tunnel) and assigning
intensity potentials in space, summing over-
lapping potentials of adjacent robots (fig. S12A).
From these curves (Fig. 4G, inset; fig. S12; and
supplementary materials), we calculated the
relaxation time, t*, for clusters of different
Nc, by fitting a stretched exponential function,

QfðtÞ ¼ exp � t
t�
� �bn o

, to a Q curve averaged

over clusters of the same Nc, where b is a fitting
parameter that is of order unity.
The relaxation time analysis highlighted how

sufficient numbers of active robots (N = 4)
resulted in clustering cascades. For example,
Nc = 2 robot clusters could be sufficiently dif-
ficult to resolve before a third robot joined the
cluster, which in turn led to catastrophic Nc =
4 robot jams that spanned the tunnel width.
Such clogs were then difficult to resolve with the

robots’ limited sensory and motor capabilities
and were likely exacerbated by the robots’ rigid
oblong shape (Fig. 4F). A sharp increase in t*
for clusters with a linear density, �lc ¼ Nc=Lc ,
where Lc is cluster length in body lengths, greater
than unity (multirobot clusters) during four-robot
active trials (Fig. 4H, green curve) revealed how
this cascading scenario is reminiscent of glassy
arrest in particulate systems (30, 31).
To discover how the strategies of idleness

distributions and reversals affected clustering
and traffic dynamics in the robots (movie S5),
we implemented two protocols inspired by the
biological observations and theoretical models.
As in the CAmodel, in the Lorenz protocol (fig. S8),
we implemented an unequal probability to
enter the tunnel derived from experimental ant
workload inequalities. We also implemented a
separate robot reversal protocol (fig. S7), which
produced selective retreats, whereby the robots
were programmed to immediately resume exca-
vation after deposition but reversed after not
successfully reaching the excavation site within
a given time. These strategies led to different
excavation performances as N increased; but
most importantly, both strategies outperformed
the active protocol at N = 4 (Fig. 4E).
The relaxation times and cluster analysis re-

vealed the mechanisms by which the different
protocols mitigated clogging, particularly in the
distinct ways in which they reduced the dura-
tion of clusters and thus optimized the average
occupancy of excavators, thereby improving traf-
fic flow. For trials with up to three robots, all
strategies produced a relatively low t* (Fig. 4G)
and frequency of cluster occurrence regardless
of the number of robots in a cluster. However,
for N = 4, the Lorenz and reversal protocols
mitigated the clogging effects associated with the
aggressive excavation in the active protocol.
The Lorenz and reversal protocols provided

distinct forms of mitigating the catastrophic
cascades of clogs found in the active protocol:
Unequal workload distributions reduce the oc-
currence of clusters, and selective retreating
limits the duration of clogs. Selective retreating
in the reversal strategy limited the duration of
clogs. Thus, instead of the glass-forming char-
acteristics of active robots, clusters dissolved
after some time, yielding low t* (Fig. 4, G and
H). The unequal workload distributions of the
Lorenz strategy reduced the occurrence of clus-
ters, especially the highest-density four-robot
clusters (Fig. 4I), where glasslike clog forma-
tion is most likely to occur, resulting in fewer
catastrophic clogs at the excavation site. We
found similar evidence for clog mitigation in
the analysis of clusters in the CA model (fig. S26
and supplementary materials), whereby clog miti-
gation was further found to be most effective
when both strategies (reversals and unequal en-
trance probabilities) were used in combination.
To close, we return to the traffic aspects of

the confined system: As in theory, traffic flow
of robotic ants (which dominates the excava-
tion performance) was maximal at an intermediate
occupancy of excavators, �l ¼ NT=WT, where NT is

the number of robots in the main tunnel area
averaged across all frames of video andWT is the
width of the tunnel, followed by a gradual de-
cline at higher �l (fig. S11A). However, unlike the
theoretical models, peak flow rate in robotic sys-
tems occurred at a�l of approximately 0.25, which
corresponds to less than one robot traversing
the tunnel at a time, despite a tunnel width of
about three robot widths, or 1.5 robot lengths.
We hypothesize that the underperformance

of our robots relative to the biological and the-
oretical systems is a consequence of our robots’
limited mobility in confined spaces, indicating
that deformable bodies (32) and novel locomo-
tor mechanisms (12) will be important in con-
fined real-world robot collectives. That said,
given these strategies are robust to the vagaries
of real-world interactions, we posit that other
engineered systems—including robot swarms in
disaster rubble, nanorobots surging through the
bloodstream (33), and task-capable active ma-
terials (3)—could benefit from simple strategies
that involve labor inequality, particularly in cre-
ative combinations (34).
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