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A robophysical model of spacetime 
dynamics
Shengkai Li 1, Hussain N. Gynai 2, Steven W. Tarr 2, Emily Alicea‑Muñoz 2, Pablo Laguna 3, 
Gongjie Li 2 & Daniel I. Goldman 2*

Systems consisting of spheres rolling on elastic membranes have been used to introduce a core 
conceptual idea of General Relativity: how curvature guides the movement of matter. However, such 
schemes cannot accurately represent relativistic dynamics in the laboratory because of the dominance 
of dissipation and external gravitational fields. Here we demonstrate that an “active” object (a 
wheeled robot), which moves in a straight line on level ground and can alter its speed depending on 
the curvature of the deformable terrain it moves on, can exactly capture dynamics in curved relativistic 
spacetimes. Via the systematic study of the robot’s dynamics in the radial and orbital directions, we 
develop a mapping of the emergent trajectories of a wheeled vehicle on a spandex membrane to 
the motion in a curved spacetime. Our mapping demonstrates how the driven robot’s dynamics mix 
space and time in a metric, and shows how active particles do not necessarily follow geodesics in 
the real space but instead follow geodesics in a fiducial spacetime. The mapping further reveals how 
parameters such as the membrane elasticity and instantaneous speed allow the programming of a 
desired spacetime, such as the Schwarzschild metric near a non‑rotating blackhole. Our mapping and 
framework facilitate creation of a robophysical analog to a general relativistic system in the laboratory 
at low cost that can provide insights into active matter in deformable environments and robot 
exploration in complex landscapes.

Systems consisting of spheres rolling on curved  surfaces1,2 are a well-known non-hydrodynamic analog to gravity. 
In such readily accessible systems, researchers have made intriguing connections to gravity such as Kepler-like 
laws, precession, and the stability of orbits. However, their studies have also found that these systems do not 
exactly mimic astrophysical gravity. For instance, the scaling between the period and radius is T ∝ r2/33 instead 
of T ∝ r3/2 in Kepler’s third law. Additionally, the sphere on the elastic membrane is passive; as a result, not 
only do trajectories decay, but also the tunable parameters are limited to only the boundary conditions and the 
mass of the sphere.

We hypothesized that making the object “active” – an internally driven robot – would allow mechanical 
systems to better model GR in part because of the ability to study steady states. We further reasoned that the 
programmability and sensory capabilities of increasingly low-cost and powerful “robophysical”  models4,5 could 
allow the tuning of parameters that lead to inexact mimics of GR in passive systems. Indeed, our recent  work6 
built a framework to understand how the field-mediated dynamics of active agents on flexible membranes dem-
onstrate in the words of Wheeler’s famous aphorism: “Matter tells spacetime how to curve and spacetime tells 
matter how to move”7. In particular, we showed that the spacetime followed by an active object (a wheeled circular 
robot) can be tuned by varying system parameters such as the membrane elasticity and the speed of the object.

Here we amplify on and extend the scheme introduced  in6 and demonstrate how the activity can lead to an 
exact mapping to GR. We first show how an active object with a prescribed speed on an elastic membrane pro-
duces longer and more controllable trajectories compared with a passive marble. We then deduce the spacetime it 
follows, and subsequently program the spacetime with a Schwarzschild orbit as an example. We posit that a robot 
controlled in the way we describe could mechanically mimic blackhole dynamics in the laboratory at a low cost.

An active object with fixed speed on an elastic membrane
We first consider an active object prescribed with a constant speed on a circular elastic membrane. Later, we will 
discuss the general case of time-varying speed. To prevent the object from simply following a near-straight-line 
spatial geodesic with a spatial curvature
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where �2 = 1+ z′2 and prime denotes the derivative with respect to r, the object must turn according to the 
instantaneous local slope, −∇z , the negative gradient of the terrain (membrane) height z. We enable this behav-
ior by using a vehicle with a differential drive, a mechanism that permits a difference between the speeds of the 
vehicle’s two wheels to respond to the terrain slope while maintaining a center-of-mass speed prescribed by the 
motor. The vehicle drives straight on a leveled flat ground. When driving on a tilted flat surface with a constant 
gradient everywhere, the vehicle turns to align with this constant slope. In a more general case where the vehicle 
drives on a solid terrain with spatially varying gradient, it responds instantaneously by aligning with the local 
gradient. Finally, in our setup, the vehicle responds to the local gradient while the terrain (membrane) updates 
its shape with the evolving position of the vehicle, mimicking the interaction between matter and  spacetime7. 
The membrane shape is affected by three factors. Earth’s gravity causes the membrane to sag with a parabolic 
profile due to the weight of the membrane itself. The tautness from boundary conditions such as the depth of the 
central depression of the membrane competes with the sagging. Finally, the local deformation from the vehicle 
creates an additional dimple in the membrane. We note that the sagging from the membrane’s weight and the 
deformation from the vehicle are analogous to the bending of background spacetime and the bending due to 
the moving object respectively in the context of GR.

Our terrain consists of a spandex membrane fixed to a circular frame with a diameter of 2.4 m. The central 
depth of the membrane is controlled by an actuator that adjusts the height of the membrane center. The cylindri-
cal chassis of the vehicle is 3D printed and its instantaneous position is tracked by an overhead camera systems 
(Optitrack).

We first compare the trajectories of the active vehicle with those of a passive marble having the same mass as 
the vehicle. We released the vehicle by placing it on the membrane after being turned on, and released the marble 
by placing it at the start of a guiding track. The velocity of the vehicle and marble were kept the same upon release 
by adjusting the voltage on the motor and the releasing height on the guiding track (Fig. 2a), respectively. The 
trajectories collected from experiments showed that the active vehicle produced much more persistent trajectories 
(Fig. 2c) than the passive marble, which barely completed one revolution (Fig. 2b).

To understand these orbits, we follow the models  in6,8. While a passive marble dissipates energy as �a · �v < 0 
(Fig. 1), an active object can conserve its speed when the driving force dynamically balances with the friction 
and exactly makes �a · �v = 0 (Fig. 3a). Therefore, the acceleration for a constant-speed motion can be written as

where θ is the heading angle between the radial direction and the velocity on an isotropic circular membrane.
Though the speed is constant, the change of the velocity (the scalar acceleration a) depends on the local slope γ 

(Fig. 1). Since γ varies with radius (position) r, a is also a function of r. Additionally, a should depend on velocity 
in general. However, given that the velocity has constant magnitude as the speed is constant, this dependence is 
reduced to one degree of freedom. For our convenience, we chose the direction of the velocity, θ . If we consider 
an active object without chiral bias such that its trajectory has a mirror symmetry, the dependence of a (thus aϕ ) 
on θ should be anti-symmetric about θ = 0 , as otherwise the clockwise ( θ(t = 0) = θ0 ) and counterclockwise 
( θ(t = 0) = −θ0 ) trajectories (Fig. 3b) will not be mirror reflections with each other. A first-order approximation 
with this symmetry could be a ∝ k(r) sin θ where the k(r) is the radial dependence due to the local slope γ (r) that 
changes with radius. One could imagine k increases with the local slope γ . The detailed relation between k and 
γ depends on the mechanical structure of the active object, but one can always Taylor expand this dependence. 
For preliminary study, here we assume linear dependence k = Cγ.

While an active object follows Eqs. (2, 3), a passive marble rolling on the membrane without slipping has a 
 Lagrangian8

We consider the Coulomb rolling friction −µmg v̂ for a more realistic model. We neglect the higher-order effect 
( O(γ 2) ) from the slope on the normal force for simplicity. Plugging the corresponding dissipation  function9 
D = µmgv where v =

√

ṙ2 + r2ϕ̇2 into the Euler-Lagrange equation ddt
(
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)
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∂ q̇  where q is r or ϕ , 
we arrive at

The left-hand sides of the above equations are the same as the dynamical equations  in1 while the right hand sides 
correspond to the friction force.
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Integration of the above models for the active vehicle and passive marble (Fig. 2c) shows qualitative agreement 
with the experiments. Figure 2c shows the integration of the active dynamics Eqs. (2, 3) and the passive dynamics 
Eqs. (5, 6) on the same simulated membrane with parameters measured from experiments. The active and passive 
objects started with the same position and velocity. The physical parameters are measured from experiments. The 
acceleration dependence on radius k for the active vehicle uses k = Cγ = C∂rz where z(r) is measured from the 
height of the static vehicle placed at different radii r. The proportionality C uses the ratio between acceleration 
and the gradient ∂rz at the radius close to the edge of the elastic membrane. We probe the friction coefficient 
for the passive marble by measuring the dissipation of mechanical energy in a designed experiment (see section 
“Probing the effective friction” of the Methods section).

Finding the spacetime corresponding to the orbits
A functional understanding of the orbital features (e.g., period, precession rate) would facilitate the creation of 
an intelligently programmed vehicle. One tool we can use to obtain such insights is the spacetime metric that 
describes these orbits. Any similarities between the experimentally inferred metric and known metrics could 
prove useful in understanding how the orbital features depend on system parameters.

The orbital dynamics we wish to map could be described by a diversity of metrics. We propose a simple but 
general metric that is analogous to GR in the weak-field limit and encodes the axi-symmetry of the system. Our 
metric has the form

with α = α(r) , � = �(r),�2 = 1+ z′2 . Here, the elements of the metric gαβ are zero except gtt = −α2 , 
grr = �2�2 and gϕϕ = �2r2 . Inserting gαβ into the Christoffel symbols Ŵµ

αβ in the geodesic equations 
◦◦
x
µ
+ Ŵ

µ
αβ x̊α x̊β = 0 , we arrive at

(7)ds2 = −α2dt2 +�2
(

�2dr2 + r2dϕ2
)

Figure 1.  A passive object (a marble) versus an active object (a robot) on a deformable membrane. 
While a passive marble is only subjected to friction and Earth’s gravity that leads to energy dissipation as 
�F · �v ∝ �a · �v < 0 , an active object with an additional drive force can maintain steady-state motion with 
prescribed speed as �a · �v = 0.
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Figure 2.  Trajectories of active and passive objects on an elastic membrane. (a) Sample perspective views of an 
active vehicle and a passive marble moving on a Spandex membrane. The time interval between two consecutive 
snapshots is 0.17 s. (b) The experimental trajectories, radius evolution, and speed evolution of the active (red) 
and the passive (blue) objects with the same mass (150 g) started from the same initial position and velocity on 
the same membrane. See the supplementary movie S1  for videos. (c) The simulation counterparts of (b).



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21589  | https://doi.org/10.1038/s41598-023-46718-4

www.nature.com/scientificreports/

with � as an affine parameter and q̊ = dq/d�,
◦◦
q = d2q/d�2 . From Eqs. (8, 9), we have that

Both are consequences of conservation. Eq. (11) describes the conservation of energy, while Eq. (12) describes 
the conservation of angular momentum.

Using q̊ = (dq/dt)(dt/d�) = t̊ q̇ (see setion. “Converting derivatives” of the Methods section for details), the 
geodesic equations can be rewritten as

where primes denote differentiation with respect to r.
Notice that the left-hand side of Eqs. (13, 14) are the components of the acceleration, aϕ and ar respectively, 

from Eqs. (2, 3). When we substitute cos θ = ṙ/v, sin θ = rϕ̇/v and a = k sin θ into Eqs. (2, 3), we find

Thus, comparing the right-hand sides of Eqs. (13, 14) and Eqs. (2, 3) and noticing that ṙ2 + r2ϕ̇2 = v2 in Eq. (16), 
we obtain the following relationships between the metric functions α and � in terms of the speed of the vehicle 
and k.
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Figure 3.  Dynamics of the active vehicle. (a) The acceleration of an active vehicle is perpendicular to its velocity 
�v . (b) A non-chiral vehicle with a mirror-reflected initial velocity P�v will produce a mirror-reflected trajectory.
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Integration of the above equations yields

where K = K(r) ≡
∫ r
0 k(s)�(s)ds . To determine the constants, we make use of the normalization condition and 

the fact that the metric should be flat at k → 0.
The metric (Eq. 7) gives us the normalization condition −1 = −α2 t̊2 +�2(�2r̊2 + r2ϕ̊2) . To exploit this 

condition, we must eliminate the d/d� in ̊r like Eqs. (11, 12). Using q̊ = (dq/dt)(dt/d�) = t̊ q̇ , Eqs. (11, 12), and 
the fact that v2 = r2ϕ̇2 + ṙ2 , we have

Plug the ̊t, r̊, ϕ̊ derived above into the normalization condition, we now have

Plugging in the α2 and �2 derived earlier (Eqs. 19, 20), we have − 1
E2

= C1v
2, and therefore

Now, as promised earlier, we further determine the constants by making the metric flat when k = 0 . In fact, 
k(r) = 0 indicates K(r) =

∫ r
s=0 k(s)�(s) = 0 . We set the lower limit of the integral to zero, without loss of 

generality, since otherwise the arbitrary constant will be absorbed by C2 . This limit reduces the metric to 
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0 = − 1

C1v2
+ C2 and therefore �2
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2 where α0 ≡ limk→0 α and �0 ≡ limk→0 � . To satisfy the 
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2 + C2 again, we have

The conditions in Eqs. (23, 24) settle the previously undetermined coefficients in the metric (Eqs. 19, 20). We 
finally arrive at

The constants E and L required to fix the metric have actual physical meanings. E is the constant energy associated 
with the fact that the metric is time-independent. L is the constant angular momentum associated with the 
metric’s ϕ-symmetry.

Thus our formulation indeed reveals that the vehicle does not simply follow spatial geodesics of the membrane 
but instead follows geodesics in an emergent spacetime (Eqs. 25, 26) generated by the global curvature, the local 
curvature, the active dynamics, and the differential mechanism. The resultant dynamics can now be understood 
as those of a test particle in a new spacetime where the active feature of the real particle, such as a persistently 
controlled speed, generates a non-splittable effective spacetime for the test particle (i.e. gtt is not constant). In 
the language of the work by  Price10, the effects of curvature are now not restricted to  space11. That is, in general, 
the metric function gtt could depend on both the coordinate time (t) as well as the spatial coordinates. For a 
static metric (i.e., the metric functions are independent of time), the spacetime becomes splittable when gtt does 
not depend on the spatial coordinates. This leads to only spatial curvature. It was argued  in10 that the spatial 
curvature is different from the spacetime curvature as it is devoid of gravity, i.e., a free particle initially at rest 
will remain at rest.
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The essential contribution from the active drive is the persistent response to the local curvature, here enabled 
by the controlled constant speed unseen in passive systems. In fact, when the response of the turning to the local 
slope vanishes at the limit v → ∞ such that α2 = �2 = E2(1− v2) , the metric Eq. (7) with components Eqs. (25, 
26) reduces to a splittable (and flat) spacetime Eq. (1). On the other hand, when v is finite and controllable, the 
active locomotion provides more flexibility and programmability in constructing the desired spacetime in GR. 
For instance, programming an active agent with acceleration magnitude k decreasing with radius r makes an 
orbit precess in the same direction as the orbit, while a k increasing with r makes an orbit precess in the opposite 
direction as the  orbit6. Such flexibility and programmability are more challenging to implement in passive and 
dissipative agents studied in the previous  works1,8.

Programming an arbitrary spacetime with a speed‑varying robot
The metric Eqs. (25, 26) has shown us how the parameters of the system change the spacetime and thus the 
orbit. Now we see how we can solve the inverse problem of programming the desired spacetime using the system 
parameters (e.g., k(r) and v(r)).

In metric Eqs. (25, 26), we can tune the speed and membrane elasticity to change the spacetime of the orbits. 
However, here the spatial and radial metric are not yet completely disentangled yet. To have two degrees of 
freedom such that we can indeed program the spacetime arbitrarily, one could introduce another degree of 
freedom. For instance, if we allow the speed v to vary with the radius r (physical instantiation could be achieved 
by inferring the radius from the instantaneous tilting angle γ ), Eqs. (17, 18) with �2 ≈ 1 give the requirement 
for the mapping as

These two equations above give us the recipe to create a desired spacetime by changing the speed of the vehicle 
with radius. For a desired metric with spatial curvature �2(r) and temporal curvature α2(r) , we can solve for 
the required membrane elasticity and object speed by plugging in the curvatures into these two equations. The 
solution (see section “Programming the metric” of the Methods section for details) is

where

For instance, if  we plug in the Schwarzschild metric in isotropic coordinates where 
α2(r) = 1− rs/r,�

2(r) = (1− rs/r)
−1 , we arrive at the required membrane elasticity k(r) and active object 

speed v(r) as shown in Fig. 4a. Analytically,

where

Here, v0 is the vehicle speed at r0 as the boundary condition. For instance, one can use the inner radius as r0.
Simulations using this prescription show features of Schwarzschild orbits such as the linear dependence 

of the precession angle in terms of the inverse latus rectum. For Schwarzschild orbits with small precession, 
the precession angle increases with the inverse latus rectum as �ϕprec = 6πG2M/(c2l) = 3πrsℓ

−1 where G 
is the gravitational constant, M is the mass of the star, c is the speed of light, and ℓ ≡ A (1− e2) is the latus 
rectum. We evaluate the semi-major-axis A and the eccentricity e using the minimum and maximum radii: 
A = (rmax + rmin)/2, e = (rmax − rmin)/(rmax + rmin) . Fig. 4b shows the precession angle �ϕprec as a function 
of the inverse of the latus rectum, ℓ−1 , from simulations given v0 = v(r0 = 0.05m) = 0.225 m/s and rs = 0.0031 
m. The curve qualitatively follows the linear relationship, with small deviation from the theory due to the large 
precession angle. By changing (r0, v0) , we can obtain larger angular momenta and thus larger orbits around the 
same blackhole. These orbits show a relation between period T and semi-major-axis A that follows Kepler’s third 
law (Fig. 4c).
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To achieve this relation in experiments, a vehicle must actively vary its speed with radius and a membrane 
must have a radially-dependent elastic modulus. We can attach a tilt sensor to infer the radius and change the 
speed accordingly. To program the membrane with radially varying profile k(r) = Cg|∂rz| , here we consider a 
membrane with linear elasticity following the Poisson Equation ∇ · E∇z = P where P is the unit load from the 
membrane gravity. One possible way to obtain the desired k(r) is to create an elastic material with a radially vary-
ing thickness P = P(r) . Another option is to fabricate a membrane with a radially varying modulus E = E(r).

a

b

ℓ
−1

simula�on

Theory (small precession)

A 3.1-mm black hole

Δ

c

2

2ℓ

3/2

simula�on

Figure 4.  Creating orbits in Schwarzschild spacetime with a speed varying particle. (a) The speed and 
membrane elasticity’s dependence on radius to create a Schwarzschild blackhole with rs = 3.1 mm. The inset 
shows a precessing orbit with A = 0.3 m using this prescription. (b) Precession angle |�ϕprec| as a function of 
inverse latus rectum. (c) The relation between the orbital period, T, and the semi-major-axis, A, follows Kepler’s 
third law as T ∝ A3/2 . Insets in (b) and (c) show the trajectories around the data points. See the supplementary 
movieS1 for continuous evolution of the orbits.
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Programming a spacetime with a non‑diagonal metric
In principle, one can even create orbits from a non-diagonal metric by breaking symmetries. Here we show that 
breaking the axis symmetry can create a spacetime with nonzero gtφ , which is essential in perhaps the most 
well-known non-diagonal metric, the Kerr metric for a rotating blackhole. Experimentally, this could be done 
by adding tangential perturbation to the substrate. See Fig. 5 for an illustration.

Let us consider a (2+ 1) D metric gµν where the only off-diagonal term is the gtφ . Following the same 
methodology we used for the Schwarzschild metric, the geodesic equation is now

where Ŵt
rφ r̊φ̊,Ŵ

r
tφ t̊φ̊,Ŵ

φ
tr t̊ r̊ are from the off-diagonal components in addition to the diagonal metric (for instance, 

Schwarzschild) we worked on in the previous section. See section “Programming metric with off-diagonal” of 
the Methods section for the technical details of this section.

The conserved quantities are now generalized to be Qt = Ptt(r)t̊ + Ptφφ̊ and Qφ = Pφt(r)t̊ + Pφφφ̊ where

While Ŵt
rφ and Ŵφ

tr are now nonzero such that P is not simply diag{α2(r),�2(r)r2} as we have in the diagonal case, 
the conserved quantities (Qt ,Qφ)

T = P(t̊, φ̊)T still give us (t̊, φ̊)T = P−1(Qt ,Qφ)
T ≡ (f (r), g(r))T as functions 

of r. From this, we obtain the equations of motion with respect to time t instead of affine parameter � as

where the c’s are all functions of r such that cφφ = (f ′/f + Ŵr
rr)r

2 − Ŵr
φφ − r , c0 = −Ŵr

tt − (f ′/f + Ŵr
rr)v

2 , 
crφ = −Ŵ

φ
rφ − f ′/f + 2/r.

To accommodate the new terms with φ̇ and ṙ , one could use a rotating  object12 (for instance a tilted slab shown 
in Fig. 5) to locally add an azimuthal perturbation δ . This perturbation would break the symmetry such that the 
magnitude of acceleration a = k(sin θ + δ) has a bias in one chirality over the other since a(θ ′) �= a(−θ ′) . Noting 
sin θ = rφ̇/v , the equation of motion of the vehicle on a substrate with broken axial symmetry is

(34)
◦◦
t =− Ŵt

tr t̊ r̊−Ŵt
rφ r̊φ̊

(35)
◦◦
r =− Ŵr

tt t̊
2−Ŵr

tφ t̊φ̊ − Ŵr
rr r̊

2 − Ŵr
φφφ̊

2

(36)
◦◦
φ =−Ŵ

φ
tr t̊ r̊ − Ŵ

φ
rφ r̊φ̊

(37)P−1P′ =

(

Ŵt
tr Ŵt

rφ

Ŵ
φ
tr Ŵ

φ
rφ

)

with P ≡

(

Ptt Ptφ
Pφt Pφφ

)

.

(38)φ̈ +
2ṙφ̇

r
=crφ ṙφ̇ − Ŵ

φ
tr ṙ

(39)r̈ − rφ̇2 =cφφφ̇
2 − Ŵr

tφφ̇ + c0

(40)φ̈ +
2ṙφ̇

r
=
1

r

ṙ

v
k

(

rφ̇

v
+ δ

)

Figure 5.  Proposed scheme to create a spacetime with a non-diagonal metric. A controlled deformation (e.g., 
a tilted slab) rotating about the central axis shown in (A) could plausibly induce an asymmetric dependence on 
heading θ for the acceleration magnitude in blue instead of the symmetric counterpart in red. The spacetime 
metric resulting from this proposed setup would have a non-diagonal component gtφ.
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δ is a function of r, which can be determined by matching the r-dependent functions in Eqs. (38–39) and Eqs. 
(40–41) either analytically or numerically.

Discussion
In this work, we demonstrated how the use of an active particle – a wheeled robot – moving on an elastic 
membrane can generate a system which can mimic the dynamics of bodies in arbitrary spacetime. Given the 
flexibility in constructing and programming such robophysical devices, our system makes for an attractive 
target to push toward a mechanical analog GR system. While superficially our system resembles the educational 
tool used to motivate Einstein’s view of spacetime curvature influencing matter  trajectories1,3,8, unlike such 
systems which are not good analogs of GR, the activity allows the dynamics of the vehicle to be dictated by the 
curvature of “spacetime”, not just the curvature of space as in splittable spacetimes (where gtt is constant)10. As 
such, our system can be used as an experimental example of GR in upper-division physics courses to enhance 
students’ hands-on  understanding13,14 of orbits and curved spacetime. Thus we posit that mechanical analog 
“robophysical”4,15 systems can complement existing  fluid16,17, condensed  matter18, atomic, and  optical19–21 analog 
gravity  systems22 given the ability to create infinite types of spacetimes. We might even generate analogies to 
wave-like  systems23–25; for example, one could increase the speed of the vehicle to be comparable to disturbance 
propagation (such that the membrane would follow the wave equation). There has been much theoretical progress 
on the analogy between spacetime and solid  mechanics26. We posit mechanical devices, such as the one we 
introduce in this work, could help explore the theoretical proposal with the reverse methodology. For instance, 
we can design systems to monitor the elasticity of known spacetimes and probe interesting problems such as the 
occurrence of topological defects and plastic deformations in spacetime.

We advocate for the potential research applications of our robotic vehicle as an analog system. In astrophysics, 
we typically are limited to an observational understanding of phenomena borne out of an inability to perform 
physical experiments with customized parameters. Though simulation provides an alternative, limitations such 
as sub-grid physics and runtime practicality for high-resolution or multiscale  dynamics27, path dependency and 
contingency of composite  models28, and the nature of modeling approximation when carrying out explorative 
 research29 are nontrivial obstacles that may hinder the validity and applicability of these simulations. Physical 
analog systems provide simple parameter variation, intellectual accessibility, and potentially offer ease of solution 
due to their classical  nature22. With the flexibility of parameters introduced in this paper, the length and time 
scales not accessible in celestial systems are possible to access in their laboratory analogs. For instance, it is 
possible to probe physics around or even within the event horizon of a blackhole to probe  theories30 that are 
challenging to test in the original system. See section “Orbits around the horizon” of the Methods section for 
one such example of repulsive orbits inside the event horizon.

Beyond its role as a mechanical analog for GR, this framework could also provide a new perspective to 
understanding active matter undergoing field-mediated  interactions6,31. For instance, the spacetime metric of 
the agents’ motion can both guide our choice of parameter values to alter orbital features, like the precession 
direction, and influence our design of control schemes that accomplish tasks like helping multiple agents avoid 
mergers on the  membrane6.

Methods
Probing the effective friction
We simplify the complicated rolling friction and membrane dissipation by employing an effective friction 
constant that absorbs all dissipative forces. We probe its magnitude by doing the following experiment. We 
release the marble at the rim of the circular membrane with zero speed and thus zero kinetic energy (Fig. 6). The 
marble then rolls radially towards the center, passes through the center, and stops before it reaches the other end 

(41)r̈ − rφ̇2 =−
rφ̇

v
k

(

rφ̇

v
+ δ

)

= 0

released

stops

= 0

ℓ

Figure 6.  An experiment to probe the effective friction.
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of the diameter due to the effective rolling friction. Absorbing the loss of mechanical energy into the dissipation 
from the effective rolling friction froll for a distance of ℓ , we arrive at

The measurements from experiment that ℓ = 1.5 m, �h = 0.1 m give the effective friction coefficient 
µ = froll/mg = �h/ℓ = 0.07 ∼ 0.1.

Converting derivatives
With the help of q̊ ≡

dq
d� = dt

d�
dq
dt  and α2 t̊ = E,�2r2ϕ̊ = L in Eqs. (11, 12), we have

Programming the metric
By eliminating the k in Eqs. (27, 28), we get

where M(r) = 2(α2)′(r)/α2(r)− (�2)′(r)/�2(r) and V(r) = v2(r).
We can multiply a function f(r) to both sides of Eq.  (49) to make the left-hand side exact. Noting 

(fV)′ = f ′V + fV ′ , we need f ′/f = −M . Therefore,

With this f, we now have (fV)′ = f (α2)′/�2 . So,

By plugging in the Schwarzschild metric in isotropic coordinates α2(r) = 1− rs/r,�
2(r) = (1− rs/r)

−1 , we have

(42)frollℓ = mg�h

(43)t̊ =
E

α2

(44)

◦◦
t =

dt

d�

dt̊

dt

=
E

α2

d

dt

(

E

α2

)

=−
E2(α2)′

(α2)3
ṙ

(45)r̊ =
dt

d�

dr

dt
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E

α2
ṙ

(46)

◦◦
r =

dt

d�

dr̊

dt

=
E

α2
·
d

dt

(

E

α2
ṙ

)

=
E2

(α2)2
·

(

−
(α2)′

α2
ṙ2 + r̈

)

(47)ϕ̊ =
dt

d�

dϕ

dt
=

E

α2
ϕ̇

(48)

◦◦
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dt

d�

dϕ̊

dt

=
E

α2

d

dt

(

E

α2
ϕ̇

)

=
E2

(α2)2
·

(

−
(α2)′

α2
ṙϕ̇ + ϕ̈

)

.

(49)MV − V ′ =
(α2)′

�2

(50)f (r) = −e
∫ r
r1
−M(r′)dr′

.

(51)V(r) =

(
∫ r

r1

f (r′) ·
(α2)′(r′)

�2(r′)
dr′

)

·
1

f (r)
.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21589  | https://doi.org/10.1038/s41598-023-46718-4

www.nature.com/scientificreports/

Therefore,

To program the active object physically, we want to prescribe the speed v0 at a certain radius (say the inner radius 
r0 ) so that V(r0) = v20 , we need

Further, a reasonable speed vc at a characteristic orbit size (say the circular orbit rc ) will limit the size of the 
Schwarzschild radius rs (the size of the blackhole) with V(rc;rs)

rc
= k(rc).

Programming metric with off‑diagonal
For metric with nonzero gtφ , the nonzero Christoffel symbols are

(52)

f (r) =− e
∫ r
r1
− 3rs

r′(r′−rs)
dr′

= − e(C1+3 log (r/(r−rs)))

=− C2 ·

(

r

r − rs

)3

.

(53)
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(
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C2 ·

(

r′
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)3

·
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r′3
dr′

)

/f (r)
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(
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dr′

)

/f (r)

=

(
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)

/

(

−C2 ·

(

r
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)3
)

=rs
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2
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)3

(54)
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2r4
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−
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.

(56)Ŵt
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The geodesic equation is therefore

Assume now the conserved quantities are Qt = Ptt t̊ + Ptφφ̊,Qφ = Pφt t̊ + Pφφφ̊ , then

which can be also written as

When

is satisfied, Eq. (69) matches the t and φ components of the geodesic equations. When the metric is diagonal, it 
will reduce to the result for diagonal metric P′/P = diag{Ŵt

tr ,Ŵ
φ
rφ} since both P and Ŵ are diagonal. The conserved 

quantities P(t̊, φ̊)T = (Qt ,Qφ)
T give us t̊  and φ̊ as functions of r: (t̊, φ̊)T = P−1(Qt ,Qφ)

T ≡ (f (r), g(r))T . This 
allows us to convert the geodesic equation in terms of affine parameter � to time t by using method shown in 
section “Converting derivatives”. Plug in the conversions ̊r = f ṙ,

◦◦
r = f (f ′(̇r)2 + f r̈), φ̊ = f φ̇,

◦◦
φ = f (f ′ ṙφ̇ + f φ̈) 

into Eq. (65, 66), we arrive at

where c ’s are all functions of r  that cφφ = (f ′/f + Ŵr
rr)r

2 − Ŵr
φφ − r  , c0 = −Ŵr

tt − (f ′/f + Ŵr
rr)v

2 , 
crφ = −Ŵ

φ
rφ − f ′/f + 2/r.

Orbits around the horizon
We use the same model in previous section for Schwarzschild spacetime to integrate vehicle trajectory with 
controlled speed v(r) and acceleration response to designed membrane elasticity k(r). The integration uses

(62)Ŵ
φ
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2
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which is derived from

where the normal and tangential components of the acceleration are an = k(r) sin θ , at = dv/dt = (∂v/∂r)ṙ ≡ v′ ṙ . 
The orbits around and inside the event horizon are shown in Fig. 7.

Data availibility
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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