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Granular intrusion is commonly observed in natural and human-made settings. Unlike typical solids and
fluids, granular media can simultaneously display fluid-like and solid-like characteristics in a variety of
intrusion scenarios. This multi-phase behavior increases the difficulty of accurately modeling these and
other yielding (or flowable) materials. Micro-scale modeling methods, such as DEM (Discrete Element
Method), capture this behavior by modeling the media at the grain scale, but there is often interest in
the macro-scale characterizations of such systems. We examine the efficacy of a macro-scale
continuum approach in modeling and understanding the physics of various macroscopic phenomena in
a variety of granular intrusion cases using two basic frictional yielding constitutive models. We compare
predicted granular force response and material flow to experimental data in four quasi-2D intrusion
cases: (1) depth-dependent force response in horizontal submerged-intruder motion; (2) separation-
dependent drag variation in parallel-plate vertical-intrusion; (3) initial-density-dependent drag
fluctuations in free surface plowing, and (4) flow zone development during vertical plate intrusions in
under-compacted granular media. Our continuum modeling approach captures the flow process and
drag forces while providing key meso- and macro-scopic insights. The modeling results are then
compared to experimental data. Our study highlights how continuum modeling approaches provide an
alternative for efficient modeling as well as a conceptual understanding of various granular intrusion

rsc.li/soft-matter-journal phenomena.

1 Introduction

Granular intrusion is common in various natural and human-
made situations.”” In many cases, the flow response to intru-
sion leads to a multi-phase behavior of the granular media,
where the media shifts among solid-like, fluid-like, and gas-like
states.”® This behavior depends on material properties and
local variables such as pressure and granular packing fraction.®
The space and time dependence of these fields, as well as the
multi-phase behavior of the media, makes granular flow
response challenging and computationally expensive to model.

Discrete Element Methods (DEM) are reliable and estab-
lished methods for modeling granular media.”® In DEM, the
granular medium is modeled at the particle level, with the
frictional, elastic contact forces between adjacent and interact-
ing particles obtained using standard contact models like
Hertzian and Hookean contacts,”'° generally with an assump-
tion of no plastic yielding of the individual grains. The elastic
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and external forces are integrated via Newton’s laws of motion
to calculate particle velocities and positions. In the past few
decades, DEM has played a major role in the advancement of
the field of granular media.'™'*> However, the precision of DEM
comes at a computational cost. As an example, a 0.1 mm
particle diameter granular system with a 0.5 m per side cubic
domain would require evaluating ~9 x 10" DOF per time step
(at a packing fraction of 0.64 with 6 degrees of freedom, DOF
per particle). While current large-scale granular DEM studies
remain in the range of ~107 particles (~10% DOF),">'* efforts
are being made to extend this range. Most recently, some have
reached the ~10° DOF range with the use of supercomputers
and GPUs."”

In recent years, there has been a growing interest in model-
ing increasingly large granular systems, such as those relevant
in ballistic impacts, wheeled locomotion, and agricultural
plowing." ' This has led to a push for computationally
faster alternatives to DEM, such as using continuum descrip-
tions of granular media and further reduced models such as
Resistive Force Theory.'®2° At the fundamental level, cohesion-
less granular media can be described as a plastic material
with a frictional yield criterion and no cohesion strength
(hence no ability to support tension). But, a comprehensive
continuum model for fully describing a granular material
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requires incorporating a variety of behaviors shown by the
media arising from the constituent grain shape, size, stiffness,
distribution, and inter-particle interaction properties,” as well
as effects due to the surrounding air (pressure and flow-drag)
on the granular media.>" Thus, often scenario-specific simpli-
fications are made during constitutive model development.
Conversely, even for a simple granular material, a constitutive
framework encapsulating all granular phenomena would have
to merge many different pieces together, e.g. dissipative kinetic
theory®>** in dilute regimes; strengthening based on packing
fraction®® and internal state variables (like fabric and hyster-
esis) evolution;” rate-dependence of the strength (such as u(I)
rheology®®); non-trivial yield surface shapes in stress space;”’
and particle size effects***° in the dense flow regime.

A variety of computational methods have been developed
and utilized recently to aid in simulating continuum models for
large deformation processes, such as the Material Point
Method (MPM),'®°3? the Particle Finite Element Method
(PFEM),** and Smoothed Particle Hydrodynamics (SPH).** In
this regard, a recent study on high-speed locomotion of
wheels®® in grains, a process which involves complex trans-
phase characteristics of the soil and non-trivial grain motions,
revealed that a continuum treatment implemented with MPM
captures the essential behaviors and agrees well with experi-
mental data. In the present work, we highlight the capability of
the continuum approach in modeling and explaining diverse
granular intrusion phenomena using a very minimal set of
constitutive ingredients. The phenomena we focus on herein
have been independently studied in the literature, and our goal
is to demonstrate that they can be quantitatively modeled and
unified under a family of basic constitutive assumptions. We
first introduce two constitutive representations of non-cohesive
granular media: a non-dilatant plasticity model (NDPM), and a
dilatant plasticity model (DPM). The DPM model permits
dilatancy during dense flow while the NDPM model assumes
dense flow is a constant-volume process. Thus, the NDPM
is suitable for modeling steady-state granular behaviors,
while the DPM is a more suitable model for transient flow
processes. The latter is also a more elaborate model that
converges to the former model under certain limits. Both of
these models have their respective advantages depending on
the scenarios they simulate. We do not include micro-inertial
w(I) effects® (effects of grain-level inertia on material proper-
ties) in these models; thus both of these constitutive models are
rate-insensitive.

We demonstrate the utility of each model by considering
granular flow and force response in four fundamental intrusion
cases which have been studied in the literature: (1) depth-
dependent force response in horizontal submerged intruder
motion; (2) separation-dependent drag variation in parallel
plate vertical intrusion; (3) initial density-dependent drag fluc-
tuations in free surface plowing; and (4) flow zone development
during vertical plate intrusions in under-compacted granular
media (Fig. 1). We use NDPM in the first two cases (which focus
on a steady response), and DPM in the latter two cases (where
transient effects are the focus). Our continuum modeling
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Fig. 1 Schematics of four test cases considered in this study: (A) hor-
izontal dragging of a submerged cylinder at different depths, (B) multiple-
plate vertical granular intrusion, (C) free-surface plowing in under- and
over-compacted granular media, and (D) vertical intrusion in under- and
over-compacted granular media. Cases (A) and (B) are be modeled with
the non-dilatant plasticity model (NDPM), and cases (C) and (D) are
modeled with the dilatant plasticity model (DPM) to model transient
effects.

approach captures the dynamics of such granular flows and
gives a deeper macroscopic insight into each of these cases.
Thus, our study highlights the efficacy of continuum modeling
for predictive purposes, as well as in developing macroscopic
conceptual understanding of diverse granular intrusion
phenomena.

2 Material and methodology

We use two constitutive models to represent granular volumes
in this study, namely: a non-dilatant plasticity model (NDPM),
and a dilatant plasticity model (DPM). We first explain the two
models in detail and then explain the numerical method we use
to implement the schemes.

Non-dilatant plasticity model (NDPM)

This model is taken from Dunatunga and Kamrin.**?> The
model assumes a rate-insensitive, Drucker-Prager yield criter-
ion, incompressible plastic shear flow (with no dilatancy), and
cohesionless response in extension whereby the material
becomes stress-free below a ‘critical density’, pq. The constitu-
tive flow equations representing the above behaviors are shown
below. These simultaneous constraints describe the material’s
separation behavior, shear yield condition, and tensorial co-
directionality, respectively:

(0 —pa)P=0 and P > 0andp < pg, (1)
(t—usP)=0 and 7 > 0and 1 < uP, (2)
Dj/y =ay/2t if >0 and P >0, (3)

for i, j = 1, 2, 3, where, p is the local granular density, pq is
the critical density of close-packed grains, ps is the internal
friction coefficient, P = —¢;;/3 is the local hydrostatic pressure,

This journal is © The Royal Society of Chemistry 2021
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y = +/2D;Dj is the equivalent shear rate. 7= ,/a;./o';/./2 is

the equivalent shear stress, o}, = o; + Pd; is the deviatoric
part of Cauchy stress tensor, Dy = (0p; + 0v;)/2 is the flow rate
tensor.

For simplicity, the equations above are expressed in rigid-
plastic form, where the flow rate is approximately all due to
plastic flow. However, we also include a small elastic compo-
nent which ensures that below the yield criterion the grains
have a well-defined solid constitutive behavior. The model
evolves the flow by solving the momentum balance equations,
0,0, + pgi = pv;. We also assume a constant friction coefficient y
between the granular continuum and solid-body surfaces. The
internal friction value f is often measured from the tangent of
the angle of repose for the granular media or from a direct
shear test.>® We refer to this model as the ‘Non-Dilatant
Plasticity Model’ (NDPM). We provide the input material prop-
erties used in various cases in the relevant sections. A basic
implementation of this continuum modeling approach can be
downloaded for Matlab.?”

Dilatant plasticity model (DPM)

While NDPM assumes a single critical granular density cutoff
for the entire granular volume in the system, this is often
not the case in real granular systems. Granular media can
support stress in a range of densities including close and loose
packings.” The second model we present addresses this limita-
tion of the NDPM model and allows for density evolution in the
media.® This model takes inspiration from the family of critical
state models.>** We use a simple rigid-particle version of the
Critical State model in which grains are not modeled to crush
under hydrostatic loads; rather, they only have a hydrostatic
elastic response in this case. When pressure is non-zero, the
material is deemed to be in a ‘dense state’ and the density
evolution occurs through shearing-based Reynolds dilation/
contraction,®® representing particle rearrangements at the
granular level. In a dense state, the packing fraction ¢ is
equal to an evolving state variable ¢4. Every shearing
action in dense media drives the local value of ¢4 towards a
limiting steady-state critical packing fraction, ¢.. Furthermore,
when the packing fraction varies, the material’s friction coeffi-
cient also changes; material with low packing fraction has low
consolidation and thus has less strength than more
consolidated media.

Thus, in terms of constitutive relations, the simultaneous
constraints describing the material’s separation behavior and
shear yield condition (eqn (1) and (2), respectively) remain the
same with the two exceptions that the close-packed density, pq,
and internal friction value, ps, are non-constant local state
variables (which vary with time and space), as follows:

= e + (Pa — Do) (4)

Here, p, represents the solid grain density, y represents a
dimensionless scaling constant, and u. represents the critical-
state internal friction value reached by material at steady

Pd = pgd)di HUs
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state (when ¢4 = ¢.). When pressure is positive (the packing
is dense), the evolution of ¢4 is modeled as:

Wa_ 3ppes )
where, f = (1/3)(¢a — ¢c)x is a local dilatancy variable. In the
absence of confining pressure, the material can leave the dense
state (¢ < ¢q), but reconsolidates at the current value of ¢4
unless the material opens up beyond a global lower limit, 4)5“““,
which defines a minimum density possible for loaded media,
below which no connected material states exist. We set this
value to 0.45 in all simulations. Thus, the material can exist in a
dense state only for ¢ > 0.45 and the local state variable ¢4 gets
reset to ¢3'"(= 0.45) whenever ¢ drops below this value.

In addition to the material’s separation behavior and shear
yield condition (eqn (1) and (2)), the material flow rule has a
deviatoric dependence as before (eqn (3)) but due to dilation
now also has a corresponding volumetric component. The
volumetric strain-rate is given by the dilatancy variable, f.

The plastic flow rate tensor, thus, has the form:
D;/y=dy/2t+Bd; if§>0 and P>0 (6)

Thus, the combination of eqn (1), (2), (4)-(6) collectively repre-
sent the Dilatant Plasticity Model (DPM). Note that DPM
reduces to NDPM in the limit of y — 0. Regarding its usage
in cases 3 and 4, y is calibrated for each material qualitatively
based on experimental observations.

While DPM is a more elaborate representation of granular
media compared to NDPM, NDPM is easier to implement and is
computationally more efficient to solve. In this study, we aim to
highlight the advantages and sufficiency of using each of these
constitutive forms on a case-by-case basis.

For the numerical implementation, we use a continuum
simulation approach based on the Material Point Method
(MPM),*® a derivative of the fluid-implicit-particle (FLIP)
method for implementing a continuum description of granular
media. The MPM implementation uses a combination of
Lagrangian material points, which contain the state of the
continuum, and a background computational mesh that is
used to solve the equations of motion. Since the state is saved
on the material points, the mesh is reset at the beginning of
each computational step without any information loss, and
thus the method allows for large deformations in the media
without the error associated with large mesh deformations. A
schematic representation of an explicit time-integration MPM-
step is shown in Fig. 2. We use the MPM implementation
described in Dunatunga and Kamrin®® to implement the dif-
ferent constitutive equations representing granular volumes
assuming 2D plane-strain motion. We choose the spatial grid
resolution (Ax) in each system on a case-by-case basis, such that
all the geometric features are well represented and all system
outputs converge. Also, to ensure numerical stability, we choose
a time step (At¢) that satisfies the CFL condition based on
minimum element size, maximum Young’s modulus, and
minimum medium density.
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Fig. 2 Sample explicit time integration step in MPM: a sample explicit
time-integration step used in an MPM implementation. The Lagrangian
tracers representing material points (solid red circles) carry the state of
material over time and space. The background grid (green squares) assists
in integrating the motion on the simulation domain and is reset each step.
More details can be found in Dunatunga and Kamrin.*°

3 Results and discussion
3.1 Drag and lift on submerged cylinder dragging

Drag and lift forces on submerged objects in granular media
are relevant in processes such as mixing, mining, soil-buried
pipelines, and animal locomotion.’*™** Over the past two
decades, several studies**™*® have explored the mechanisms
and the variation of these forces by considering the horizontal
dragging of submerged, rigid cylinders (at different depths) as a
test case. We specifically consider the work of Guillard et al.,**
who observed that the horizontal drag force on cylindrical
objects moving horizontally increases with increasing depth
while the vertical lift force plateaus in such motions for depths
greater than a O(1) factor of the cylindrical diameter. The
observations consider a depth range deep enough so that the
cylinders are completely immersed in the granular bed even at
the minimum depth. At very low depths near the free surface,
the dragging motion of the cylinders results in an accumulation
of the media in front of the intruders. This accumulation can
augment the depth-dependence of drag forces and thus can
change the force trends mentioned above. Thus, we do not
consider such a near free-surface depth range in this study (as
in Ding et al.*®) and focus on depths >2.5D.

The experimental drag and lift results in Guillard et al**
were obtained by evaluating torques and vertical lifts on
horizontal cylinders inside large granular beds rotated about
the vertical axis. After a half rotation or so about the vertical
axis, the authors observed a reduction in the force response as
the cylinder begins re-interacting with the disturbed material as
it is rotated multiple times. Here, we use the quasi-steady data
obtained from the first half rotation of the cylinder, before it
interacts with the disturbed media. Presumably, density varia-
tions play a smaller role in this portion, and we choose to
compare the behavior observed with that of the NDPM model.

A schematic representation of the cylinder drag case is
provided in Fig. 1A. For the NDPM implementation, we use a
grain density p, of 2520 kg m™?, and a critical packing fraction
of 0.60. We calibrate the internal friction value (ys) for
glass beads to 0.48 to accurately model the initial slope of
depth vs drag graph from the experiments. This is in line
with the expected range of us for the glass beads which lies
in the 0.39-0.55 range (corresponding to an angle of repose
range ~22-29°, depending on the surface roughness).”’
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The calibration absorbs possible inconsistencies between our
2D simulations with 3D experiments and also incorporates the
variations due to indirect measurements of experimental drag
and lift from rotating cylinder experiments.**

The cylinder is modeled as an elastic body with a high elastic
modulus, thereby acting as an approximate rigid body. The
media-cylinder interface friction coefficient (uy) is set to 0.35.
The cylinder diameter, D is 4 mm, and the presumed out-of-
plane length, w is 1 m (as the simulations are 2D plane-strain).
We use a 0.20 m x 0.16 m granular bed, and a 5 x 107* m
spatial resolution (Ax) for simulating these cases.

Fig. 3A and B show the comparison of Guillard’s experi-
mental data to our continuum results. The linearly increasing
nature of drag vs. depth graphs, along with the plateauing of lift
vs. depth graphs are well captured. The visualizations of plastic
strains and strain rates (Fig. 3C and D) qualitatively agree with
those reported in previous numerical and experimental
studies.**** Notably, the variation of the equivalent plastic
strain shows a strong semblance with the work of Wu et al.*®
Additionally, we also plot the variation of the local hydrostatic
pressure at four different depths in Fig. 3E. The pressure
distribution shows an asymmetry about the intruder, consis-
tent with the existence of both drag and lift forces, and as the
intruder’s depth increases the vertical asymmetry diminishes,
which is consistent with the plateauing of the lift force and
continued growth of drag force.

Similar to past DEM studies by Guillard et al.** and experi-
mental studies by Wu et al,*” Fig. 3C and D show high
localization of the flow field for the depths greater than the lift
turnover depth. A further increase in depth after this point
results in a minimal-to-no change in the material flow profile.
The drag and lift force behaviors are also related to this flow
localization behavior. While the drag forces continue to
increase linearly with depth, the lift forces become saturated
near the depth the flow localizes, indicating a possible correla-
tion between the flow and force. Fig. 3E indicates a reducing
asymmetry of the pressure variation around the cylinder as
depth increases, consistent with the notion that drag forces
continue to increase but lift forces plateau. A deeper analysis of
this variation (i.e. the distribution and the relative magnitude
of pressure) to understand the mechanics of the force distribu-
tions on different faces of the intruders is reserved for
future study.

Thus, the case of dragging submerged cylinders provides
an example where NDPM captures the observed intrusion
behavior.

3.2 Vertical drag in two-plate granular intrusions

Multi-body intrusions offer another commonly encountered
scenario in real-life situations. Several researchers®® > have
examined the dynamics of granular intrusions involving multi-
ple intruding bodies. The case we study specifically takes
inspiration from the work of Swapnil et al*® who examined
the variation of vertical drag forces on a pair of parallel rigid
plates during vertical downward intrusions as a function of the
separation between them. They observed a peak in the average

This journal is © The Royal Society of Chemistry 2021
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Fig. 3 Case 1: experiments vs. simulations for drag and lift on submerged cylinders (using NDPM model): comparison of experimental data** (in blue)
and the continuum simulation results (in red) for variation of (A) drag, and (B) lift on a submerged cylinder moving in granular media at depth |z|. The drag
and lift forces are non-dimensionalized with characteristic force n(D/2)%pqgw where D is the cylinder diameter, py is the effective medium density, g is the
gravity, and w is out-of-plane cylinder width. Both experiments and continuum results use D = 4 mm, pg = 1512 kg m~%, and g = 9.8 m s~2. Similarly, the
depth is non-dimensionalized with cylinder diameter, D. Variation of macroscopic state variables: (C) equivalent plastic strain, (D) equivalent plastic strain
rate, and (E) local hydrostatic pressure at four different depths, |z| = [10,30,51,71] mm. The gray circle indicates the cylinder position and the drag direction
is from left to right. See Movie S1 (ESI+) for visualizing material flow over time for cylinder drag cases considered in (C) and (D).

vertical drag (measured as work per unit depth) as the separa-
tion between the plates was increased. A similar ‘cooperative
effect’ was observed by Merceron et al.*® during the upward
motion of parallel intruders in the granular media. When the
separation between the intruders was below a critical value,
jammed media between the intruders was observed. We use
NDPM to investigate the phenomena observed by Swapnil
et al.>® and focus on the regime where intruders and separa-
tions are large enough that the role of particle size effects is
minimal. We also conduct experiments to verify claims that
follow from theoretical analysis of the NDPM model.

A schematic representation of the case is given in Fig. 1B.
The case is studied in two parts. In the first part, we use generic
material properties (provided next) to determine the behavior
of the continuum model in the single-plate intrusion case. And
in the second part, a direct quantitative comparison of

This journal is © The Royal Society of Chemistry 2021

simulation results with the experiments is done in the two-plate
intrusion case (details later). We use a set of generic NDPM
fitting properties from the earlier case, ie. a grain density, p, of
2520 kg m™>, a critical packing fraction of 0.6, but choose the
internal friction coefficient to be pg = 0.4, which is more common
for glass beads.”” The plates were modeled as stiff elastic bodies
with vertical displacement of control points assigned; thus, the
plates act as quasi-rigid objects with a common fixed downward
velocity. The intrusion velocity was set to 0.1 m s ' in all
simulations, and the media-plate surface friction was set to
0.35. We use a 1.2 m x 0.6 m granular bed, and a 1.25 x 103
m spatial resolution (Ax) for simulating these cases.
Understanding single plate intrusions. We begin by first
analyzing vertical drag forces in single plate intrusions. Fig. 4A
shows the drag forces on vertical plate intrusions under NDPM
for various plate widths at a constant intrusion velocity of
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Fig. 4 Case 2: vertical intrusion of single plates (using NDPM model): (A) variation of drag forces with intrusion depth for plates of various widths, L [0.05,
0.10, 0.15, 0.20, 0.25] m during single-plate vertical granular intrusion. The arrow shows the direction of increasing L. The simulations are plane-strain
and glass bead properties are used for simulating granular media (pg = 2520 kg m~3, ¢ = 0.6, us = 0.4). Each data series on the left graph was time-
averaged over a 0.5 ms window to remove high-frequency force fluctuations. The vertical black dotted line in (A) shows the depth after which this
averaging window includes sufficient data. Dependence of (B) initial force peaks, and (C) average drag forces on plate widths in single plate intrusions
(blue squares). The corresponding quadratic and linear fits for (B) and (C) are shown as red dotted lines. The force peaks are shown with arrows in the left
graph, and the time window used for calculating the average forces is the highlighted blue region (force averaging window) on the left graph.

0.1 m s~ . Note that the same model and implementation was
used previously by Dunatunga and Kamrin®* for modeling
high-speed impacts of a circular intruder in granular media,
where it was shown to match the flow and force data of Clark
and Behringer.>' Before analyzing the simulation results, we
perform a scaling analysis of the problem assuming the NDPM
equations hold, in order to predict the dependence of drag on
various system parameters according to NDPM. In this case, we
expect the resulting vertical drag force, F° on a vertical intruder
of width L and out-of-plane width w at a depth of z to depend on
the various system parameters, i.e. intruder dimensions (w and
L), depth z (distance between the intruder bottom and the free-
surface), close-packed media density pq, gravity g, the media’s
internal friction ug, the media-intruder interface friction g,
and the velocity of intrusion v. Using scaling analysis, with base

units of length as L, time as y/L/g, and mass as paL>, we obtain:

FP = de3L( L/g)7%f<:usvﬂfvz/[" w/L, v/\/ﬁ) .
7
= pdgL3f(Ms7ﬂf7Z/Lv w/L, V/\/g—L)

where, f represents some unknown function. Recall that we are
scaling based on NDPM, so certain properties such as the
particle diameter do not appear in the above relation.

The dependence of F° on z can be divided into two regimes.
(1) At low depths z « L, the variable z/L is negligible and can be
ignored. And (2), at larger depths, the drag forces F are known

Soft Matter

to show a linear dependence on depth (after an initial jump in
the vertical drag near free surfaces®>™®). In both of these
regimes, we set the dependence of F° on w to be linear
assuming the plane-strain nature of the intrusions. We also
focus on intrusions that are sufficiently slow such that F is
independent of velocity v (low-velocity regimes) as seen in the
work of Swapnil et al.>°

With the above assumptions, in the z « L regime, we obtain:

FP = PdgL3(‘V/L)f(ﬂ7Nf)
— FP Jw = pagL?f (1, 1r) (8)

— F o L.

And in the latter, moderate-depth regime with F° oc z, we
obtain:

FP = pygL(w/L)(z/ L)f (1, 1)

— FP /w = pygzLf (u, i) )

— F ox zL.

Thus, from the scaling analysis, we expect the drag force per
unit out-of-plane width F (= F°/w) (unit Nm ) to have a
quadratic dependence on plate width, L, near the free surface,
and a linear dependence on plate width at larger depths. The
scaling analysis does not provide information on the exact form
of the variation of F° in z in the region connecting the two
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regimes. However, we do expect the variation to be non-
monotonic in z since in the vanishing depth limit the force
scales as L* and in the deeper limit it scales with zL.

Using the simulation’s force output, in Fig. 4B and C we plot
the observed relationships between F and L at, respectively, a
smaller depth (where initial peaks occur) and in a deeper
regime, where linear force variations are predicted. The forces
in Fig. 4C are averaged over a depth window (z; — zy), ie.
F*'¢ = [7F(z)dz/(zr — zi). The expected trends from the dimen-

sional analysis are apparent. Besides our own simulation results,
the linear dependence of drag force on intruder area, once deep
enough, is a well studied relation.*>* We reiterate that our
simulations are all in the quasistatic regime. Thus, the velocity
contributions are negligible in comparison to static force con-
tributions in our study. Thus, the initial peak in the force response
is not related to inertial drag as seen in faster intrusions.>*”®

Physically, the initial force maxima (FP*®¥) in the force vs.
displacement graphs of Fig. 4A correspond to the force require-
ments for initiating media flow in the system. The FP*** force
contributions enable the beginning of flow by initiating the
shearing of the media, which exists at some finite strength due
to finite pressure under the plate. From slip-line theory for
granular intrusions,”” the flow develops a wedge-shaped no-
shear-zone below the intruder, which has an acute angle of
n/2 — tan” ‘(1) (where u represents the material internal friction).
Thus, the requirement of shearing media of a finite strength
along the wedge-shaped shear zone is responsible for these
force contributions. We can also obtain an intuition for the
initial L*> dependence of force by considering the conventional
limit analysis for indentation of materials with yield stress Y,
common in manufacturing processes such as drawing and
blanking.’® In such cases, indenter force per unit out-of-plane
width, F, varies as F oc Y x L for L the indenter plate length.
In frictional media, the strength is pressure-sensitive. With
Y = i x P and supposing P grows linearly along the edge of the
no-shear-zone wedge, the mean strength along the edge grows
oc L. Substitution of Y oc L in the limit analysis formula then
gives the observed quadratic dependence of the drag force on
L. We do not further investigate these forces but identify that
the existence of small regions of under-compacted granular
media near free surfaces is expected to suppress the growth of
such forces in many cases (see Fig. 8D). Our simulations
indicate that the drag forces’ dependence of F on L enter linear
regimes at depths z ~ O(10")L. These forces are unique from
the ‘added mass’ effects® and other macro-inertial effects®*>
in granular impacts that are common in high-speed intrusion
(and vary oc v?) since our intrusion velocities are small.

Two plate intrusions. The above scaling analysis gives
important insights for the case of multibody intrusions. In
view of eqn (9), we expect that two plates intruding far from
each other and at moderate depth, will experience the same net
vertical, drag F°, as that experienced by a single plate with an
equivalent surface area—the linearity in L (eqn (9)) indicates
that this equality should hold for any ratio of areas between the
two plates. Thus, any combination of plate widths should
experience the same force both when they are infinitely far
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apart and when they have no separation. This analysis does not
provide any information on the force variations when the plates
are close but are at a finite distance from each other. However,
physical intuition suggests that the presence of plates in the
vicinity of each other will restrict the material flow, which
should increase the drag on each plate. Given that the plates
experience equal net forces at infinite and zero separation
between them, we expect there to be a value of separation at
which the force response is maximal or minimal (unless the
force response is constant). The work of Swapnil et al.*°
explored this variation and found there is a peak in the force
response at a low value of separation between the plates. Note
that near the free surface (z « L), we do expect drag force at
zero separation to be higher than at infinite separation due to
the quadratic dependence of the force on plate size in this
regime—the ratio of forces for plate lengths of L; and L, would
be Fo/F., = (L, + L,)*/(L,*> + L,”) which is always greater than 1.

Fig. 5A and D show the variation of force for different
combinations of plate widths and plate separations. Conti-
nuum modeling shows the existence of force peaks for both
equal plate cases (Fig. 5A) and unequal plate cases (Fig. 5D).
Our observations are in accord with similar experiments and
DEM simulations by Swapnil et al.’s’® for equal plates. As the
continuum modeling successfully captures the behavior, the
detailed material states in these simulations can help identify
the macro-mechanical origins of the phenomena. We visualize
the material flow by plotting snapshots of the plastic strain in a
few of these cases. The plastic strain fields before, at, and after
the force peak in Fig. 5B and E, suggest a macro-mechanical
picture. We observe higher granular flow interaction between
the two plates as the separation between the plates is
decreased. For a single plate intruder, any neighboring flow
restriction is expected to make it more difficult to push material
during the intrusion. Thus, decreasing plate separation results
in increasing drag on each plate. Once the plates are sufficiently
close, a large wedge-shaped rigid zone forms spanning the
plates, causing the two plates to act as a large single plate.
Thus, any further reduction in the separation does not result in
additional flow restriction. Instead, it leads to a reduction in
the effective area of the merged plate systems, and thereby the
drag forces decrease upon a further decrease in separation. It is
interesting to note that the material flow profiles when the two
plates are together or far-separated are similar to the classical
plasticity solution of Prandtl®® for yielding of metals upon
indentation under a plate, characterized by a single rigid wedge
of media under the indenter and flow emanating from both
edges of the wedge. However, when the plates are separated but
very close, the flow profile looks similar to the indentation
plasticity solution of Hill," characterized by two smaller
wedges under the plate and flow emanating only from the
two outermost edges. We also plot the variation of local hydro-
static pressure in the media for the two cases in Fig. 5C and
F. The ratio of local pressure magnitudes with equivalent
hydrostatic pressure, pqgz, is large (~40) in accord with the
observations of Brezinski et al.>* To understand the behavior of
the flow solutions, we re-derive the scaling relations for
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Fig. 5 Case 2: vertical intrusion of two parallel plates (using NDPM model): (A) variation of vertical drag (normalized) with plate separation, s (normalised
to plate width L) for equally sized plates (L = 0.10 m each). (B) The corresponding equivalent plastic strain fields and (C) local hydrostatic pressure fields at
different separations. (D) Variation of vertical drag with plate separation, s (normalised with average plate width L,g = (L; + L5)/2) for unequally
sized plates (L; = 0.05 m and L, = 0.15 m). (E) The corresponding equivalent plastic strain fields and (F) local hydrostatic pressure fields at different
separations. The forces F° in (A) and (D) are averaged over a depth range (z; — z¢) of 0.04-0.08 m for all the cases and an average depth, z = 0.06 m, w =
1m,g=98ms2 pg=1512kgm~—> (= pg % ) is used. The simulations are plane-strain and glass bead properties are used for simulating granular media

(pg = 2520 kg m=3, ¢ = 0.6, us = 0.4). See Movie S2 (ESIt) for visualizing material flow over time for the two cases considered in (B) and (E).

combinations of plates of different lengths L, and L, (L, < L,)
assuming NDPM, similar to the single plate case. Using base

units of length as Lyye = 1/2(L; + L), time as |/ Lay, / g, and mass
as paLayg’, We obtain:

FP = pdgLavg3f<ﬂsv Ky Z/Lavg, S/Lavg7 W/Lavg7 LI/L27 V/\/ gLavg)~

With similar assumptions as before in the moderate-depth
regime (F oc 2),

Soft Matter

FD = pngLangf[,us,,uf,S/Lavg,lq/Lz)-

Defining a non-dimensional force, F = FD/pdgzLavgw, we get

F = flts, 55/ LavgyL1/L2) (10)
and for equal plates, L; = L,, Layg = L and we obtain:
F = flus ue,s/L). (11)

Therefore, if the NDPM model suffices to describe the physics
of two-plate intrusion, we expect the above relation to describe
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a master curve that collapses data for plate-pairs of various L
intruding into the same media.

Based on eqn (10), for F oc z, we obtain following relations
for peak separation (s,) and corresponding peak force (F)
values:

Sp = Lavgfl(Ll/LZuusuuf)’ (12)
and
Fp = pag2Lavgfo(La/Lo, i, bte). (13)
For equal plates (L; = L, = L = Lay) We obtain
sp = Lfi(usyht), (14)
and
Fpy = pagawlfy(is,it)- (15)

Note that F}, has units of force per out-of-plane length. Also note
that, under these relations, the only material properties that
influence the peak force and separation are the friction
coefficient(s) and density; the sole length scale comes from
the plate itself. This makes physical sense when the smallest in-
plane feature (min(w,L,s)) is sufficiently large compared to the
grain diameter. Swapnil et al.>® explored the dependence of
force-peak separation s,/d with intruder size, L/d, when the
intruder size is close to the grain diameter, d (L/d range 1-6).
Interestingly, their data agree with our proposed linear depen-
dence s, oc L at intruder sizes as low as 3-4 grain diameters.
We also verify these drag force variations and the peak
separation scaling relation with new vertical intrusion experi-
ments and compare them to calibrated continuum simulations
(see Fig. 6 for the details). A DENSO VS087 robot arm intruded
an apparatus that held pairs of steel plates at various separa-
tions into a bed of loosely consolidated Quikrete Pool Filter
Sand with grain density py = 2520 kg m >, and effective close-
packed density pq = 1512 kg m 3. The internal friction value of
this medium was us = 0.72 based on angle of repose measure-
ments from experimental tilting tests, with the media globally
fluidized for 15 seconds to an initial packing fraction of ¢ =~
0.58 for all trials. All intrusions were performed at 11 mm s,
where speed dependence of the force response is negligible.
Over 128 trials, the net resistive forces on the pair of intruding
plates were measured using an ATI Mini40 force transducer.
We observed a satisfactory match between the experiments and
the simulations. The fact that the experimental data for differ-
ent values of L collapse onto a single dimensionless master
curve supports the robustness of the scaling relation implied by
NDPM in eqn (11). Additionally, we observe that although both
the Fig. 5(A) and 6 show peaks in normalised force responses of
the media at low separations, the shapes of the graphs are not
‘identical’. This variation is expected because eqn (11) indicates
that the graph between normalized drag (F) and normalized
separation (s/L) depends on material friction properties (s and
ur) and the two cases use different internal friction (us) values.
We also briefly explore, in our simulations, the effect of
changing plate width ratios on the peak separation distance

This journal is © The Royal Society of Chemistry 2021

View Article Online

Paper

T T

Continuum

s/L

Fig. 6 Case 2: experimental verification of peak force phenomenon in
two-plate intrusions: the comparision of experimental data (dotted lines)
and calibrated continuum simulations (solid line) for two (equal) plate
intrusion experiments. The experiments use plates of width (L) 15 mm (blue
data with @ marker), 20 mm (orange data with * marker), 26 mm (yellow
data with B marker), 29 mm (violet data with A marker), and the
continuum model uses a plate of width 10 mm (green data with *
marker). Quikrete Pool Filter Sand with grain density pg = 2520 kg m~3
was used (inset shows microscopic view). The effective critical density pqy
and angle of repose of the sand was found to be 1512 kg m~* and 36° + 1
resp. All of the paired plates have a 1:5 horizontal aspect ratio. The
continuum results correspond to plane-strain two-plate intrusions with
drag forces F° averaged over a depth range of 0.06-0.08 m (an average
depth, z = 0.07 m), with vertical axis normalized by w =1m, g = 9.8 ms™2,
pa = 1512 kgm~> (= pg x ¢). The material properties are calibrated based
on experimental data with pg = 2520 kg m=> ¢ =06, us = 072 (=
tan Orepose)-

(sp), and the peak separation force (F,) in our study (see
Fig. 5D). We find that F, monotonically decreases from a
maximum value to F,, as the plate ratio decreases from 1 to 0
(note that plate-ratio L,/L, is always <1 as L, < L, by defini-
tion). The normalized peak separation distance (sp/Layg)
increases with decreasing plate-ratios (L,/L,). The peak separa-
tion relations are also expected to be a function of u; from
scaling analysis (eqn (13)). Thus, an in-depth shape and mate-
rial property dependence characterization of this phenomenon
is relegated to future study. Similarly, a more comprehensive
amalgamation of the macroscopic insight we develop in this
study with the microscopic observations made by Swapnil
et al.”® for grain-scale plate lengths can be attempted in the
future studies.

3.3 Drag variations in the plowing of granular media

This case takes inspiration from the work of Gravish et al.®*

who studied drag force fluctuations in the plowing of granular
beds at different initial packing fractions. A Discrete Element
Method (DEM) based study of the case was also performed by
Kobayakawa et al.®® Both of these studies observed increasing
drag force fluctuations with an increasing initial packing frac-
tion of the granular beds. Similar force fluctuations were
observed by Kashizadeh and Hambleton® on reduced-order
modeling of the plowing processes in sands and by Jin et al.®®
in the development of a new single-gravity (1-g) small scale
testing methodology. As this phenomenon directly relates to
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the changing density of the media, we use the more detailed
DPM model for this case.

A schematic representation of this case is given in Fig. 1C.
Both of the reported studies were performed in 3D while our
simulations are 2D plane-strain. Characterizing the effects of
this difference in our studies is difficult, so we do not attempt
an exact match. Nevertheless, we do expect the 2D simulations
to capture the phenomena qualitatively and the drag forces to
be similar in their magnitudes. We once again use the glass
bead material properties used in the previous case. We use a
grain density p, of 2520 kg m™?, a critical packing fraction ¢, of
0.6, a steady-state critical internal friction p. of 0.4, and a
scaling coefficient y of 2.5. Similar to previous cases, the plates
are modeled as elastic bodies with high elastic modulus to
approximate rigid bodies. The media/plate interface friction (uy)
was set to 0.35. We use a 2.4 m X 0.4 m granular bed, and a

View Article Online
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4 x 10° m spatial resolution (Ax) for simulating these cases.
The plowing plate dimensions are 0.03 x 0.08 m>.

Fig. 7 shows the variation of horizontal drag forces from the
Gravish et al.®® experiments alongside our continuum simula-
tions. The continuum results are scaled proportionally to the
out-of-plane width in Gravish et al.®* The mean drag force and
force fluctuations from continuum modeling are plotted in
Fig. 7D and E, showing smooth forces transition to larger,
fluctuating forces as the initial packing fraction rises above ¢..
The same trends can be seen in experiments, ¢f. Fig. 7A and B. A
visual free surface comparison between experiments and the
simulations also shows the similarity of flows as ¢; varies, ¢f.
Fig. 7C and F. In the over-compacted case, the continuum
results show a stepped pattern forming on the surface but it
is not as persistent as the wavy patterns observed in the
experiments. This is due to the 2D nature of our simulations.
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Fig. 7 Case 3: force fluctuations during plowing (using DPM model): variation of drag forces at various initial packing fractions in Gravish et al.'s®?
experiments: (A) time variation of drag forces, and (B) average drag forces. The average values of forces for three initial packing fractions in (A) are shown
with corresponding colored arrows in (B). Corresponding continuum simulations: (D) time variation of drag forces (force plots for consecutive ¢; are
shifted vertically by O, 40, 80, and 120 N respectively for improved visualization), and (E) averaged drag forces. Visualisation of the free surface in under/
over compacted granular media: top view from Gravish et al.'s®? experiments (C), and side view in continuum simulations (F). (G) Variation of material
packing fraction from continuum simulations in initially under-compacted (¢; = 0.57) and over-compacted (¢; = 0.63) media cases considered in (F). The
simulations are plane-strain and glass bead properties are used for simulating granular media (pq = 2520 kg M3, e = 0.6, pc = 0.4, 7 = 5.0, Ppmin = 0.45).
See Movie S3 (ESIt) for visualizing time evolution of material front during plowing of under- and over-compacted media from experiments and
simulations. Figure (A)-(C) are modified from Gravish et al.%® [Photo credits: (C) N. Gravish, P. B. Umbanhowar and D. I. Goldman, Georgia Institute of
Technologyl.
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The 2D nature restricts the material from flowing in an out-of-
plane direction, which causes the material to flow over the
existing waves and overrun the wavy patterns. Such patterns are
otherwise not overrun in 3D experiments and are more visible
in over-compacted cases.

The observed shear patterns, free-surface profiles, and force
fluctuations shown in Fig. 7A-C are in accord with the shear-
softening (shear-strengthening) of over-compacted (under-
compacted) granular media that is built-in to the DPM model.
In a sample initially under-compacted (¢; < ¢.), shear defor-
mations cause compaction, resulting in higher densities along
the sheared regions than in the bulk (see eqn (5)). This density
increase results in higher shear strength along the shear zone
(see eqn (4)). Thus, further loading in such systems induces
shear to occur in the weaker material adjacent to the shear
band, which effectively spreads the shearing in such systems.
On the other hand, in the over-compacted case, shear deforma-
tions dilate the material, resulting in lower density in the
sheared region than in the bulk, which results in lower shear
strength there. Hence, continued loading causes shear to
accumulate along the thin zone of initial failure causing the
appearance of a strong shear band. This process continues
until the total force requirement for shearing along the existing
band exceeds that for creating a new shear band in the bulk
(after which the same process repeats itself). Thus, in over-
compacted media, a visually separable shear band formation
pattern occurs (Fig. 7F). In initially over-compacted cases (¢; >
¢.), increasing the initial packing fraction of the media results
in an increased plate motion requirement between successive
shear band formations (due to increased strength of the media
in the bulk) and thus the force fluctuation magnitudes increase
(and their spatial frequency decreases) with increasing packing
fraction (observed also by Gravish et al.®?). We also plot the
variation of the packing fraction in the media from continuum
modeling in Fig. 7G. The figure provides a visualization of
changing packing fraction ahead of the plate in accordance
with the smooth versus banded mechanism explained above.

3.4 Development of a shear deformation zone in plate
intrusions

This last case takes inspiration from the work of Aguilar and
Goldman® and highlights the capability of the basic DPM
model in capturing the development of the flow profile during
vertical intrusion of single plates. A schematic representation of
the case is given in Fig. 1D. Aguilar and Goldman®® postulated
that the formation of a rigid No Shear Zone (NSZ) ahead of a flat
plate during vertical intrusion is an incremental growth pro-
cess. In three dimensions, this growth takes the form of a rigid
frustum shape which grows from a low height frustum with a
fixed base (matching the shape of the intruder) to a fully
developed cone/pyramid at the completion of the mechanism.
For a circular base, the final shape is a cone. In two dimen-
sions, like our case, this would translate to successive isosceles
trapezoids (with larger parallel edges matching the intruder’s
intruding edge) leading to a wedge shape with the base as the
intruder’s leading edge.
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Fig. 8 shows the variation of intrusion forces and successive
velocity profiles in under-compacted granular intrusion experi-
ments compared to our continuum simulations. We model the
granular media, poppy seeds, with the DPM to incorporate the
effect of density transitions. We use material properties for
poppy seeds with a grain density p, = 1100 kg m >, a critical
packing fraction ¢. = 0.60, a steady-state critical internal
friction p. = 0.53, and a scaling coefficient y = 5.0. The
media/plate interface friction (uf) was set to 0.35. We use a
0.5 m x 0.2 m granular bed, and a 5 x 10~ * m spatial resolution
(Ax) for simulating these cases. The intruding plate dimensions
are 0.04 m x 0.02 m.

The force trends from simulation qualitatively match the
trends from Aguilar’s experiments (compare Fig. 8A-C), keep-
ing in mind that Aguilar uses a 3D circular plate while our
simulations are in 2D plane-strain. In a set of separate experi-
ments using a rectangular plate intruder and PIV (Fig. 8E) we
observed the flow zone development appears similar to con-
tinuum results (Fig. 8F). These trends also agree with general
observations from a 3D DEM study done by Feng et al.®® The
Aguilar and Goldman®® study presents a model whereby the
rigid cone emerges from a growing rigid frustum of constant
base angle that gets progressively longer until converging to the
final cone shape (Fig. 8B). However, in our simulations, the
zone actually starts as a ‘short’ wedge coincident with the plate
bottom, having a larger apex angle (expected by slip-line theory
to be approximately n/2 — tan”'y; for y; the friction at the
initial density) due to the low initial packing fraction of the
media. The rigid front then grows by ‘fanning out’ from the
diagonal edges (see Fig. 8D), as the edges represent the zone
experiencing maximum shear-compaction and hence the most
strengthening. This growth can be observed as well from
density variations, shown in Fig. 8G. The growing density of
the region results in an increasing internal friction value in the
zone below the intruder and results in the development of a
progressively sharpening, quasi-rigid trapezoid-like shape
under the plate. As the intruder moves deeper, the process
converges to a final wedge shape (with a sharper half-angle
equal to ‘n/2 — tan” " pi.’). Thus the DPM model provides an apt
description of the observed behavior in under compacted
granular intrusion.

4 Approach limitations and their
implications

While the continuum modeling and the numerical implemen-
tation used in this study are able to represent the considered
cases to a sufficient degree, both the model and the method
have their limitations. Clearly, as emphasized in the introduc-
tion, the phenomena incorporated in a constitutive model
limits the behavior the model can capture, and the constitutive
relations we use here intentionally exclude certain effects for
the benefit of simplicity. Similarly, MPM has known accuracy
limitations given by the choice of the grid resolution, material
point density, shape functions, and the means of representing
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Fig. 8 Case 4: material front development during vertical intrusion (using DPM model): (A) experimental data from Aguilar and Goldman.>® The
experiments intruded a circular plate of 0.051 m diameter into poppy seeds (pg = 1100 kg m™3) at various initial packing fractions (¢;). (B) Schematic of
Aguilar and Goldman's cone growth model.>® (C) Continuum modelling force data from 2D plane strain simulations. We intrude 0.04 m wide flat plates
into material with properties pq = 1100 kg m~>, uc = 0.53, ¢ = 0.60, and y = 5.0 as calibrated to poppy seeds. (D) Mechanism of solid zone development
apparent from continuum modeling. (E) PIV analysis of constant speed plate intrusions: new set of experiments were conducted by intruding L = 40 mm
wide rectangular flat plates next to a clear plexiglass wall at a constant low speed, v = 150 mm sLin loosely packed poppy seeds. The initial three frames
represent the cone growth phase and the last frame (£ ~ 0.30) shows the stability of the cone at later stages of the intrusion. Time is non-dimensionalized
(t = t/to) by to = L/v. The velocity is normalized by intrusion speed, v, and strain rates by 7o = 1/to. We plot these results in the intruder’s frame of reference.
(F) Continuum simulation results: vertical velocity and equivalent plastic strain rate fields during vertical intrusion in initially under-compacted media (¢; =
0.55) for material properties discussed in (C). We also show the evolution of packing fraction (¢) from continuum modeling in (G). See Movie S4 (ESIT) for
visualizing material flow over time for various initial packing fractions (¢;) including the one considered in (F).

Soft Matter This journal is © The Royal Society of Chemistry 2021
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contact between domains. For instance, MPM inherently cap-
tures a locally volume averaged material response everywhere.
If during the flow an element has a low number of interior
material points, the accuracy of the integration is also dimin-
ished. But these issues can be overcome with an appropriate
choice of shape functions and refined discretization. Specifi-
cally for these issues, use of more advanced methods such as
the hybrid DEM-MPM approach (such as Yue et al.®” and Chen
et al.®®) or dynamic particle enrichment (such as Zhu et al.*®)
could be used at the expense of computation time. The use of
smoother and wider shape functions could also help decrease
numerical fluctuations often observed in MPM.”®

5 Conclusions

In this work we demonstrated the efficacy of continuum
modeling in four intrusion cases using two continuum descrip-
tions of granular media—(1) depth-dependent force response
in horizontal submerged intruder motion; (2) separation-
dependent drag variation in parallel plate vertical intrusion;
(3) initial density-dependent drag fluctuations in free-surface
plowing; and (4) flow zone development in vertical plate intru-
sions in under compacted granular media (see Fig. 1). The
study shows that relatively simple, friction-based plasticity
models capture a large variety of granular intrusion phenom-
ena. Moreover, the models provide a useful macroscopic under-
standing of granular intrusion processes, which are often
primary interests in engineering applications, and remove the
additional complexity of trying to determine large-scale physics
from grain-scale observations. The simplicity of these conti-
nuum models also streamlines this understanding, both by
exclusion - ie. if such a model works, it implies that mechan-
isms or effects lying outside the model’s formulation are not
crucial to the outcome - and by admitting simple scaling
analyses as we have utilized throughout. Such simplifications
will certainly limit the accuracy of these models in a variety of
cases, but an incremental approach of adding physical aug-
mentations (such as micro-inertial effects, particle size effects,
or evolving fabric variables) provides a systematic approach for
exploring the underlying physics in diverse cases. For instance,
we do not use y(I) rheology in either of the models in this study;
the fact that our modeling still captures the observed behaviors
indicates micro-inertial effects are not a key mechanism in the
observed behaviors. We also emphasize that the continuum
approach is useful for determining further-reduced models of
intrusion, due to the simplicity of its large-scale characteriza-
tion of systems. One such study was done in Agarwal et al.,*°
which develops a generalized, rate-dependent, dynamic
resistive force theory (DRFT) for rapid intrusion of generic
intruders. In the future, the work could be extended to three
dimensions to extensively compare the computational advan-
tage of using such methods. Furthermore, the continuum
treatment could help reconcile granular behavior with similar
behaviors observed in other, more standard continua. For
example, Minetti et al.”" reported that during swimming in

This journal is © The Royal Society of Chemistry 2021
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water, slight separation between fingers increases propulsive
thrust, similar to our observation for slightly separated gran-
ular intruders.”"”* Comparing and analyzing continuum forms
could provide insights into the rationale behind such simila-
rities, as was done in other flow resistance studies.”
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