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Self-organization is frequently observed in active collectives as varied as ant rafts and molecular
motor assemblies. General principles describing self-organization away from equilibrium have been
challenging to identify. We offer a unifying framework that models the behavior of complex systems as
largely random while capturing their configuration-dependent response to external forcing. This allows
derivation of a Boltzmann-like principle for understanding and manipulating driven self-organization. We
validate our predictions experimentally, with the use of shape-changing robotic active matter, and outline
a methodology for controlling collective behavior. Our findings highlight how emergent order depends
sensitively on the matching between external patterns of forcing and internal dynamical response
properties, pointing toward future approaches for the design and control of active particle mixtures and
metamaterials.

S
elf-organization in nature is surprising
because getting a large group of separate
particles to act in an organized way is
often difficult. By definition, arrangements
of matter we call “orderly” are special,

making up a tiny minority of all allowed con-
figurations. For example, we find each unique,
symmetrical shape of a snowflake visually
striking, unlike any randomly rearranged
clump of the same water molecules. Thus, any
theory of emergent order in many-particle col-
lectives must explain how a small subset of con-
figurations are spontaneously selected among
the vast set of disorganized arrangements.
Spontaneousmany-body order is well under-

stood in thermal equilibrium cases such as
crystalline solids or DNA origami (1), where
the assembling matter is allowed to sit un-
perturbed for a long time at constant temper-
ature T. The statistical mechanical approach
proceeds by approximating the complex de-
terministic dynamics of the particles with a
probabilistic “molecular chaos,” positing that
the law of conservation of energy governs
otherwise random behavior (2). What follows
is the Boltzmann distribution for the steady-
state probabilities,pss(q)º exp[–E(q)/T], which
shows that the degree to which special con-
figurations q of low energy E(q) have a high
probability pss(q) in the long term depends
on the amplitude of the thermal noise. Orderly
configurations can assemble and remain stable,
so long as interparticle attractions are strong
enough to overcome the randomizing effects
of thermal fluctuations.
However, there are also many examples of

emergent order outside of thermal equilib-

rium. These include “random organization”
in sheared colloids (3), phase separation in
multitemperature particle mixtures (4), and
dynamic vortices in protein filaments (5). A
variety of ordered behaviors arise far from
equilibrium that cannot be explained in terms
of simple interparticle attraction or energy
gradients (6–9).
In all of these examples, the energy flux

from external sources allows different system
configurations to experience fluctuations
of different magnitude (10, 11). We suggest
that the emergence of such configuration-
dependent fluctuations, which cannot happen in
equilibrium,may be key to understandingmany
nonequilibrium self-organization phenome-
na. In particular, we introduce a measure of
driving-induced random fluctuations, which
we term rattlingR(q), and argue that it could
play a role in many far-from-equilibrium sys-
tems similar to the role of energy in equilib-
rium. We test this in a number of systems,
including a flexible active matter system of
simple robots we call “smarticles” (smart active
particles) (12) as a convenient test platform (see
movie S1) inspired by similar robo-physical
emulators of collective behavior (13–15). De-
spite their purely repulsive inter-robot inter-
actions, we find that smarticles spontaneously
self-organize into collective “dances,” whose
shape and motions are matched to the tem-
poral pattern of external driving forces (movies
S2 and S3). This platform and others (16–18),
including the nonequilibrium ordering exam-
ples mentioned above, all exhibit low-rattling
ordered behaviors that echo low-energy struc-
tures emergent at equilibrium. We thus moti-
vate and test a predictive theory based on
rattling that may explain a broad class of
nonequilibrium ordering phenomena.
In devising our approach, we take inspira-

tion from the phenomenon of thermophoresis,
which is the simplest example of purely non-

equilibrium self-organization. Thermophore-
sis is characterized by the diffusion of colloidal
particles from hot regions to cold regions (19).
If noninteracting particles in a viscous fluid
are subject to a temperature T(q) that varies
over position q, their resulting density in the
steady-state pss(q) will concentrate in the re-
gions of low temperature. Particles diffuse to
regions where thermal noise is weaker, and
they become trapped there. With the diffusiv-
ity landscape set by thermal noise locally ac-
cording to the fluctuation-dissipation relation
D(q) º T(q) (20), the steady-state diffusion
equation ∇2[D(q)pss(q)] = 0 is satisfied by the
probability density pss(q)º 1/D(q). Hence,
a low-entropy, “ordered” arrangement of
particles can be stable when the diffusivity
landscape has a few locations q that are
strongly selected by their extremely lowD(q)
values.
We seek to extend this intuition to explain

nonequilibrium self-organization more broadly.
However, a straightforward mathematical ex-
tension of the idea encounters challenges in
only slightly more complicated scenarios. For
an arbitrary diffusion tensor landscape D(q),
in which diffusivity can depend on the direc-
tion ofmotion, one can no longer find general
solutions for the steady state. Moreover, the
steady-state density pss(q) at configuration q
may depend on the diffusivity Dð~qÞ at arbi-
trarily distant configurations ~q. Nonetheless,
we suggest that for most typical diffusion
landscapes, the local magnitude of fluctua-
tions |D(q)| should statistically bias pss(q)
and hence should be approximately pre-
dictive of it. This insight, which is central
to our theory, is illustrated to hold numer-
ically in Fig. 1A for a randomly constructed
two-dimensional anisotropic landscape, and
in fig. S3 for higher dimensions. Although
contrived counterexamples that break the
relationshipmay be constructed, they require
specific fine-tuning (see fig. S4).
The key assumption underlying our approach

is that the complex system dynamics are so
messy that only the amplitude of local drive-
induced fluctuations governs the otherwise
random behavior—an assumption inspired
bymolecular chaos at equilibrium.We expect
this to apply when the system dynamics are
so complex, nonlinear, and high-dimensional
that no global symmetry or constraint can be
found for its simplification. Although one
cannot predict a configuration’s nonequili-
brium steady-state probability from its local
properties in the general case (21, 22), the feat
becomes achievable in practice for “messy”
systems. To illustrate this point explicitly, we
consider a discrete dynamical systemwith ran-
dom transition rates between a large number
of states. Here, we can show analytically that
the net rate at which we exit any given state
predicts its long-termprobability approximately,
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even though the exact result requires global
system knowledge (see Fig. 1B and supplemen-
tary materials for derivation). This result may
be related to the above discussion of thermo-
phoresis by noting that the discrete state exit
rates are determined by the continuum diffu-
sivity if our dynamics are built by discretizing
the domain of a diffusion process.
To formulate our randomdynamics assump-

tion explicitly, we represent the complex sys-
temevolution as a trajectory in timeq(t), where
the configuration vector q captures the proper-
ties of the entire many-particle system. Our
messiness assumption amounts to approximat-
ing the full complex dynamics between two
points q(t) and q(t + dt) by a random diffusion
process. To this end, we take the amplitude of
the noise fluctuationsD(q) to locally reflect the
amplitude of the true configuration dynam-
ics: |q(t + dt) – q(t)|2 º D(q)dt for short
rollouts q(t → t + dt) (i.e., samples of system
trajectories) of duration dt initialized in con-
figuration q(t) = q (see supplementary mate-
rials for details). Through this approximation,
our dynamics are effectively reduced to diffu-

sion in q-space, which then allows us to locally
estimate the steady-state probability of system
configurations fromD(q) as in thermophoresis.
Hence, the global steady-state distributionmay
be predicted from the properties of short-time,
local system rollouts.
For rare orderly configurations to be strongly

selected in a messy dynamical system, the
landscape of local fluctuations must vary
in magnitude over a large range of values.
Whereas in thermophoresis these fluctuations
are directly imposed by an external temper-
ature profile, in driven dynamical systems the
range ofmagnitudes results from theway a given
pattern of driving can have a different effect on
different system configurations. The D(q) land-
scape is emergent from the interplay between the
pattern of driving and the library of possible
q-dependent system response properties. In
practice, we observe that the amplitudes of
system responses to driving do often vary
over several orders of magnitude (Fig. 1). We
see this phenomenology in many well-known
examples of active matter self-organization
(3, 11, 23). For example, the crystals that form

in suspensions of self-propelled colloids in
(24) may be seen as the collective configu-
rations that respond least diffusively to driving
by precisely balancing the propulsive forces
among individual particles. This illustrates how
the low-D(q) configurations are selected in the
steady state by an exceptional matching of
their response properties to the way the
system is driven.
We apply these ideas in real complex driven

systems whose response to driving we cannot
predict analytically, such as our robotic swarm
of smarticles. In this case, we require an es-
timator for the local value of D(q) based on
observations of short rollouts of system be-
havior. The estimator of the local diffusion
tensor that we choose here is the covariance
matrix

CðqÞ ¼ cov½~vq ; ~vq � ð1Þ

(25), where ~vq is seen as a random variable
with samples drawn from fð~qðtÞ � ~qð0ÞÞ=
ffiffi

t
p gqð0Þ¼q at various time points t along one
or several short system trajectories ~qðtÞ rolled
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Fig. 1. Rattling R is predictive of steady-state likelihood across far-
from-equilibrium systems. (A) Inhomogeneous anisotropic diffusion in two
dimensions, where the steady-state density pss(q) is seen to be approximately
given by the magnitude of local fluctuations log|D(q)| º R(q) (where |D| is
the determinant of the diffusion tensor). (B) A random walk on a large
random graph (1000 states), where Pss, the probability at a state, is
approximately given by E, that state’s exit rate. (C) An active matter system
of shape-changing agents: an enclosed ensemble of 15 “smarticles” in
simulation. (D) Experimental realization of similar agents with an enclosed
three-robot smarticle ensemble. The middle row shows that relaxation to the

steady state of a uniform initial distribution is accompanied by monotonic
decay in the average rattling value in all cases, analogous to free energy in
equilibrium systems. The bottom row shows the validity of the nonequilibrium
Boltzmann-like principle in Eq. 3, where the black lines in (A), (B), and (C)
illustrate the theoretical correlation slope for a sufficiently large and complex
system (see supplementary materials). The mesoscopic regime in (D)
provides the most stringent test of rattling theory (where we observe
deviations in g from 1), while also exhibiting global self-organization. In the
middle row, time units are arbitrary in (A) and (B); time is in seconds in (C)
and (D), where the drive period is 2 s.
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out from ~qð0Þ ¼ q. We assume these rollouts
~qðtÞ to be long enough to capture fluctua-
tions in the configuration variables under the
influence of a drive, but short enough to have
~qðtÞ stay near q (see supplementary materials
for details).
Although the covariance matrix reflects the

amplitude of local fluctuations, we are instead
interested in a measure of their disorder if
we want to estimate the effective diffusivity.
This follows from the observation that high-
amplitude ordered oscillations do not con-
tribute to the rate of stochastic diffusion (10).
We suggest that the degree of disorder of
fluctuations may be captured by the entropy
of the distribution of ~vq vectors, which is how
we define rattlingR(q). Physically, vectors ~vq
capture the statistics of the force fluctuations
experienced in configuration q, and so rattling
measures the disorder in the system’s driven
response properties at that point. By approx-
imating the distribution of ~vq as Gaussian, we
can express its entropy (up to a constant offset)
simply in terms of C(q) as

RðqÞ ¼ 1

2
log det CðqÞ ð2Þ

With this definition, we generalize the thermo-
phoretic expression for the steady-state density

pss(q)º 1/D(q) and express it in a Boltzmann-
like form:

pssðqÞºexp½�gRðqÞ� ð3Þ
where g is a system-specific constant of order 1
(see supplementary materials for derivations).
We note that when energy varies on the same
scale as rattling, the interaction between the
two landscapes can generate strong steady-
state currents and may break this relation
(10). Thus, rattling enables us to predict the
long-term global steady-state distribution based
on empirical measurements of short-term local
systembehavior,which suggests that probability
density accumulates over time in low-rattling
configurations.
We study the collective behavior of a simple

ensemble of smarticles, aligning ourselves
within the tradition of using robotic systems
as flexible, physical emulators for self-organizing
natural systems (13–16). Each smarticle (Fig. 2A)
is composed of three 5.2-cm links, with two
hinges actuated by motors programmed to
follow a driving pattern specified by a micro-
controller. When a smarticle sits on a flat
surface, its arms do not touch the ground, so
an individual robot cannot move. However, a
group of them can achieve complex motion
by pushing and pulling each other (movie S1)
(26). The relative coordinates of the middle

link of each robot in the ensemble (x, y, q)
may be thought of as the internal system con-
figurations that dynamically respond to an ex-
ternally determined driving force arising from
the time variation of arm angles (a1, a2) (27).
This robotic active matter system offers sub-

stantial flexibility in choosing the programmed
patterns of driving as well as the properties of
internal system dynamics (friction coefficients,
weights, etc.). Additionally, the smarticle sys-
tem has a flat potential energy landscape, al-
lowing one to focus on the contributions of
the drive-induced fluctuations to the collective
behavior, which makes our findings broadly
applicable to other strongly driven systems.
When the smarticles are within contact range
(as ensured by a confining ring; Fig. 1D), the
forces experienced throughout the collective
for a given pattern of arm movement are an
emergent function of all system coordinates.
This configuration-dependent forcing gives rise
to varying rattling values, which we refer to
as the “rattling landscape,” and which we see
to be a hallmark property in many far-from-
equilibrium examples. The rattling landscape
then leads to some system configurations being
dynamically selected over others and allow-
ing for self-organization, just as the diffusivity
landscape does in thermophoresis. Finally,
the combined effects of impulsive inter-robot
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Fig. 2. Self-organization in a smarticle robotic ensemble. (A) Front, back, and
top views of a single smarticle. Of its five degrees of freedom, we consider the time-
varying arm angles (a1, a2) as “external” driving, because these are controlled
by a preprogrammed microcontroller, whereas the robot coordinates (x, y, q) are
seen as an “internal” system configuration, because these respond interdependently
to the arms. (B) An example of a periodic arm motion pattern. (C) Top view of three
smarticles confined in a fixed ring, all programmed to synchronously execute the
driving pattern shown in (B). The video frames, aligned on the time axis of (B), show
one example of dynamically ordered collective “dance” that can spontaneously

emerge under this drive [see (E) and movie S3 for others]. (D) Simulation video
showing agreement with experiment in (C). We color-code simulated states
periodically in time and overlay them for three periods to illustrate the dynamical
order over time. (E) The system’s configuration space, built from nonlinear functions
of the three robots’ body coordinates (x, y, q). The steady-state distribution (blue)
illustrates the few ordered configurations that are spontaneously selected by the
driving out of all accessible system states (orange). Simulation data are shown; see
fig. S5B for experimental data and fig. S1 for details of how the configuration space
coordinates (q1, q2, q3) in (E) are constructed from the 3 × (x, y, q) coordinates.
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collisions, nonlinear boundary interactions,
and static friction lead to a large degree of
quasi-random motion (26), making this a
promising candidate system for exploring
our theory.
Reasoning that our fundamental assump-

tion of quasi-random configuration dynamics
would be most valid in systems with many
degrees of freedom, we also built a simulation
that would allow us to study the properties of
larger smarticle groups and explore different
system parameters (fig. S9). In this regime,
we used simulations to gather enough data to
sample the high-dimensional probability dis-
tributions for our analysis. In a simulation of
15 smarticles, we observed the tendency of
the ensemble to reduce average rattling over
time after a random initialization. For this
45-dimensional system (x, y, q for 15 robots),
the configuration-space dynamics are well ap-
proximated by diffusion, and so Eq. 3 holds,
as seen in Fig. 1C. In addition, we noted the
emergence of metastable pockets of local
order when groups of three or four nearby
smarticles self-organized into regular motion
patterns for several drive cycles (movie S2). A
signature of such dynamical heterogeneity can
be seen in the spectrum of the covariance
matrix C(q) from Eq. 1, as described in the
supplementary materials and fig. S10.
The transient appearance of dynamical

order in subsets of smarticle collectives raises
the question of whether our rattling theory
continues to hold for smaller ensembles. For
the remainder of this paper, we focus on en-
sembles of three smarticles (as in Fig. 1D),
which allows for exhaustive sampling of con-
figurations experimentally, as well as easier

visualization of the configuration space (as in
Fig. 2E). Both in simulation and experiment,
we found that this regime exhibits a variety
of low-rattling behaviors that manifest as dis-
tinct, orderly collective “dances” (Fig. 2, C and
D, and movie S3). Despite its small size, this
system is well described by rattling theory,
as evidenced by the empirical correlation be-
tween rattling and the steady-state likelihood
of configurations (Fig. 1D, bottom).
We consider self-organization as a conse-

quence of a system’s landscape of rattling val-
ues over configuration space. This rattling
landscape is specific to the particular drive
forcing the system out of equilibrium, because
different drives will generally produce differ-
ent dynamical responses in the same system
configuration. When the three-smarticle en-
semble is driven (under the pattern in Fig. 2B),
the range of observed rattling values is so large
that the lowest-rattling configurations—and
consequently thosewith thehighest likelihood—
account for most of the steady-state proba-
bility mass. More than 99% of probability
accumulates in these spontaneously selected
configurations, which represent only 0.1% of
all accessible system states (Fig. 2E). More-
over, in these configurations the smarticles ex-
hibit an orderly response to driving (Fig. 2, C
and D, andmovie S4). In practice, the ensemble
spends most of its time in or nearly in one of
several distinct dances, with occasional inter-
ruptions by stochastic flights from one such
dynamical attractor to another (movie S5).
From the above observations, we can begin

to understand self-organization in driven col-
lectives. In equilibrium, order arises when its
entropic cost is outweighed by the available

reduction of energy. Analogously, a suffi-
ciently large reduction in rattling can lead
to dynamical organization in a driven system.
Moreover, such a reduction can require
matching between the system dynamics and
the drive pattern.
Through rattling theory we can predict how

self-organized states are affected by changes in
the features of the drive. We expect the struc-
ture of the self-organized dynamical attractors
to be specific to the driving pattern, as each
drive induces its own rattling landscape. To
test this, we programmed the three smarticles
with two distinct driving patterns (Fig. 3, A
and B, top), which we ran separately. The two
resulting steady-state distributions, although
each is highly localized to a few configurations,
are largely non-overlapping (Fig. 3, A and B,
bottom). This indicates that by tuning the drive
pattern, it may be possible to design the struc-
ture of the resulting steady state, and hence to
control the self-organized dynamics [see also
(28–30)].
As a proof of principle for such control, we

developed a methodology for selecting partic-
ular steady-state behaviors by combining drives.
By randomly switching back and forth between
drives A and B in Fig. 3, we define a compound
drive A+B (Fig. 3C andmovie S6). We predicted
that this drive would select only those config-
urations common to both A and B steady states
(Fig. 3, A and B, bottom), because having low
rattling under this mixed drive requires having
low rattling under both constituent drives. Our
experiments confirmed this (Fig. 3C), and we
were further able to quantitatively predict the
probability that a configuration would appear
under the mixed drive on the basis of its
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Fig. 3. Self-organized behaviors are fine-tuned to drive pattern. (A and
B) Changing the arm motion pattern slightly (top) affects which configurations self-
organize in the steady state (bottom, same 3D configuration space as in Fig. 2E).
(C) By mixing drives A and B as shown (top), we can isolate only those

configurations selected in both the steady states (circled in purple; see movie S6),
which follows as an analytical prediction of the theory. (D) This prediction (Eq. 4) is
quantitatively verified. All data shown are experimental and are reproduced in
simulation in fig. S7, along with derivations in the supplementary materials.
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likelihood in each constituent steady state
according to

1

pAþB
ss

º
1

pA
ss

þ 1

pB
ss

ð4Þ

as shown in Fig. 3D and fig. S7 (see sup-
plementary materials for derivation). This sim-
ple relationship suggests that by composing

different drives in time, one can single out
desired configurations for the system steady
state.
Moreover, we show that we can analytically

predict and control the degree of order in the
system by tuning drive randomness (Fig. 4)
as well as internal system friction (movie S7,
fig. S8, and supplementarymaterials). Because
driven self-organization arises when the sys-

tem has access to a broad range of rattling
values, tuning it requires modulating the
rattling of the most ordered behaviors rela-
tive to the background high-rattling states.
We can directly manipulate the rattling

landscape by modulating the entropy of the
drive pattern. This is done by introducing a
probabilistic element to the programmed arm
motion. At each move, we introduce a proba-
bility of making a random armmovement not
included in the prescribed drive pattern. In-
creasing this probability results in flattening
the rattling landscape: Ordered states experi-
ence an increase in rattling due to drive en-
tropy, whereas states whose rattling is already
high do not (Fig. 4A). Correspondingly, the
steady-state distributions become progressively
more diffuse (Fig. 4B), causing localized pockets
of order to giveway to entropy and “melt” away
—just as crystals might in equilibrium physics
[movie S8; see also (31)].
Even as the range of accessible rattling val-

ues in the system shrinks, the predictive rela-
tion of Eq. 3 continues to hold (Fig. 4C),
enabling quantitative prediction of how self-
organized configurations are destabilized. By
calculating the entropy of the drive pattern as
we tune its randomness, we derive a lower
bound on rattling for the system. Thus, we can
analytically predict how steady-state probabil-
ities change as a function of drive randomness,
as shown in Fig. 4D (up to normalization and
g; see supplementarymaterials for derivation).
This result confirms the simple intuition that
more predictably patterned driving forces of-
fer greater opportunity for the system to find
low-rattling configurations and self-organize
(see also fig. S6).
Our findings suggest that the complex dy-

namics of a driven collective of nonlinearly
interacting particles may give rise to a sit-
uation in which a new kind of simplicity
emerges. We have shown that when quasi-
random transitions among configurations
dominate the dynamics, the steady-state like-
lihood can be predicted from the entropy of
local force fluctuations, which we refer to as
rattling. In what we term a “low-rattling selec-
tion principle,” configurations are selected
in the steady state according to their rattling
values under a given drive.
Low rattling provides the basis for self-

organized dynamical order that is specifically
selected by the choice of driving pattern. We
see analytically and experimentally that the
degree of order in the steady-state distribution
reflects the predictability of patterns in driving
forces. Thus, driving patternswith low entropy
pick out fine-tuned configurations and dy-
namical trajectories to stabilize. Thismakes it
possible for one collective to exhibit different
modes of ordered motion depending on the
fingerprint of the external driving. Thesemodes
differ in their emergent collective properties,
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Fig. 4. Tuning self-organization by modulating drive randomness. Self-organization relies on the degree
of predictability in its driving forces, in a way that we can quantify and compute analytically. (A) As the
drive becomes less predictable (left to right in all panels), low-rattling configurations gradually disappear.
(B) The corresponding steady states, reflecting the low-rattling regions of (A), become accordingly more
diffuse. [(A) and (B) show simulation data and use the same 3D configuration space as Fig. 2E]. (C) All
three correlations fall along the same line (blue, simulation; black, experiment), verifying that our central
predictive relation (Eq. 3) holds for all drives here. The diminishing range of rattling values thus precludes
strong aggregation of probability, and with it self-organization. (D) Our theoretical prediction (solid black line)
indicating how the most likely configurations are destabilized by drive randomness. Colored lines track
the probability pss at 100 representative configurations q in simulation, and dashed black lines analytically
predict their trends. (movie S8; see supplementary materials for derivation). Two specific configurations
marked by pink and purple crosses are tracked across analyses.
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which suggests “top-down” alternatives to
control of active matter and metamaterial
design, where ensemble behaviors, rather than
being microscopically engineered, are dynam-
ically self-selected by the choice of driving
(30, 32).
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Materials and Methods

1 Experiment Setup

1.1 Smarticle Hardware Design

All files necessary towards fabricating smarticles—i.e., mechanical CAD files, PCB schemat-

ics and files, as well as a comprehensive bill of materials—can be found in (33).

Smarticles are simple 3-link robots actuated at the hinges of the links. Each of the links

is approximately 5.2 cm in length and the hinges are actuated by two servomotors. The

mechanical design of the smarticle is chosen such that when an individual smarticle sits on

a flat surface in the absence of other interactions, the arms cannot propel the smarticle.

Beyond this simple design principle, the smarticle bodies also ensure that when smarticles

do interact, the circuit boards are protected from collisions. This way, when smarticles do

make contact it is a largely smooth plastic-on-plastic interaction.

The primary electrical components enabling the smarticle capabilities highlighted in this

work are the ATMEGA328PB micro-controller, and a Digi XBee3 wireless radio for com-

munications. The micro-controller is used to control the drive patterns of smarticles. Once

a motion pattern is specified, the micro-controller sends commands to the servomotors to

execute them. The wireless radio’s purpose is two-fold: first, it enables remote specification

of experimental parameters from a central computer; second, it ensures that the smarticle

drives remain in-phase relative to one another by sending a synchronizing pulse up to sub-

millisecond accuracy. Outside of its synchronizing function, the radio was not utilized for

any closed-loop feedback and was largely not critical to the results presented, given another

source of synchronization between smarticles. As a result of the large footprint of compo-

nents like the radio, we split the smarticle electrical components across two boards. Finally,

these components are powered by a 150mAh LiPo battery, which enabled experiments up to

2-3 hours in length.

We note that there are additional components included in the designs (e.g., accelerom-
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eters, current sensors, photoresistors, etc.) that are not required for replicating any of the

results in this study, and so may be removed from the PCB to minimize unit costs. These

components were added for potential use in future studies, and they may also be of interest

to an experimenter.

1.2 Smarticle Software Design

The smarticle software was divided into two primary modules. The first is a high-level

communications module that sends and receives commands from the wireless radio. These

libraries were written in Python for ease of use. Using these libraries we are able to specify

driving patterns and other experimental parameters from a remote computer. Some examples

of modifiable parameters relevant to the experiments presented in this work are arm velocity,

arm angle noise, random arm move rate, and rate of switching between drive patterns.

The second module is a low-level module that decodes incoming messages from the wire-

less radio and implements them directly on the micro-controller. This set of libraries is writ-

ten in C++ using the Arduino library for ease of access to servomotor and sensor drivers.

With these libraries we handle the low-level implementation of the experimental parameters

chosen with the Python modules. An important function performed by this module is the

seeding of random number generators. We take in ambient noise as an input and use it to

seed the generation of pseudorandomness used in several experimental parameters, such as

arm angle noise and random arm moves. We note that the design of the software architec-

ture, as well as many of the included features, does not represent a minimal implementation

of the software required to replicate the results in this work. Hence, we hope that this more

general implementation could be of use to experimenters. These modules are included in the

smarticle fabrication repository (33).

1.3 Smarticle Tracking Setup

In order to track the smarticles in an experiment in real time we make use of AprilTags (34).

These tags are similar to QR tags but are effective at smaller sizes, making them ideal
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for robotic platforms with a limited footprint. These tags are supplemented by a position

tracking library compatible with Python that extracts timestamped smarticle positions at a

rate of up to 20 Hz.

To capture the live experiment footage, we made use of a Logitech BRIO web-cam capable

of 4K resolutions at 60 fps. However, increasing the resolution of the image results in a slow

down for the AprilTag detection library, so we intentionally capped the resolution of the

camera using OpenCV (35) at 720p to have a stable tracking rate. We mounted the camera

onto a solid structure machined out of aluminum 80/20, and calibrated the camera point of

view of the smarticles to be directly from above.

1.4 Experimental Procedure

In order to replicate the main results of the paper there are 3 different parameters we vary

across experiments: drive pattern, random move rate, drive switching rate. We begin by

specifying a drive pattern as a sequence of arm angle pairs. For example, the periodic pattern

in Fig. 2B is specified by the set of arm angle tuples, {(π/2, π/2), (π/2,−π/2), (−π/2,−π/2),

(−π/2, π/2)}, as the arm angle sequence, and linearly interpolating arm angles between

these points at a given arm velocity. While this example drive pattern is the same for all

smarticles, we can also implement unique drive pattern for each smarticle (as in Fig. 3). For

all experiments in this manuscript we set the arm move duration to 500 ms for any single

step. Additionally, for a given choice of drive pattern we can set a random move rate at

which we stochastically replace a given arm angle tuple with a random one sampled such

that each arm is equiprobably and independently at either π/2 or −π/2. Similarly, if one

has multiple drives specified in software, the drive switch rate indicates the rate at which

the smarticles stochastically switch drives as in a Poisson process.

In addition to the software setup, in preparation for an experiment we place the smarticles

in the ring within the frame of the web-cam and rigidly fix the ring in place. The surface

on which all experiments took place is a large foam core board, itself secured in place and
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verified to be level within 1 degree. Experiments were run in sets of randomly initialized

10 minute long runs. Once the smarticles are in the secured ring and the experimental

parameters are set, we begin by randomizing the initial conditions of each run. To do this,

we sent the smarticles independently random commands for a duration of 2 minutes prior

to starting the 10 minute run of the specified drive pattern.

Experimental parameters used for specific experiments, as well as time-series data from

the smarticles are included in the linked repository.

2 Simulation Setup

For easier exploration of hypothesis space of this system, we have also constructed a nu-

merical simulation, whose algorithm is described below. This implementation was chosen so

as to optimize speed and scalability to larger swarm sizes, at the cost of some quantitative

agreement with experimental details. This was additionally justified as in this work, we are

interested in generalizable effects that do not depend on all microscopic system details. As

such, instead of using a fully-featured physics engine and implementing the smarticle design

parameters exactly, we used MATLAB to implement a simpler abstracted version of the sys-

tem, choosing simulation parameters by qualitatively benchmarking against experimentally

observed behaviors.

Our algorithm was designed as follows. We approximate smarticles by thin three-segment

lines (as shown in Fig. 1C). At each time-step (“tick,” chosen to be about 10 ms real time for

our specific setup), the algorithm moves the arms slightly according to the chosen arm-motion

pattern, and then iteratively cycles through all smarticle pairs in random order, checking for

collisions, moving one in each pair slightly according to the net interaction force. If there

are multiple points of contact for a given pair, the move is a translation in the direction

of the total force, otherwise, it is a rotation about a pivot point chosen so as to balance

the forces and torques (based on a general analytical force-balance calculation). Choosing

which smarticle in each pair moves is random, weighted by their relative friction coefficients
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(as motivated by difficulty of predicting static friction). Note that since a move can create

new collisions with other smarticles, it is important to take small steps and iterate. The

algorithm continues looping through pairs until all collisions are resolved, then proceeding

to the next tick with the motion of the arms. While this describes the core of the algorithm,

there are a number of additions necessary to improve its stability and reliability:

• If two arms are near-parallel when they approach each other, they can pass through

each other between ticks without ever intersecting or registering a collision. To prevent

this, along with collision detection, we must explicitly test for parallel arms in each

pair of smarticles. We then store the relative position of each such pair of arms for a

few ticks into the future to prevent them passing through each other in any of those

times.

• If a smarticle with small friction coefficient gets trapped between two others, it might

move back and forth on each iteration of the collision-resolution loop, with no net

effect, creating an infinite loop. To prevent this, we temporarily (until the next tick)

increase its friction each time a smarticle moves, so that it is less likely to move again

as collisions continue being resolved.

• In experiment, when resolving collisions is too hard, the motor simply does not move

(i.e., it jams up momentarily). This can happen quite often when smarticles are in a

tight confinement, as was the case in many of these experiments. To allow for that

possibility in simulation, we add an exit condition in the collision-resolving loop. It

triggers when any one smarticle’s temporary friction (from last bullet) becomes very

large, since this serves as a proxy for how much force a motor must provide. In that

case, we “rewind” the most-colliding arm back to before the last tick, and try collision-

resolving again from scratch. If everything resolves, that arm will then have a chance

to catch up to where it needed to be over the following ticks (its speed being capped

at some ωmax to prevent discontinuous jumps).
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• Interactions with the ring boundary are implemented similarly to interactions with

smarticles, and collisions with it are resolved in the same loop.

• It is easy to adjust the simulation to give the smarticle inertia: at each tick, we simply

move the smarticle according to last step’s velocity, scaled by a discount factor, before

resolving collisions.

• If inter-smarticle friction is 0, then each interaction force is directed normal to one

smarticle’s surface. To include effects of such friction, we can add a small lateral

component to these forces that depends on the interaction angle according to force-

balance equations.

Even with all these additions, many differences remain between simulation and experi-

ment: smarticles have non-zero thickness in experiments, there are relief features on smarticle

body not present in simulation that can get caught, the precise force-response profile of the

motors is not captured, etc. Including more of these corrections, while possible, will slow

the simulations down, and is not generally desirable as we do not want our results to depend

on exact system-specific details.

3 Data Analysis

3.1 Constructing Configuration Space

The raw data generated from both the simulation and the experiment are sets of time-series

(xs(t), ys(t), θs(t)), where s indexes the smarticles. First, we want to use these coordinates

to construct a set of observables that faithfully parametrize the space of distinct swarm

configurations—since, e.g., configurations related by a global rotation should be counted

as identical. Constructing such configuration spaces rigorously for many-particle systems

is known to produce complicated topological spaces with non-smooth geometries (36). On

the other hand, any practical description of an active-matter system will generally be a

simple heuristic choice of coarse-grained variables that respect the symmetries of the problem
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(such as, e.g., permutation symmetry of indistinguishable particles), while distinguishing

the configurations of interest. This will generally represent an over-compression, and the

distances among configurations in the resulting space will not always faithfully capture their

objective distinguishability. Similarly here, rather than trying to construct coordinates that

capture precisely the correct geometry of our swarm’s space of distinct configurations, we

heuristically choose a set of observables that respects the relevant symmetries, and captures

enough of the system complexity to allow distinguishing a wide variety of behaviors.

Explicitly, we construct a set of observables invariant under global rotation symmetry:

χs ≡ R(θs) ·(X−xs), where R(θs) is the rotation matrix for s-th smarticle body orientation,

X = 1
Ns

∑
s xs is the swarm’s center of mass coordinates, x = (x, y) of each smarticle center

in units of its body length, and Ns is number of smarticles in the ensemble (see fig. S1A). This

choice projects our number of tracked variables from 3Ns down to 2Ns, but still distinguishes

among most relevant configurations, especially for small Ns. We found it helpful to further

add one more observable to this set χ(θ) =
∣∣∣ 1
Ns

∑
s eiθs

∣∣∣ to help distinguish between the

two configurations pictured in fig. S1B. Nonetheless, we also verify that our results do not

depend on this specific choice of observables by running the below analysis on various subsets

of these observables, as shown in fig. S1, D and E. One caveat to this is that for our rattling

calculation to be reliable, our choice of the configuration space must be sufficiently high

dimensional so that ordered motion does not appear as space-filling. Practically, we want

to have three or more dimensions in our description of the configuration space, which is in

contrast to the one or two-dimensional order parameters often used for describing active

matter.

Having constructed trajectories over time of rotation-symmetric observables χ (one of

which is shown in fig. S1F), we need to choose discrete sets of points along our trajectories

that we will use to calculate probability densities. With this, we also want to allow for a

fair comparison among configurations of swarms running different drive-patterns. Since in

addition to creating external forcing, arms also present steric constraints on the allowed con-
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Figure S1: Data analysis steps. (A) shows the construction of the observables we use to
parametrize the swarm configuration space, chosen to be invariant under global rotations
(red star is the swarm center of mass). Note that we stroboscopically select the time-points

when all the arms are in U-shape (α
(1)
s , α

(2)
s ) = (π

2
, π

2
), as shown here. (B) two

configurations that are indistinguishable by the coordinates constructed in (A), and are
distinguished by adding another observable χ(θ) =

∣∣〈eiθ
〉
s

∣∣. (C) shows the configuration
space plotted in the main text (Fig. 2, 3, 4) for the three-smarticle swarm. Blue shows the
set Sfull (here chosen as Sp ∪ Srnd, see text) sampling all regions of interest in the
configuration space. In red we show its subset Sseed of seed points where pss and R are to
be calculated. 3 of these seed points q∗ are highlighted with red ×-s, and for each, their 30
nearest neighbors Sn(q∗) ⊂ Sfull from the blue set are shown in black. Note that these
black points define variable size and shape neighborhoods from which pss and R are
estimated. (D) shows the resulting correlation for the 3-smarticle swarm (see Fig. 4C),
with blue indicating the values sampled from the neighborhood of the steady-state
distribution q∗ ∈ Sp, and red—from randomly sampled configurations q∗ ∈ Srnd. Note that
experimental data (black) only samples the steady-state configurations, and hence
reproduces only the blue part of the correlations. (D and E) show the same analysis
repeated for two different descriptions of the configuration space: (D) for the 7-dimensional(
{χ(x)

s , χ
(y)
s }s=1,2,3, χ

(θ)
)

and (E) for the 3-dimensional
(
χ

(y)
1 , χ

(y)
2 , χ

(y)
3

)
space. Their

qualitative agreement illustrates that our results will hold for a variety of coarse-grained
descriptions of an active matter system. (F) shows a sample trajectory of the χ

(y)
1 over

time, where high-rattling motion is seen as regions of stochastic exploration, while
low-rattling motion shows systematic oscillations.
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figurations, two swarms with different arm angles will generally have a hard time exhibiting

the same configurations. To isolate the effect of driving history on the steady-state distri-

bution, we must then only compare swarms having all the same arm angles: here we choose

(α
(1)
s , α

(2)
s ) = (π

2
, π

2
) (U-shape, for all smarticles, fig. S1, A and B). Some of the drives used

in this work were periodic, in which case we made sure that this configuration is visited once

per period, and could thus select our configurations stroboscopically at the corresponding

time-points. For stochastic arm-motion, on the other hand, we programmed the arms to

return to this configuration deterministically once every 24 moves—rare enough so as not to

introduce significant predictable correlations. While we cannot track the arm angles directly

in experiment, we can use the time-stamps of the synchronization pulses sent to the smarti-

cles by radio each time all arms get into the U-shape configuration to know exactly which

configurations to compare.

This way, we end up with the discrete time-series of the 2Ns+1 configuration observables

at stroboscopic times:
(
{χ(x)

s (tn), χ
(y)
s (tn)}s, χ(θ)(tn)

)
. All 3D configuration-space plots in

the paper (i.e., Fig. 2E, Fig. 3, A-C, bottom, and Fig. 4, A and B) show the (χ
(y)
1 , χ

(y)
2 , χ

(y)
3 )

subspace for the 3-smarticle swarm—so chosen for visual clarity.

3.2 Estimating Steady-State Density and Rattling

Since in self-organizing systems such as ours, the probability density over configurations can

span many orders of magnitude, we cannot accurately sample all the regimes of interest

with a uniform sampling scheme. Our analysis must thus use adaptive neighborhood sizes,

and be robust to poor sampling of the distributions, as we are working in high-dimensional

spaces. To ensure that our key results were not artifacts of such an adaptive algorithm,

we benchmarked them across several qualitatively different analysis techniques, including

exhaustive uniform sampling of the configuration space.

We start by outlining our entire algorithm abstractly and generally, after which we explain

the practical implementation of generating the various figures in the main text. We call
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our d-dimensional configuration space coordinates qi, indexed by i, j ∈ {1, ..., d}—here, we

primarily use the set {qi} =
(
{χ(x)

s (tm), χ
(y)
s (tm)}s, χ(θ)(tm)

)
defined in the last section, but

subsets and other choices were also tested. Such parametrization allows us to compute

distances using the Euclidean metric, as these observables were already chosen to be faithful

to the distinguishability of smarticle configurations.

1. Begin by defining two sets of points on the configuration space, Sp, sampling the

steady-state probability distribution pss, and Sfull, sampling all regions of interest in

this configuration space, as best we can. For example, in our simulations we often chose

Sfull = Sp ∪ Srnd, where Srnd sampled all swarm configurations uniformly at random,

while Sp ensured good sampling of the self-organized regions.

2. Choose a random subset Sseed ⊆ Sfull of “seed” configurations whose neighborhoods we

want to evaluate pss andR in. We can sub-sample the full available set of configurations

Sfull as it may be computationally redundant to use every point.

3. For each seed point q∗ ∈ Sseed, find the subset Sn(q∗) ⊂ Sfull of its n nearest-neighbors

(with n � d: here we use n ∼ 3d, see fig. S1C). We will estimate pss(q
∗) and R(q∗)

from the neighborhood covered by this set as follows:

4. pss(q
∗)

(a) Compute the variance tensor Vij(q
∗) = 〈(q − q∗)i(q − q∗)j〉q∈Sn(q∗) and the volume

V(q∗) =
√

detV (q∗) of the region occupied by Sn(q∗) (here we need n � d to

give sensible estimates).

(b) Find the steady-state probability of this region P [Sn(q∗)] as the fraction of points

qp ∈ Sp that satisfy
∑

i,j(qp − q∗)i(qp − q∗)j [V −1(q∗)]ij < 5. This selects the

steady-state configurations that are within 2.2σ of q∗, where σ is taken with

respect to the distribution of Sn(q∗) points.

(c) The steady-state probability density is thus estimated as pss(q
∗) = P [Sn(q∗)]/V(q∗).
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5. R(q∗)

(a) To find the rattlingR of any given configuration q∗ under the action of some drive,

we first sample a short trajectory, or “rollout,” q(t) starting from q(t = 0) = q∗

and evolving under that drive for some short but representative time. Here, we

use 2 to 5 seconds, or 4 to 10 discrete arm moves. Generally, this time-horizon

may depend on the system in question, and in particular must be longer than the

drive-pattern, yet should be kept consistent for all calculations in a given system.

(b) For every time-point along this rollout, we compute the vector v(t) = (q(t) −

q∗)/
√
t, and calculate the covariance matrix of all these

Cij(q∗) ≡ 〈vi(t), vj(t)〉t (S1)

(notation: 〈i, j〉 ≡ 〈i j〉−〈i〉 〈j〉 component-wise, or equivalently C(q) = cov[ṽq, ṽq],

as in Eq. 1). This may be seen as a particular choice of a data-driven estimator

for the effective diffusion tensor Dij(q
∗) locally (25).

• As we are talking about a stochastic process here, we can average over both,

the one rollout duration, and/or over several rollouts initialized in q∗. Ab-

stractly, we view these v(t) for various time-points t or for various rollouts as

samples of the same random variable ṽq, used in the main text. Thus we im-

plicitly assume a sort of local ergodicity, such that average over the length of

a short run and average over stochastic realizations give similar results. Still,

all the final figures in this paper were generated using just a single rollout for

each point, as that approach is more practical for future applications.

(c) We then define rattling, same as in Eq. 2, via R(q∗) ≡ 1
2

log det C(q∗). This is an

estimate for the entropy of the distribution of vectors v(t) that takes them to be

Gaussian distributed.

(d) Finally, since pss(q
∗) was computed for the neighborhood Sn(q∗), we similarly

want to average rattling over that set of points: Rn(q∗) = 〈R(q)〉q∈Sn(q∗). While
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we drop the subscript n, this is the quantity we plot whenever we compare rattling

against pss. Note that this choice of averaging is more reliable than if we instead

averaged the covariance matrices C, as Rn(q∗) = 1
2

log det 〈C(q)〉q∈Sn(q∗). In that

case, our adaptive neighborhood size could introduce artificial correlation with

pss as det 〈C(q)〉 would tend to grow with neighborhood size. Averaging outside

the determinant avoids this problem.

This setup now allows a clear explanation of how all our figures were generated. All the

3D plots showing the steady-state distribution Sp (i.e., Fig. 2E, Fig. 3, A-C, bottom, and

Fig. 4B) are constructed by taking 10 to 30 long runs (> 200 drive cycles, or equivalent)

initialized in some random configurations, and clipping the initial transient section (typically

around 20 first periods of the drive). The plots then show the (χ
(y)
1 , χ

(y)
2 , χ

(y)
3 ) stroboscopic

configuration observables (see Section 3.1). In contrast, to uniformly sample the set of all

possible swarm configurations, shown in red in Fig. 2E, which we will call Srnd here, we

subjected smarticles to translational and rotational random Brownian noise, with their arms

held fixed in U-shape (α1, α2) = (π
2
, π

2
). This procedure could only be done in simulation,

although a similar outcome could be achieved in experiment by moving all the smarticle

arms at independent random times between +π
2

and −π
2

positions.

For the 〈R〉 over time plots in Fig. 1, C and D, we started with M random initial con-

figurations (2000 in simulation, 20 in experiment), and calculated rattling for short snippets

along the length of the subsequent evolution run. Averaging was then done over the equal-

time configuration ensembles.

For all the pss vs. R correlation plots (bottom of Fig. 1, C and D, and Fig. 4C), we

show the sets of (R(q∗), pss(q∗)) tuples calculated as above. To get a good sampling of

both, the self-organized behaviors, and the entire configuration space, we chose Sfull =

Sp∪Srnd in simulations. In fig. S1, D and E, the blue points show the results for seed points

chosen from Sp, and red point—for points from Srnd. The full distribution of seed points

Sseed ∼ Sfull further allowed us to plot the rattling landscape {R(q∗)}q∗∈Sseed across the

13



entire configuration space in Fig. 4A.

Experimentally, we only had access to the Sfull ∼ Sp part of the configuration space,

as our data consisted of 10-20 long runs of the dynamics, which thus spent most of their

time in the steady-state regions. This allowed us to reproduce only the high-pss part of the

correlation, as shown by the black points in fig. S1D and fig. S5B, rather than the full range

accessible in simulations.

Finally, to generate Fig. 4D, we chose 100 seed configurations sampling the entire space

Sseed ⊂ Sp ∪ Srnd, and estimated the steady-state density in their neighborhoods resulting

from 8 different drives. These drives were generated by taking a base deterministic arm-

motion pattern drive A (see Fig. 3A), and adding a different fraction of random arm moves

in each case (still only going to arm angles α = ±π
2
). This set of simulations thus allowed

tracking exactly how drive entropy affects the pss of these 100 representative configurations.
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Supplementary Text

1 Random dynamical systems

We begin by examining toy constructs of “random dynamical systems”—ones where the

evolution equations are set up with many randomly chosen parameters. The motivating

hypothesis of this approach is that some real many-body dynamical systems might be so

complex that their behavior is closer to that of random motion than to some predictable

deterministic trajectory. Solutions of this kind have already been found in stochastic ap-

proaches to modeling complex systems, such as using random matrices to approximate the

Hamiltonians of large atomic nuclei (37). Subsequently, in contexts ranging from bacterial

ecology (38) to the study of social networks (39), models that assume random interactions

among a system’s many components have enabled effective predictions of system-level prop-

erties. Rather than assuming the system behaves deterministically with perturbations caused

by noise, these approaches take the system to be primarily random while preserving some of

its structure.

Instead of starting with some simple linearized dynamics and building out perturbative

nonlinear corrections, we start with random dynamics and proceed to gradually introduce

different correlations and structures that might matter in a real system. This way, as we make

our system “less random,” we can monitor which features of the solution are sensitive to the

details of our random construct, and which seem to persist universally, despite the strength

and structure of the correlations. We can also begin to identify the “typical” behaviors of

complex dynamical systems that arise generically, and do not rely on any system-specific

details.

While our constructs are often quite simple and may admit some analytic tractability,

most of our results presented here are numerical. This is because such numerical explorations

are much easier to carry out and tune in various ways, while also being highly reliable, as

they easily permit good sampling of the chosen distributions (at least for the simple scenarios
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tested here).

1.1 Random Markov processes

We begin by looking at the “null model” of a random dynamical system: N discrete sys-

tem states connected to each other by independent identically distributed (i.i.d.) random

transition rates. In its simplest version, we can solve it analytically. Consider the master

equation

Ṗm =
∑

n6=m
Rmn Pn −

∑

n6=m
Rnm Pm (S2)

with m,n ∈ {1, ..., N} labeling the discrete states. In general, the steady-state prob-

ability distribution P ss
m is the null eigenvector of the transition-graph Laplacian matrix

Lmn = −Rmn + δmn
∑

k Rkm, where δmn is the Kronecker delta. Thus, P ss
m will depend

in a complicated way on all the N(N − 1) transition rates (less N for the diagonal).

Now, as we want to understand the typical behaviors of large disordered dynamical

systems, we let the transition rates Rmn be i.i.d. random variables, with some mean R̄ and

standard deviation σ, and let N → ∞. We now want to try finding the steady-state as an

asymptotic series in powers of 1
N

: P ss
m = P

(0)
m + P

(1)
m + ... . Plugging this into the master

equation, Eq. S2, we will go order by order, ensuring that Ṗm asymptotically vanishes as

N →∞, progressively faster with each additional correction. To set up, we note that by the

central limit theorem, we can write the total entrance and exit rates for state m respectively

as:

Zm =
∑

n6=m
Rmn = N

(
R̄ +

σ ζm√
N

)
entrance rate of m (S3)

Em =
∑

n6=m
Rnm = N

(
R̄ +

σ ξm√
N

)
exit rate of m (S4)

respectively, where ζm and ξm are univariate Gaussian random variables specifying the de-

viation of m-th entrance and exit rate from the mean. With this, plugging in a constant

background probability P
(0)
m = 1

N
into the master equation proves to be a self-consistent
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choice at leading order:

Ṗm =
∑

n6=m
Rmn

1

N
−
∑

n6=m
Rnm

1

N
= R̄ +

σ ζm√
N
− R̄− σ ξm√

N
(S5)

which vanishes for large N . Next, we want to choose the first correction P
(1)
m for the steady-

state such that it further reduces Ṗm:

Ṗm =
σ (ζm − ξm)√

N
+
∑

n6=m
Rmn P

(1)
n −

∑

n6=m
Rnm P

(1)
m ∼ o

(
1√
N

)
(S6)

using the little-o notation. We can check that letting P
(1)
m = σ (ζm−ξm)

R̄N3/2 accomplishes this since

with that:

Ṗm =
∑

n6=m
Rmn P

(1)
n − σ ξm P (1)

m

√
N ∼ o

(
1√
N

)
(S7)

where the second term is explicitly of O
(

1
N

)
, and the first term averages out to be of that

order if Rmn is uncorrelated with P
(1)
n .

This last assumption is the crucial step of the derivation, and plays a similar role to

that of the molecular chaos assumption in equilibrium thermodynamics: while two colliding

molecules become correlated after the collision, that correlation is entirely lost before they

meet again. Similarly here, our assumption breaks time-reversal symmetry by distinguishing

between exit and entrance currents for a given state m: the former are all correlated as

they are all ∝ P
(1)
m , while the latter average out as they are proportional to the independent

random variables P
(1)
n . In reality, this assumption does not exactly hold, as P

(1)
n depends

on n-th exit rate ξn, which correlates with Rmn. Nonetheless, as all the rates are assumed

independent, the effect of this correlation is suppressed by an additional factor of 1
N

. Thus

we see that if we introduce some structure into our dynamics, and hence correlations in the

rates Rmn, this assumption will be the first failure mode of the derivation. This gives a more

precise sense in which the central assumption of the rattling theory is so akin to molecular

chaos.
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Figure S2: Exit rates are predictive of steady-state in discrete Markov process
For each of N = 1000 system states, we plot its steady-state likelihood (according to the
master equation Eq. S2) versus two different quantities. For blue points, we use that state’s
total exit rate Em, while for orange, we show that exit rate also corrected by entrance rate
deviation: Ẽm ≡ Em − (Zm −NR̄). (A) shows these results for the dynamics generated by
sampling the transition rates Rmn uniformly in the range (0, 1). This verifies Eq. S8, which
predicts Ẽm (orange points) to be perfectly predictive of P ss

m when N →∞. Pure exit rates
in blue, while being more noisy, are still clearly correlated with the steady-state. This
changes in (B), where the transition rates Rmn are now sampled from the log-normal
distribution: logRmn ∼ N (0, σ2 = 25). While the exit rates (blue) remain robustly
predictive of the steady-state, their correction by entrance rates (orange) no longer yields
an improvement. Note also that the vast variability in Rmn in (B) allows for a much wider
distribution of observed steady-state likelihoods.
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Putting the pieces together, we thus get the approximate expression for the steady-state

P ss
m =

1

N
+
σ (ζm − ξm)

R̄ N3/2
+O

(
1

N2

)
=

1

N
+
Zm − Em
N2 R̄

+O

(
1

N2

)
(S8)

We can verify this result numerically, as illustrated by the red points in fig. S2A. One thing

we notice about this expression is that the steady-state probability at a state depends in an

equal measure on both the exit, and the entrance rates of that state. In practice, however,

the total entrance rate may be hard to measure, as it would require initializing the system

in all possible configurations and seeing how often it enters m—i.e., it is hardly a “local”

property of m as much as of the entire system. The exit rate, on the other hand, is a measure

of how stable the state m is and only requires local measurements initialized in that state.

While Em is not enough to predict the steady-state exactly, it can already tell us a lot, and

will be strongly correlated with it. To highlight this, we can re-write Eq. S8, at the same

order of approximation, as

P ss
m =

R̄

Em
+

σ ζm
R̄ N3/2

+O

(
1

N

)
(S9)

By plugging in Eq. S4 for Em here and Taylor expanding, we can check that this is the same

as Eq. S8 at this order. While the correction to the relation P ss
m ∝ 1/Em coming from the

entrance rates remains important, even as N → ∞ (since exit rate inhomogeneities also

become small), it can be seen as random noise ζm around this trend (see blue points in

fig. S2A).

Another key aspect of this result is that our random transition rates produce only small

fluctuations in the steady-state distribution on top of a dominant uniform background. This

is in sharp contrast to what we see for the smarticles, where steady-state probability piles up

almost entirely in certain stable states. We may wonder if extreme values of the P ss
m variation

here may be comparable to the uniform background – but from asymptotic expansion of the

error function, we can check that for large N the maximum amplitude of ξm that we can

expect only reaches O
(√

logN
)
, short of the O

(√
N
)

we would need. This way even the

largest amplitude P ss
m variations are small compared to the uniform background.
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To address this, make our model more realistic, and specifically, more like the self-

organizing systems we are interested in, we can allow the transition rates Rmn to vary

over a wide range of magnitudes. This is accomplished by drawing them, still i.i.d., from

a log-normal distribution logRmn ∼ N (0, σ2), with σ & 4. Because of its heavy tail, the

central limit theorem is no longer a good approximation, and so Em and Zm are no longer

normally distributed and can have a large variance that does not vanish as N grows. In this

regime, our above derivation breaks down, but the relation P ss
m ∝ 1/Em is numerically shown

to persist, and even improve (fig. S2B). Crucially, this allows for P ss
m to vary over many

orders of magnitude for different system states, thus better representing real heterogeneous

systems, including our smarticle swarm.

Counter-intuitively, the variance of the noise we see numerically about the logPss =

− log E line in fig. S2B does not diminish as N gets larger, and so can be thought of as an

uncertainty inherent to our approximation for any system. Indeed, the correlation coefficient

between logPss and log E , which is already seen to be quite similar for panels A and B of

fig. S2, persists across different values of N and σ. Moreover, this error can no longer be

accounted for by the entrance rates, as the same correction as was done in panel A is seen in

B to make things worse. This way, we see that while in general we need all N(N − 1) rates

to predict the steady-state exactly, the randomness in rates and large system size allow us

to robustly approximate it in terms of just N local measurements of the exit rates.

Finally, we can show that ensemble average of log exit rates tends to go down over time

as the system relaxes towards its steady-state from a uniform initial distribution. For this,

we solve the master equation, Eq. S2, Pm(t) = exp [−t Lmn]Pn(0) for the uniform initial

distribution Pn(0) = 1/N , and thus compute 〈log E〉 (t) =
∑

m Pm(t) log Em. For the log-

normal rates Rmn, we plot this numerically over time, showing monotonic decay (Fig. 1B).

This means that at long times, the system tends to be found in states with relatively low

exit rates, and in fact 〈log E〉 (t) may be a Lyapunov function of such dynamics.
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1.2 Diffusion in random media

The Markov process described above evolved on a fully-connected graph, where any system

state could transition to any other in a single step. Many-body dynamical systems, however,

usually evolve in a d-dimensional continuous configuration space, where some configurations

are closer to each other than others. Thus, instead of using a fully-connected graph in

the above Markov model, it would be more accurate to construct a d-dimensional lattice.

This essentially amounts to introducing a certain structure on the transition rates matrix

Rnm, by specifying which of the elements are allowed to be non-zero. This way, making our

model more realistic, requires restricting some of the random parameters, thus introducing

correlations.

Figure S3A numerically shows that despite this additional structure, the node exit rates

Em =
∑

n6=mRnm remain predictive of the steady-state probabilities P ss
m , just as in fig. S2B.

The rates along lattice edges here are again chosen i.i.d. according to logRnm ∼ N (0, σ2 =

25). Note that in higher-dimensional lattices, each state has more neighbors, and so in a

sense, the limit d→∞ recovers our fully-connected graph from previous section. This way,

lower-dimensional lattices impose more structure on the transition rates Rnm, giving a more

stringent test of our framework.

Moving further towards describing dynamical systems that evolve in continuous config-

uration spaces, we transition from studying Markov processes on discrete graphs to looking

at d-dimensional diffusion processes in the continuum. In a way, we can think of this as

introducing the additional constraint of smoothness to our lattice transition rates. On top

of this, however, working in continuum requires us to specify the appropriate quantities:

instead of node probabilities P ss
m , we use probability densities pss(q); and instead of exit

rates Em, we will introduce rattling R through the discussion below.

Consider a generic d-dimensional diffusion process given by the Langevin equation:

q̇i = Σij(q) · ξj [Itô] (S10)
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Figure S3: Predictive quantities across dimensions. (A) shows that, like in fig. S2,
node exit rates E are still predictive of steady-state probabilities Pss when the Markov
process is on a lattice (shown for 2, 3 and 4-dimensional lattices). Transitioning to the
continuum in (B), we see that we still have this correlation when exit rates are replaced by
their continuum equivalents given by the trace of the diffusion tensor D ≡ 1

2
Σ ΣT (see

text). However, the slope of this correlation now changes with space dimension. (C) the
determinant of D gives a similarly robust correlation as the trace, but also maintains the
same slope across dimensions. Note that this is also the same as rattling R = 1

2
log detD.

where we sum over the repeated index, and Dij(q) ≡ 1
2

Σik(q)Σjk(q) is some anisotropic

diffusion tensor that depends on the particle position q, and ξi(t) is univariate white noise

process in time given by 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δij δ(t − t′), with i, j ∈ {1, ..., d}

indexing the dimensions of the configuration space. Again, as we want to understand the

“typical” behavior of such dynamical systems, we take Dij(q) to be a random, but smoothly

varying landscape in q. See (40) for a review of related dynamical systems, and how they

can give rise to anomalous diffusion, and some more recent work (41). The choice of Itô noise

is the more appropriate one to later connect with driven dynamical systems (see discussion

in (10)).

Here, Itô noise implies that we are imagining a particle diffusing in an inhomogeneous

temperature landscape, with some mean free path following each interaction with the bath,

and a local temperature tensor ∝ Dij(q). This immediately implies that our problem is

far from equilibrium. The Fokker-Planck equation that gives the corresponding evolution of
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probability density is:

ṗ(q) = ∂i∂j (Dij(q) p(q)) (S11)

While a general analytical solution does not exist, there are two simple limiting regimes that

we can solve to build some intuition. In the case of isotropic noise, when Dij(q) = δij D(q),

we can easily check that the steady-state distribution is pss(q) ∝ 1/D(q). Keeping in

mind our correlation plots, this means that log pss is correlated with log (trD) in this case.

On the other hand, when different dimensions of q act as independent systems Dij(q) =

δij Di(qi), then the probability factors along each dimension, such that pss(q) =
∏

i pi(qi) =

1/
∏

iDi(qi) = 1/ detD. In this case, we see that log pss is instead correlated with log (detD).

In general, however, we will not be able to find the steady-state of Eq. S11 analytically,

and the solution pss(q) may not even be local. This can be understood by recognizing

that this stochastic process is generally not detailed-balanced, and so pss(q) can depend

non-locally on values of Dij(q) anywhere. Here, we will find the steady-state numerically

by directly simulating Eq. S10 and computing the probability densities according to the

algorithm described in Materials and Methods. For this, we must first generate a smooth,

random diffusion landscape. As we are looking for results that hold generally, we need not

be careful with ensuring any “nice” properties of the random distribution for Dij(q), such

as isotropy or homogeneity in q. We do, however, want to ensure that it is continuous and

reasonably smooth in q, and that it provides a vast diversity of noise amplitudes, to allow

large range over which to see the correlation with pss.

To this end, for each of the d2 entries of Σij, we independently generate a d-dim grid of

random numbers (representing the configuration space q). These are once again sampled

according to a log-normal distribution, log Σij ∼ N (0, σ2). Note that we must take care to

keep the noise variance small enough to allow for reasonable step-sizes in our simulation, and

so practically σ values around 3 and 4 were used. We then set up an interpolating function

that returns the tensor Σij for any input coordinates q provided by the time-integration

loop of the simulation. This interpolator then ensures the smoothness and continuity of our
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Figure S4: Breaking the correlation requires specific global structure. Starting
with a typical 2D random diffusion landscape in (A), we look at the effect of adding two
different globally coordinated perturbations in (B and C). The insets show corresponding
diffusion landscapes, colored by R = 1

2
log detD. In (B), we enhance the vertical

components of the diffusion along the vertical band shown (which actually forms a closed
loop, due to periodic boundary conditions). This breaks our predictive correlation (black
line) in that region, as illustrated by the circled line of points. In (C), we instead enhance
the horizontal diffusion component along the same band, and see that the correlation is
largely restored everywhere. This illustrates that breaking this correlation requires a
specifically adversarial global structure.

diffusion landscape. Figure 1A shows log (detD) for a typical such landscape in 2D.

With this, we can simulate the stochastic process in Eq. S10 in a smooth random diffusion

landscape, and measure the resulting probability density pss(q). For every configuration we

also know the diffusion tensor Dij(q), but to see if it is predictive of the probability density,

we must first construct a scalar from it. The two reasonable options that we saw in the

discussion above are to take the trace or the determinant. Since analytically there is no

strong argument for one or the other in general, we compare them numerically in fig. S3,

B and C. While we see that both show a clear correlation with pss, the slope remains more

consistent across dimensions if we choose the determinant. This reproduces our desired

correlation between log pss and R in Eq. 3, since the covariance matrix from Eq. S1 in this

case evaluates to Cij(q∗) = 〈q̇i(t), q̇j(t) dt〉q(t)=q∗ = Σik(q
∗)Σjl(q

∗) δkl δ(t − t′) dt = 2Dij(q
∗),

and so rattling is R = 1
2

log detD by Eq. 2 (up to a constant offset). For the present case

of diffusion in random media, we do not develop this point further, leaving a more in-depth
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and general discussion in the context of driven dynamical systems to Section 2.5.

As a last point, we also test our assumption that the correlation between pss and R relies

on the disorder and “typicality” of our chosen dynamics. This way, we should be able to

break it by introducing some fine-tuning or specific structure into the diffusion landscape.

In particular, if we have strong diffusive current running along a closed loop, then while R

will be large there, it will not contribute to any suppression of pss, as this does not cause the

trajectories to leave the loop any more frequently. We implement this scenario in 2D (for

better visualization, as it works in the same way in higher dimensions), as shown in fig. S4B.

This indeed causes a corresponding failure of the correlation: we see the appearance of states

with high rattling but not a sufficiently low pss. In fig. S4C, we see that if the direction

of enhanced diffusion is not aligned along the loop, such that the added currents are not

confined, then the correlation is restored. This illustrates that breaking our correlation in

Eq. 3 really requires strong adversarial fine-tuning.
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2 Rattling Theory

At its foundation, rattling theory arises from the suggestion that sufficiently “messy” dy-

namical systems may be more suitably described by diffusion in their configuration space,

than by the many complex subsystem interactions. In this section, we develop this main

hypothesis in several different ways, each starting with its own set of assumptions. In all

cases, we are looking for a local quantity that can approximately predict the steady-state

likelihood pss of any configuration in a large complex nonequilibrium system. The hallmark

of such systems is that there are few general constraints that they need to obey. As they may

be driven by some energy input, which gets dissipated into some thermal bath, energy is not

conserved. Due to high dimensionality and ubiquitous nonlinearities, the system dynamics

at one time are hardly predictive of its future evolution. Even the configuration space in

which the system should be described is often not entirely known or accessible, as there may

be microscopic or other hidden variables.

The one remaining rule still obeyed by these systems is locality in their configuration

space: the system cannot discretely jump among states, it must evolve smoothly according to

the structure of its configuration space. Our general approach will be to take this remaining

constraint, and to assume that nothing else about the dynamics can be known or predicted.

In the rest of this section, we present four distinct arguments to frame this approximation

more precisely, which can be viewed either as independent motivations, or as a unified

derivation. First, in Section 2.1, we give a quick motivation for why diffusive exploration of

configuration space may be a broadly reasonable way to view such messy dynamical systems.

In Section 2.2 we show more carefully that if all we know about our system is the amplitude

of local fluctuations throughout the configuration space, then our best guess for the dynamics

(our “null hypothesis” of sorts) should be a diffusion process. Conversely, Section 2.3 starts

off by assuming a diffusive approximation for the dynamics, and uses Bayesian inference to

describe the appropriate estimator for the diffusion tensor based on a trajectory q(t). In

Section 2.4, we further argue that if a local expression for steady-state probability density
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pss(q) exists, its form is largely constrained by the requirement that it must hold regardless

of what coordinates we choose to describe our configuration space. We close in Section 2.5

with a discussion on how to then best define a scalar rattlingR value consistent with physical

considerations of applying these ideas practically to driven dynamical systems. Note also

that in (10), we developed some of these ideas more rigorously for driven systems with two

strongly separated time-scales, which we no longer assume here. Additionally, we note that

the rattling quantity R was defined slightly differently in that work.

2.1 Random first-order dynamics

A quick way to motivate why complex high-dimensional dynamics might often lead to ap-

proximately diffusive behavior comes from literature on motion in random force fields (40).

If we write our dynamical evolution as a first-order system q̇ = F (q, t) + ξ(t) in some

high-dimensional configuration space (of dimension d), then the assumption of “complex

and messy” dynamics allows us to view the vector field F (q, t) as basically random. Being

smooth, it will generally have correlations in space and time, such that Fi(q, t)Fj(q′, t′) =

Gij(q−q′, t− t′), where overbar denotes average over random realizations of the field F , and

we take Fi(q, t) = 0. While it may not be surprising that the resulting dynamics q(t) will

be approximately diffusive when these correlations are short-range in space and time (Gij

decaying exponentially with ‖q−q′‖ and t− t′), this turns out to hold much more generally.

For example, if we let Gij be entirely independent of time (infinite temporal correlation),

and also have long-range power-law correlations in space Gij(q − q′) ∝ ‖q − q′‖−a, one can

show that a trajectory starting from the origin will move in a diffusive fashion ‖q(t)‖ ∝ t1/2,

as long as min(a, d) > 2, see (40). Allowing time-dependence, this constraint may be relaxed

further, thus suggesting that the diffusive approximation may indeed be reasonable for a

wide array of dynamical systems.
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2.2 As max-entropy modelling

Rather than trying to solve our complex system dynamics directly, which is often impossible

analytically, we can try to first approximate the full behavior by something simpler. In some

sense, the most “natural” such approximation can be found using maximum entropy mod-

elling (or more precisely, “maximum caliber,” as in (42)). We ask, if we knew nothing about

our dynamics besides the amplitude of local fluctuations (two-point correlators) throughout

the configuration space, what would be our most unbiased guess at what the dynamics re-

ally are? We can frame this question precisely by finding the maximum-entropy probability

distribution P [q(t)] over the space of possible trajectories {q(t)}, under the constraint that

two-point correlators match some empirically known values. As with all maximum-entropy

modeling, the result depends crucially on what we choose to constrain—even with two-point

functions, we have the freedom to choose between equal-time correlator 〈q̇i(t) q̇j(t)〉q(t)=q∗ ,

integrated correlator
∫
ds 〈q̇i(t) q̇j(t+ s)〉q(t)=q∗ , different choices of averaging, etc. To begin,

we will first try to constrain the equal-time correlator at every point in configuration space.

Thus the entropy functional we want to maximize with respect to P [q] is (note that we use

P [q] and P [q(t)] interchangeably here):

S = P [q] log (P [q]) + λ0

(
1−

∫
Dq P [q]

)
+

∫
dq∗ λij(q

∗)
(
〈q̇i q̇j〉q∗ − Cij(q∗)

)
(S12)

with 〈q̇i q̇j〉q∗ ≡
∫
Dq P [q]

∫
dt q̇i(t)q̇j(t) · δ(q(t)− q∗) (S13)

where Dq stands for integration over all possible trajectories q(t), and we take the multipli-

cation by the Dirac δ function on second line in the Itô sense. Here, we imply summation

over all repeated indices, and Cij(q∗) is the empirical measurement of 〈q̇i q̇j〉q∗ for the ac-

tual system. λ0 and λij(q
∗) are Lagrange multipliers for the normalization and fluctuation

constraints respectively. Note that, interestingly, in constraining the two-point function, we

get a mixture of time-integration, functional integral over trajectory space, all on top of an
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integral over configuration space. Setting the variation δS
δP [q]

to 0, we get:

1 + log(P [q]) + λ0 +

∫
dq∗ λij(q

∗)

∫
dt q̇i(t)q̇j(t) δ(q(t)− q∗) = 0

⇒ P [q(t)] = exp

[
−1− λ0 −

∫
dt λij(q(t)) q̇i(t)q̇j(t)

]
(S14)

We must then set the Lagrange multipliers such that our constraints are satisfied. This means

that λ0 is chosen to give proper normalization, and from Eq. S14 we get 〈q̇i q̇j〉q∗ = 1
2
λ−1
ij (q∗),

which we must then set to Cij(q∗), giving us the result

P [q(t)] =
1

Z
exp

[
−1

2

∫
dt C−1

ij (q(t)) q̇i(t)q̇j(t)

]
(S15)

But this is precisely the probability distribution for diffusive dynamics! Just as in Eq. S10,

this is q̇i = Σij(q) · ξj with C = Σ ΣT .

In a sense, this result suggests that the least-informative Bayesian prior over the system’s

dynamics is configuration-space diffusion, once constraints over local fluctuations C(q) are

taken into account. This can be seen as the “null hypothesis” we should have about system

dynamics if all we know are the local fluctuations. But we have already studied such diffusion

processes in Section 1.2—which means that it is reasonable to suggest that results from that

section will apply to studying complex dynamical systems.

This derivation turns out to be remarkably fragile to the choice of constraint. If instead of

the equal-time correlator we chose to constrain almost anything else, such as the connected or

the integrated correlator, we would either have no closed-form expression for P [q(t)] at all, or

have no way to easily express λij(q
∗) in terms of Cij(q∗)—and in particular, the dependence

would be non-local. This is because the distribution in Eq. S14 is non-Gaussian in q, and so

the two-point correlator is not simple in general. The only other interesting local constraint

that would still allow the derivation to go through is that of tr C, which would give isotropic

diffusion. While on the one hand, these are merely practical limitations of this method,

they may indicate that no other simple dynamical process can be seen as a max-entropy

approximation of a complex system dynamics. This can already meaningfully restrict our

space of allowed constraint choices, and hence, of the resulting diffusive approximations.
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A particularly important instance of such a restriction is the fact that our result here

yields an Itô diffusion process (43). Similar to the above discussion, our derivation only

gives a closed form local dynamics if we choose to constrain the fluctuations in the Itô sense

in Eq. S13. For driven dynamical systems, this result is further motivated in (10) for a

restricted context. Physically, we can motivate this by seeing that as the system moves

through the configuration space, its fluctuations when it is at q(t+ dt) are still determined

by the response properties of configuration q(t), due to a finite relaxation time, thus leading

to the non-anticipating Itô noise convention.

2.3 As inference problem

In the last section, we saw that approximating system dynamics by configuration-space dif-

fusion is a natural choice. Here we will ask the inverse question: assuming that the diffusive

approximation q̇i = Σij(q) · ξj (in the Itô sense) is reasonable, we ask how should we em-

pirically best estimate the diffusion tensor Dij(q) ≡ 1
2
Σik Σjk? Let’s assume that for some

observed dynamical process q(t) (generated by a black box), the underlying motion is indeed

governed by our diffusion equation. We can then use Bayesian inference to find the maximum-

likelihood estimation of Dij(q) from observations of trajectories (44,45). The inference prob-

lem is thus: P [D(q) | q(t)] = P [q(t) |D(q)] P [D(q)] /Z (where Z = P [q(t)], normalization).

For our prior distribution P [D(q)], we assume only that the diffusion tensor varies smoothly

over q—otherwise it would have infinite degrees of freedom and we could never hope to es-

timate it from any finite observation of a trajectory. Explicitly, this can be implemented by

biasing the spatial derivatives of D to smaller values: P [D(q)] ∝ exp
[
−ε
∫
ddq ∂kDij∂kDij

]
,

with some coefficient ε. Note that ε→ 0 conveniently restores the uniform prior. From our

diffusion equation above, we can write the distribution for Gaussian white noise ξ(t) at every

time point, which gives P [q(t) |D(q)] =
∏

t

[√
1

det(4πD)
exp

[
−1

4
D−1
ij q̇iq̇j

]]
. This way we can
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write our inference problem as

P [D(q) | q(t)] =
1

Z[q(t)]
exp

[
−
∫
dt

(
1

2
tr logD(q(t)) +

1

4
D−1
ij (q(t)) q̇i(t) q̇j(t)

)

− ε

∫
ddq′ ∂kDij∂kDij

]
(S16)

As in the section above, we see an interesting mix of integrals over configuration space and

over trajectory duration in the exponent. We then want to choose some estimator for D(q).

The easiest to evaluate here is the maximum-likelihood, which we can get by setting the

variation δ
δDij(q)

of the exponent to 0:

δ

δDi′j′(q∗)

∫
dq′
[
ε ∂kDij∂kDij +

1

2
tr logD(q′) +

1

4
D−1
ij (q′)

∫
dt q̇i(t) q̇j(t) δ(q(t)− q′)

]
= 0

− 2ε ∂k∂kDij(q
∗) +

1

2
D−1
ij (q∗)− 1

4
D−1
ik (q∗) 〈q̇k(t) q̇l(t)〉t | q(t)=q∗ D

−1
lj (q∗) = 0

⇒ 4ε DinDjm∂
2
kDmn

∣∣
q∗ = Dij(q

∗)− 1

2
〈q̇i(t) q̇j(t)〉t | q(t)=q∗ (S17)

where the average on the last line is over all the times when trajectory q(t) passes through

q∗. So if we had a uniform prior ε → 0, then we would have our result, stating that

Dij(q
∗) = 1

2
〈q̇i(t) q̇j(t)〉t | q(t)=q∗ . For ε > 0, any deviations from this rule become sources for

the Poisson equation Eq. S17, thereby smoothing out the D(q∗) landscape. Thus for small

ε, we simply get that the average 〈·〉 above is taken not only at the point q∗, but over its

neighborhood:

Dij(q
∗) =

1

2
〈q̇i(t) q̇j(t)〉t | (q(t)−q∗)2<ε , (S18)

which basically reproduces our covariance estimator Cij in Eq. S1 (see Section 2.5.3 for details

about the practical choice for the construction of that estimator).

Now, we can use this result to take our observed trajectories q(t), which came from

some non-diffusive dynamical system, and infer the effective diffusion landscape that might

have created such trajectories. This will always produce some result, regardless of how poor

of a model diffusive behavior is for our dynamics—but if we do want to use the diffusive

approximation, then this gives the optimal expression for Dij(q).
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Note that if we went through these steps starting instead with the assumption of isotropic

diffusion q̇i =
√

2D(q) · ξi, then our estimator for D(q) would have been the trace of the

result in Eq. S18. Also, while maximum likelihood estimators are not always reliable, it

does not seem analytically tractable here to calculate others, such as minimal mean-squared

error. Our result in this section motivates the general approach to calculating the effective

local diffusion tensor at any configuration for a driven dynamical system, as used in Eq. 2.

2.4 By reparametrization symmetry

To get an expression for pss(q) we then need to solve the resulting diffusion problem. As

we saw empirically in Section 1.2, for such diffusion log pss correlates both, with log tr C and

log det C, where C(q) is the noise covariance matrix, an estimator for the diffusion tensor, as

seen in Eq. S18. On the other hand, the result we presented in the main text can be written,

by combining Eq. 2 and Eq. 3, as

pss(q) ∝ (det C(q))−γ/2 (S19)

In this and the following sections, we will focus on motivating this expression.

For the argument of this section, we need only to assume that there exists some expression

for pss(q) in terms of the system’s local dynamics at q. Since both, pss(q) and the dynam-

ics q(t) are described with respect to the particular coordinates arbitrarily chosen on the

configuration-space, the form any such expression relating the two must be invariant under

any coordinate transformations. This will be true as long as there is no physically-selected

parametrization, such that any choice of coordinates is arbitrary. In other words, our ex-

pression is constrained by local diffeomorphism symmetry of the configuration space. This

turns out to be a strong restriction, which almost entirely constrains us to Eq. S19—without

even needing to directly appeal to the diffusive approximation of the previous sections.

More concretely, the parametrization chosen for the smarticle system in Materials and

Methods, as well as the coarse-grained descriptions often used in other active matter systems,

are typically arbitrary, while also being highly nonlinear and inhomogeneous with respect
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to the microscopic system coordinates. For any such choices of description to give the

same form of expression for pss(q), we must impose invariance not only under global, but

also under arbitrary local coordinate changes, as q → q′ = f(q). We know that under

such transformation, pss will pick up a Jacobian determinant factor, since ddq pss(q) =

ddq′ p′ss(q
′), giving p′ss(q

′) = pss(q)/ det J(q), with the Jacobian matrix Jij(q) = ∂fi(q)
∂qj

.

Thus, if we assume that a local expression for pss(q) exists, it must transform in this

same way. The only local information about a complex dynamical system we can have, in

general, at some configuration q∗ is some statistics about how it tends to behave in this

neighborhood, which we can write as P [q(τ) | q(0) = q∗]. For this information to be truly

local to q∗, we should only look at short times τ → 0, which means that this local behavior

can be fully captured by the set of derivatives as P [{q̇, q̈, ...}t | q(t) = q∗]. At this point,

the simplest expressions we can construct from this information, consistent with our local

diffeomorphism symmetry (and hence transforming the same way as pss under coordinate

changes), are of the form

pss(q
∗) ∝

(
det 〈∂nt qi , ∂mt qj〉q(t)=q∗

)−1/2

. (S20)

We see that under the change of coordinates, the Jacobian factors out from the determinant,

and the −1
2

power then results in the same 1/ det J(q) factor as on the left hand side.

The order of time-derivatives n and m remains unconstrained by this, as does the question

of whether the correlator 〈·, ·〉 is connected or not. Moreover, any sums of such terms as

in Eq. S20, with different values of n and m, are also allowed. Not only this, but such

summation can also be performed inside the parenthesis, or even inside the determinant,

without breaking reparametrization invariance. All these possibilities end up giving us a

series of a combinatorially large number of possible factors for pss(q).

Thus, to further constrain this result and arrive at Eq. S19, we must use other arguments.

First, we note that since det (〈∂nt qi〉 〈∂mt qj〉) = 0, we know that averaging must be outside

of the product. Second, for highly chaotic noisy motion q(t), higher time-derivatives will

generally be large. Indeed, for an ideal diffusion process q̇ =
√

2D(q) · ξ all but the first
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time-derivative will diverge. While physical complex dynamics are often smooth, it may still

be reasonable to assume that

q̇ � τn ∂n+1
t q ∀n > 0 (S21)

The time-scale τ should be chosen relative to the resolution with which we measure pss(q).

Since probability density can only be defined over some finite neighborhood ε, it is reasonable

to pick τ as the time it takes q(t) to traverse this neighborhood. Of course, on sufficiently

microscopic scales of resolution in q (small ε, and so τ → 0), our chaotic dynamics may

start looking smooth, and this approximation breaks down. However in that regime, our

fundamental assumption that the system is highly complex and chaotic no longer applies,

and so it is reasonable that our predictive correlation between pss and R should fail. On the

other hand, such smooth microscopic regime may be tractable with the more standard direct

solution techniques. Thus, in many dynamical systems we may see the scenario that while

the microscopic local dynamics can be described in terms of usual perturbation theory, on

larger scales rattling theory becomes the more appropriate description. This view suggests

that our theory could emerge as the infra-red fixed-point of renormalization group flow under

configuration space coarse-graining, which may in the future allow to quantify its universality

properties.

For now, we see that the assumption in Eq. S21 implies that all terms in Eq. S20 that

contain any number of higher derivatives will be negligible compared to the one dominant

term
(

det 〈q̇i, q̇j〉q(t)=q∗

)−1/2

. This recovers our main result in the paper, as stated in Eq. S19.

More than that, however, this expression further requires γ = 1, which we know em-

pirically does not exactly hold in some cases (see Fig. 1D). Such violations can arise if the

effective noise landscape C(q∗) ≡ 〈q̇i, q̇j〉q(t)=q∗ has some regularity or structure that biases

towards a preferred parametrization of the space. This is consistent with the observation

that the only deviation from γ = 1 we saw here was in the mesoscopic three-robot swarm,

which is small enough that such regularity is not unlikely.

Note that the local reparametrization symmetry used here is roughly equivalent to the
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assumption that nothing but locality can be known about the system’s complex dynamics,

discussed in the beginning of Section 2. The presence of any additional structure, such

as finite relaxation time or persistence length, breaks the reparametrization symmetry at

the corresponding scales—as we saw above with τ . The extent to which this symmetry

fails gives the extent to which a truly local expression for pss(q) does not exist, making

our results approximate. At the same time, for the equilibrium Boltzmann distribution

p(x) ∝ exp [−β U(x)] reparametrization symmetry is not obeyed for a different reason.

There, while all nonlocal effects are irrelevant, a particular physical coordinate system gets

selected by the requirement that thermal noise amplitude be uniform throughout space x.

This way, local reparametrization invariance is quite unique to our method in this work.

2.5 Defining rattling in driven dynamical systems

In this section we discuss some physical considerations about active matter systems, thus

constructing an appropriate definition of rattling for practical applications. We will further

argue why the determinant of the covariance matrix C may be the more appropriate choice

for our theory, even though as mentioned above, trace works better with the derivations in

Sections 2.2 and 2.3. Finally, we will motivate our specific definition for R in Eq. 2 from

practical considerations.

2.5.1 Composite systems

Similar to the requirement of reparametrization symmetry in the last section, here we discuss

another consistency condition that must be satisfied for our theory to apply to many-body

systems. In that context, we may often see the scenario where some groups of agents become

sufficiently separated so as to become entirely independent. In this case, the steady-state

probability of such configurations should factor as a product of the probabilities for the

constituent sub-system

pss(q) = pss(q
(1)) pss(q

(2)) (S22)
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Here, we take q ∈ Q to be an element of the full system configuration space, while q(1) ∈ Q1

and q(2) ∈ Q2—of their respective subsystem spaces, such that Q = Q1⊕Q2. This way, the

full Cij(q) will be block-diagonal (up to spurious correlations, which we assume to be small

in a large system), and thus the determinant factors as needed

det C(q) = det C1(q(1)) det C2(q(2)) (S23)

As this must hold for any decomposition of the full space Q into any number of subsystems

that may at one time or another decouple from each other, we get another strong motiva-

tion for choosing the determinant of C over its trace. Note that unlike reparametrization

symmetry, this does not put restrictions on the power γ in Eq. S19.

2.5.2 Filtering ordered motion

Another important consideration for driven systems, which does not come up in actual

diffusion processes as in Section 1.2, is that any component of the dynamics that is ordered

should not contribute to raising the value of R. This is because in estimating the exit rate

from a system state, we should ignore any motion that predictably returns soon after, as this

does not contribute to suppressing the steady-state likelihood of that state. Thus, e.g., for

periodic drives, we want to ignore any similarly periodic dynamics of the system. In general,

however, this is a very subtle point, as such “ordered behavior” may be tough to identify in

a given system, or even to define.

In particular, we note that tr C(q) actually evaluates to the mean-squared velocity 〈q̇2
i 〉q,

and thus is affected by stochastic and ordered motion in exactly the same way. In contrast,

the determinant can be seen as the volume of configuration space into which the system

dynamics starting from q may spread under the drive. If this spread predominantly extends

along just a few dimensions of the configuration space, its volume will be close to 0. Thus,

insofar as ordered motion does not explore all dimensions of the configuration space, its

contribution to det C(q) will be small. This way, the determinant can heuristically tease apart

the stochastic (or chaotic) component of the dynamics based on its space-filling property.
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Note that for this reason, while we can use coarse-grained descriptions of our complex system,

the configuration space must be sufficiently high dimensional so as to make space-filling

ordered trajectories unlikely.

We can better ground this discussion in physical intuition by formulating it in terms of

the entropy of local forces. Indeed, for the diffusion process q̇i = Σij(q) · ξj, the entropy of

random forces acting on configuration q is given by (up to a constant offset)

S(q) = log det Σ =
1

2
log det 〈q̇i, q̇j〉q (S24)

This comes from the expression for entropy of a normal distribution, since here q̇ ∼ N (0,Σ ΣT ).

More generally, it seems that this entropy is precisely what we want to measure to quantify

the continuum version of state exit rates, or as the “stochastic component” of the dynamics.

For this reason, we define rattling R(q) as this force entropy. Additionally, this choice allows

us to easily relate rattling to information-theoretic properties of the drive, which turns out

crucial for understanding self-organization (see Fig. 4 and fig. S6).

2.5.3 Practical evaluation of R

Finally, we must discuss the practicalities of measuring R(q) from limited observations of

trajectories q(t). Since we will need to estimate R for all configurations we are interested

in, the calculation for any one configuration must be very light in terms of the required

data. As such, measuring the actual distribution of local forces for each q to then evaluate

its entropy is impractical—and likely unnecessary as our entire framework is approximate

anyway. We can instead quickly get a rough estimate of these entropies by assuming the

force distribution to be Gaussian, which allows us to simply use the expression in Eq. S24.

One important difference between this and the rest of the above discussion, is that here we

use the connected correlator in the definition of Cij(q) = 〈q̇i, q̇j〉q ≡ 〈q̇i q̇j〉q − 〈q̇i〉q 〈q̇j〉q.

This distinction did not come up before because for a diffusion process 〈q̇i〉q = 0. In contrast

here, this change helps to further reduce the effect of ordered motion on R.

There is one other approximation that we make in this work from practical considerations.

37



The averages that are taken in evaluating Cij(q∗), such as in Eq. S18, require us to know

the distribution P (q̇ | q = q∗) under the influence of the drive. First, measuring this

empirically requires many re-initializations of the system in configuration q∗, which is often

very impractical—single-shot measurements of R would be much preferred. Second, as the

drives we use in our experiments often have temporal correlations that we are interested

in (e.g., periodicity), capturing their effect requires average over appropriate time-windows.

Fortunately, we can use these two considerations to resolve each other by assuming something

like “local ergodicity.” As such, we assume that a single short rollout q(t) starting from

q(0) = q∗ and evolving under the influence of the drive for a representative time-segment,

can give us a sampling of the distribution P (q̇ | q = q∗). As this distribution talks about

velocities at the point q∗, we approximate them by finite differences q(t)−q∗ for the collection

of times t along this trajectory. Moreover, as we are estimating our local force entropy by

that of a diffusion process (Eq. S24), we need to divide each finite difference by
√
t, rather

than the usual t, so that our ergodicity approximation can be stated as

{
q̇ | q = q∗

}
noise realizations

∼
{
q(t)− q(0)√

t

∣∣∣ q(0) = q∗
}

single short run

(S25)

which is, almost certainly, a very rough approximation. Nonetheless, in practice, it al-

lows efficient empirical estimate of local rattling values R even in real-time, and which, as

demonstrated, are robustly predictive of the steady-state probabilities. This way, evaluating

Eq. S24 using this estimate, we finally recover the definition of rattling R stated in Eq. 2.

One comment about the approximation in Eq. S25 is worth making. As rattling is closely

related to the local diffusion coefficient D(q), its evaluation here should be considered in

the context of other studies estimating the diffusion constant from single particle tracking

data (25, 45). If we take q∗ = 0 to be the origin, then the estimator used here may be

written as Dij(q
∗ = 0) ∝ 1

τ

∫ τ
0
dt t−1 qi(t)qj(t). This choice is less common than, e.g., the

maximum-likelihood estimator Dij ∝ 1
τ2

∫ τ
0
dt qi(t)qj(t), or the linear-least-squares estimator

Dij ∝ 1
τ3

∫ τ
0
dt t qi(t)qj(t) (45), but we see that the only difference between these is the

relative weighting of the data at early vs. late times (25). Since the main challenge for us is
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to estimate the diffusion tensor associated to the specific location q∗, it therefore makes sense

to up-weigh the early data when the trajectory q(t) is closest to q∗. Note one consequence

of this choice is that for diffusion where D(q) = D is uniform, our estimator will not recover

the exact diffusion tensor D from a single trajectory, even if the trajectory is long τ → ∞:

averaging over multiple rollouts would be necessary.
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3 Self-organization with 3 smarticles

Since rattling arises due to the interplay of the internal and applied forces on the system,

we can view every applied drive pattern as creating its own “rattling landscape” on the

configuration space. For us, rattling plays the same role as energy does in the Boltzmann

distribution, and so the intuition of energy landscapes applies quite well here. For the drive

illustrated in Fig. 2B, when all 3 smarticles are executing the same synchronous motion,

the resulting rattling landscape is shown in fig. S5A. Panel B then shows the corresponding

steady-state distribution, which is seen to be localized in the low-rattling regions of A. This

correspondence is then quantitatively confirmed by plotting steady-state density versus local

rattling values.

3.1 Spontaneous fine-tuning to drive properties

In order to understand how drive properties inform the resulting rattling landscape, and

hence self-organized states. We pick 4 distinct arm-motion patterns shown in fig. S6A. For

drive 1, each smarticle moves both arms independently at random between the limiting

angles ±π/2 (this is the drive in Fig. 4, right column). For drive 2, the motion is still

random in time, but synchronized across the 3 smarticles. Drive 3 is also identical across

smarticles, but now deterministic in time (this drive is illustrated in Fig. 2B and used for

fig. S5). Finally, drive A assigns distinct motion patterns to the three smarticles, while still

being fully deterministic (this one is used in Fig. 3A).

This way, each of these drives has more “predictive information” than the last, defined

as the amount of information about drive history that can help to predict its future (46).

Since drive 1 is random, no knowledge of the past will help to know the future—other

than that arms always go to angles ±π/2. For drive 2, we have the information that all

smarticles do identical motion—the drive is permutation invariant. For drive 3, we further

have the periodic time-sequence information. And finally to predict drive A, we must store

the individual drive-pattern of each smarticle.
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Figure S5: Rattling landscape predicts steady-state. (A) illustrates the rattling
landscape for the arm-motion pattern shown in Fig. 2B (also in fig. S6, drive 3). Two
configurations, one low-rattling and one high-rattling, are labeled with pink and purple
crosses, respectively. To illustrate the contrast, we show the short-time response of 5
nearby configurations to the drive pattern (see movie S4). In this setup, rattling can be
measured as the entropy of the distribution of resulting configurations. (B) shows the
steady-state distribution, which is concentrated primarily in the low-rattling regions of the
configuration space. This observation is then quantified by plotting steady-state density vs.
local rattling values around 5000 randomly chosen configurations: in red we sample these
uniformly at random, and in blue and black we sample from the steady-state. Black shows
experimental data. All other data in this figure is from simulations.

41



0 10 20 30 40 50 60 70 80 90
-40

-30

-20

-10

0

-0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

tSNE 1

tS
N

E 
2

-0.2 0 0.2 0.4 0.6
-0.2

0

0.2

0.4

0.6

0.8

Time (s)

- /2

/2

- /2

/2

 0  2  4  6  8 10
- /2

/2

0 10 20 30 40 50
-40

-30

-20

-10

0

0 10 20 30 40 50
-30

-20

-10

0

0 10 20 30 40 50
-30

-20

-10

0

   
  𝜶

2):
 

ar
m

 a
ng

le
s

(𝜶 1
,

Sm1

Sm2

Sm3

Drive 1

- /2

/2

- /2

/2

 0  2  4  6  8 10
- /2

/2

Time
0 s 10 s5 s

-π/2
π/2

-π/2
π/2

-π/2
π/2

- /2
0
/2

1

- /2
0
/2

2

  0  2  4  6  8
time

- /2
0
/2

3
Drive 2

- /2

/2

- /2

/2

 0  2  4  6  8 10
- /2

/2

Time
0 s 10 s5 s

-π/2
π/2

-π/2
π/2

-π/2
π/2

- /2
0
/2

1

- /2
0
/2

2

  0  2  4  6  8
time

- /2
0
/2

3

- /2

0

/2

1

- /2

0
/2

2

  0  2  4  6  8
time

- /2
0
/2

3

Drive A

- /2

/2

- /2

/2

 0  2  4  6  8 10
- /2

/2

Time
0 s 10 s5 s

-π/2
π/2

-π/2
π/2

-π/2
π/2

Drive 3

- /2

/2

- /2

/2

 0  2  4  6  8 10
- /2

/2

Time
0 s 10 s5 s

-π/2
π/2

-π/2
π/2

-π/2
π/2

- /2
0

/2

- /2
0

/2

  0  2  4  6  8
time

- /2
0

/2

A

B

C D

pss
(A)pss

(3)pss
(2)pss

(1)

En
tro

py
 (b

its
)

-0.2 0 0.2 0.4 0.6
-0.2

0

0.2

0.4

0.6

0.8

q1q2

q 3

Drive 1

Drive 2
Drive 3

Drive A

Drive 1

Drive 2

Drive 3

Drive A

Figure S6: Steady-state distributions encode drive properties. (A) shows 4 distinct
arm-motion patterns, in order of increasing predictable information content, from fully
random to an intricate periodic form. (B) shows their corresponding steady-state
distributions (note different orientation of the 3D axes compared to Fig. 2 and fig. S5).
Reflecting drive properties, these get concentrated into smaller fraction of configuration
space for more intricate drives. (C) quantifies this effect by showing distribution entropies.
Applying each of the 4 drives to the uniform initial distribution (grey star), we can see how
drive information gets gradually imprinted on it, causing the low-entropy fine-tuning in the
steady-state, with more intricate drives causing more fine-tuning. Finally, to quantify the
specificity of each distribution to its drive, we calculate “distances” between pairs of
distributions as relative entropies DKL. We then use these in (D) to visualize the path that
distributions take as they evolve from uniform initial conditions under the influence of their
respective drive. Starting from the same point, we can see precisely how their shapes
diverge over time.
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Empirically we see that the harder it is to predict the drive, the fewer low-rattling con-

figurations we will have in our landscape. This intuition may be understood by viewing

low-rattling determinism as having “low surprise” in the presence of the drive, which re-

quires storing predictive information in the configurational degrees of freedom. The more

such information we need, the fewer system configurations will have it. This means that

for drive 1, which is impossible to predict, no configuration has lower rattling than oth-

ers, and hence we have a near-uniform steady-state (fig. S6B). Next, the information about

permutation-invariance of drives 2 and 3 gets clearly reflected in the flower-like symmetry

of the rattling landscape (fig. S5A), and of the steady-states shown (from a different 3D

orientation in fig. S6B). For drive A this symmetry is broken, requiring individualized infor-

mation, and we are left with only a couple low-rattling regions, which then absorb most of

the probability density, causing the strongest fine-tuning (fig. S6B).

Note that as we increase drive complexity, besides the steady-state becoming more fine-

tuned, it also takes longer to reach (see fig. S6C). This indicates that for yet more compli-

cated drives, this relaxation time may diverge, and there may once again be no low-rattling

configurations, destroying all self-organization. We may view this regime as one where no

system configuration can store all the information needed to match the drive well. All these

considerations thus provide useful upper and lower bounds on drive complexities needed to

engineer self-organized dynamics. The specifics of this for a given system may, nonetheless,

be difficult to predict a priori.

It is further instructive to consider the temporal emergence of self-organization under the

influence of a drive. For this, we start with a distribution uniformly sampling all possible

swarm configurations, and watch it evolve under our 4 different drive patterns. As it relaxes

to the respective steady-state distribution, we track its entropy over time relative to the

uniform distribution at initial time (fig. S6C). As the distribution entropy drops, we can think

of it as encoding information about its drive, which gets “imprinted” on the distribution over

time. This is akin to how in equilibrium, the distribution “learns” about its energy landscape

43



by relaxing into the Boltzmann distribution—except here, since the rattling landscape is

encoding the drive properties, the distribution is, by extension, learning about its drive.

Figure S6C shows that the amount of information ultimately attained by each distribution

scales with the amount of predictive information in each drive, reinforcing the idea of learning.

Moreover, this trend hints at the exciting possibility to a priori predict the degree of self-

organization in the system based only on the properties of the drive.

We can better quantify how distributions tune to their respective drives over time by

tracking their motion through an abstract “shape-space”—fig. S6D. Taking the 4 temporal

sequences of distributions, this plot represents each distribution by a single point p, with

pair-wise distances between points given by d(p1, p2) = DKL(p1||p2) + DKL(p2||p1), where

DKL is the Kullback-Leibler divergence. As we cannot embed so many points in 2D while

reproducing all pair-wise distances exactly, we use an approximation algorithm tSNE: t-

distributed stochastic neighbor embedding. Starting from the uniform initial distribution

(labeled by a grey star), we see that under drive 1 the distribution remains near the uniform

one, though with large random fluctuations. Under drive A, on the other hand, it shows

clear directed evolution into its own unique shape. For drives 2 and 3, both of which are

symmetric under smarticle permutations, the distributions evolve in a similar direction, but

drive 3 having more predictive information moves further from the uniform starting point.

This once again illustrates that the steady-state distributions, and hence the self-organized

dynamics, tend to encode symmetries and other predictive information of their drives.

3.2 Engineering steady-states

Since self-organized states encode drive properties, we should be able to control the self-

organization by astute choices of drive pattern. In particular, if we mix two distinct drives

by stochastically switching back and forth between them, we can predict that the resulting

steady-state will be the “intersection” of the steady-states under constituent drives. This is

because predicting this mixed drive will require information about both constituent drives.
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Figure S7: Steady-state can be controlled by engineering the drive. We reproduce
the experimental results of Fig. 3 in simulation, for the same drive-patterns A and B shown
there. (A) illustrates the two corresponding steady-states, overlaid to highlight the
self-organized states that are common to the two drives. (B) shows the steady-state of the
mixed-drive protocol A+B (Fig. 3C), which concentrates primarily in the overlap regions of
A and B. (C) quantifies this intuition by plotting the actual mixed-drive probability

density p
(A+B)
ss vs. that predicted by the overlap of p

(A)
ss and p

(B)
ss (black line gives the

prediction up to normalization).

By switching stochastically, according to a Poisson process with a mean rate of one switch

every 5 drive cycles, we make sure not to introduce any new information into the mixed drive.

Thus, only those configurations that have low rattling under both individual drives (thus

encoding information about both) will be selected in the mixed-drive steady-state (Fig. 3

and fig. S7, also movie S6).

To be more precise, we can quantify this prediction. We begin by defining the covariance

matrix

C(drive)
ij (q0) ≡

〈
δqi√
δt
,
δqj√
δt

〉

(drive) | q(t=0)=q0

(S26)

Using the definition Eq. 2, which here gives R(drive) = 1
2

log det C(drive), and Eq. 3: pss =

exp [−γR] /Z, with Z being a normalization constant, we can express steady-state proba-

bility density in terms of C as

p(drive)
ss (q) =

1

Z

(
det C(drive)(q)

)−γ/2
(S27)

Thus, to predict probabilities under the mixed drive (A+B), we need to find C(A+B). Since
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the Poisson switching process keeps effects of the two constituent drives uncorrelated, the

averaging over drive realizations in Eq. S26 decouples, giving

C
(A+B)
ij (q) =

1

2
C(A)
ij (q) +

1

2
C(B)
ij (q) (S28)

for any configuration q. Note that here we can work with these quantities abstractly, without

worrying about what measuring these C matrices would entail. Now, since the covariance

matrices are positive-definite and symmetric, we have the inequality: det
(

1
2
C(A) + 1

2
C(B)

)
≥

det
(

1
2
C(A)

)
+
(

1
2
C(B)

)
. With that, and using Eq. S27 above, we get

(
p(A+B)
ss Z(A+B)

)− 2
γ ≥

(
p(A)
ss Z(A)

)− 2
γ +

(
p(B)
ss Z(B)

)− 2
γ (S29)

Now, because 2/γ ∼ O (1), and the values of pss vary over many orders of magnitude, we can

approximate this by ignoring the powers and relative normalizations Z(A) and Z(B) (assuming

they are of roughly the same order), leaving the simple expression:

p(A+B)
ss ≤ 1

Z

(
1

p
(A)
ss

+
1

p
(B)
ss

)−1

(S30)

which is an upper bound on the likelihoods under mixed drive, with some normalization

Z. This establishes the intuition that the only configurations that may be stable under

mixed drive are ones that are stable under both of the pure drives. Moreover, as we see from

empirical tests shown in Fig. 3D for experiments and fig. S7C for simulations, in practice this

bound tends to be saturated, giving us a way to predict the mix-drive steady-state p
(A+B)
ss

up to normalization (see Eq. 4).

Note that this result represents a key milestone in the development of both, the theory

of rattling, and its applications. For the theory, this is the first quantitative analytical

prediction we show that—while making use of R(q) at the conceptual level in the course

of the derivation—arrives at a result that directly relates measurable quantities of practical

interest. On top of this, it illustrates one key property of rattling. In equilibrium, to predict

the likelihood of a system configuration, we need not measure its energy directly, as we can

often predict it by adding up all the energies of system parts. Our result here indicates that
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rattling may sometimes be similarly predicted by decomposing either the drive or the system

into constituent parts whose behavior is known. This suggests that a key property that makes

the Boltzmann distribution so powerful for equilibrium systems may have a counterpart in

the rattling theory.

Our result suggests that, at least in principle, it may be possible to single out configu-

rations corresponding to desired behaviors in the steady-state of the collective by carefully

engineering drive patterns. Normally, such ordered and coordinated behaviors in robots

are the result of high-dimensional non-convex optimization that becomes intractable as the

number of agents in the collective increases. Moreover, even when such optimized control

schemes are found, they are specific to the dynamics of the collective under consideration,

and would not be applicable generally. Here, we have introduced a general principle scalable

to large collectives enabling the emergence of finely-tuned and engineered behaviors that

exists beyond the toolset of traditional robot control.

3.3 Controlling the degree of organization

We saw that self-organization arises when the response to a given drive varies widely across

the configuration space of the system. This leads to a wide variety of accessible rattling val-

ues, causing most of the probability to accumulate in the least-rattling configurations. Desta-

bilizing these states, and thus destroying self-organization altogether, amounts to flattening

the rattling landscape. In this section, we present two qualitatively different approaches to

this, derive our analytical prediction for destabilization curves, and verify them against sim-

ulation results. Since rattling is the entropy of local forces, both methods work by increasing

amount of entropy in the system. The first of these approaches gradually increases external

drive entropy, while the second tunes the system’s friction coefficient in order to increase

internal entropy generation.
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3.3.1 Tuning drive entropy

To tune drive entropy, we start with a base deterministic drive (here we use drive A from

Fig. 3 and fig. S6), and introduce some small error rate ε (see movie S8, where p = 2 ε).

Specifically, since at every time step each arm is programmed to go to ±π/2 according to

the pre-set pattern, we now give it ε probability of making the wrong move (for each arm on

every smarticle independently). This means that at every step, there is a discrete probability

distribution over the possible next arm moves for the swarm, with p0 = (1− ε)6 probability

of all the 6 arms doing the “right” move, and pk =
(

6
k

)
εk(1 − ε)6−k probability of making

k mistakes. We can easily calculate the entropy of this distribution Sd(ε) (which is a long

expression derived in Mathematica), thus predicting the amount of entropy that such drive

injects into the system.

Different system configurations will be affected differently by this change in drive entropy.

We know that rattling is the entropy of local forces acting on a configuration. Moreover,

we can define least-rattling configurations for a given drive ql.r. as those that generate no

additional entropy internally under that drive. It is thus reasonable to posit that their

rattling values R(ql.r.) will scale with Sd(ε) as we tune ε. Since the relation between rattling

and probability density log pss = −γR − logZ persists for all values of ε (as is verified

explicitly in experiment and simulation in Fig. 4C), we get:

log p(A+ε)
ss (ql.r.) = −γ Sd(ε)− logZ (S31)

for the least-rattling states. As the rattling of all the other configurations will be higher,

this will be an upper bound on probability in any state (see solid black curve in Fig. 4D).

One key prediction of our framework is that the stochasticity coming from dynamical

chaos inherent to our system, and stochasticity coming from explicit drive randomness,

while of very different origins and dynamical properties, are indistinguishable in their effect

on the steady-state. This is reminiscent of universality in statistical mechanics, where most

microscopic details of interactions and dynamics become irrelevant for determining some
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global property. This prediction is confirmed in Fig. 4C, where all three shown plots fall on

the same line, illustrating that rattling R remains predictive of pss whether the noise comes

directly from external drive or from chaotic interactions. This way, increasing ε suppresses

the likelihood of the ordered states, and collapses the range of pss variation.

Thus, to find the probability decay of any configuration, we can combine its origi-

nal rattling value with the drive entropy. As in the last section, we use the covariance

matrix C(drive)
ij , defined in eq. S26. If we let q(A+ε)(t) to be the system response under

the perturbed drive, q(A)(t)—that under the deterministic base drive, then we can define

q(ε)(t) ≡ q(A+ε)(t)− q(A)(t) as the “response to drive noise.” This way,

C(A+ε)
ij =

〈
δq

(A)
i + δq

(ε)
i√

δt
,
δq

(A)
j + δq

(ε)
j√

δt

〉
= C(A)

ij + C(ε)
ij +

〈
δq

(A)
i√
δt
,
δq

(ε)
j√
δt

〉
+ (i↔ j) (S32)

Since the noise we introduced to the drive is entirely uncorrelated with the structure of

the drive pattern itself, the cross-correlation terms vanish. The original rattling landscape

R(A)(q) is thus modified by the addition of drive noise as:

R(A+ε)(q) =
1

2
log det

(
C(A)
ij + C(ε)

ij

)
≥ 1

2
log
(

det C(A)
ij + det C(ε)

ij

)
=

1

2
log
(

e2R(A)(q) + e2aSd(ε)
)

(S33)

where the inequality is true for any two positive definite symmetric matrices. In the last step,

we again use our above hypothesis, which now says that the entropy of q(ε) fluctuations, given

by 1
2

log det C(ε)
ij , is well approximated by drive entropy Sd(ε), up to a proportionality constant

a. This gives a prediction for how the steady-state probability of any given configuration q

will be modified by ε:

log p(A+ε)
ss (q) ≤ −γ

2
log
(

e2R(A)(q) + e2aSd(ε)
)
− logZ (S34)

which is a tighter bound than Eq. S31. We know that this bound is saturated for the low-

rattling configurations, and trivially for ε = 0. Empirically, it also seems to hold as a good

predictive principle throughout the configuration space.

In Fig. 4D, we plot the decay of log p
(A+ε)
ss (q) values with increasing ε around 100 ran-

domly sampled configurations q from simulation data. These lines are colored by values of
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log p
(A)
ss (q) to allow distinguishing them visually. Note that “drive randomness” labeled in

that figure is actually 2ε, since a 50% error rate corresponds to fully random drive. The

solid line shows the upper bound coming from low-rattling states e2R(A)(q) ∼ 0, while the

dashed lines show how this gets modified for other states. These predictions use two global

fitting parameters: the vertical offset, corresponding to the normalization Z, and vertical

scaling, for the proportionality constant a. Note also that these predictions were done with

the assumption that the effect of ε on the normalization Z is much weaker than on the pss of

lower-rattling configurations that are affected most strongly. For the higher-rattling states,

this may be wrong, and so the predictions in the regime when ε is large and self-organization

is already destroyed are not reliable.

3.3.2 Tuning friction

Besides injecting entropy externally, we can achieve a similar effect by increasing the rate

of internal entropy production in a configuration-independent way. Note that the rattling

landscape itself arises through internal entropy generation, but in a way that depends on the

state and the drive. By lowering friction, on the other hand, we can increase the time between

energy injection by the drive, and its dissipation through damping. In that time-window,

this energy has a chance to thermalize via the many system nonlinearities, thereby creating

an effective temperature bath that uniformly affects all configurations. It will then play a

similar role to drive noise in the previous section, raising the rattling of the self-organized

state, and flattening the rattling landscape.

Experimentally, we can dramatically reduce friction between the smarticles and the stage

by filling the ring with a loose single layer of small plastic beads, and putting the smarticles on

top of these, thus allowing them to skate around with very low friction (see movie S7). Note

that the beads used are too light to back-react on the smarticles, and thus do not produce

any effects other than to reduce friction. In simulation, we can run a series of experiments

interpolating between these two regimes by gradually reducing damping (fig. S8). While

the exact damping force in experiment is complicated, and besides the rolling friction also
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steady-state probabilities at 200 different configurations under drive A (shown in Fig. 3,
fig. S6) as we gradually reduce smarticle friction in simulation (τ is the velocity decay
time-scale). Lines are colored according to state likelihood in the over-damped regime
(τ ∼ 0). The solid black curve is the analytical prediction for the decay of low-rattling
states, which also serves as an upper bound for probabilities of other configurations, which
are predicted by dotted curves (with fitting parameter γ = 3.1). (B) illustrates the
robustness of the relation between probability and rattling log pss ∼ −R as friction in the
system is changed. This, along with panel A, shows that measuring the overdamped
dynamics τ = 0 is sufficient to predict system behaviors for all lower friction values. (the
e-folding velocity decay time τ is shown in normalized units, where τ = 1 corresponds to
0.2 of a drive cycle.)

depends on collisions among smarticles and the ring, in simulation we simply approximate

it by Stokes drag. This may be unrealistic in detail, but guarantees stability as velocities

are capped—which may not be the case if we used a constant friction force. Empirically, the

resulting behavior agrees qualitatively with experiments.

This way our velocities get a finite decay curve: ẍ+ẋ/τ = δ(t) ⇒ v(t) = v(0) exp [−t/τ ].

We then predict that the associated increase in the mean free path acts to raise the effective

noise level everywhere by the same τ -dependent value C(τ)
ij (since v(0) would be roughly set

by motor speeds, independent of configuration). We take C(A)
ij (q) to be the baseline noise

landscape under drive A with high friction, such that τ ∼ 0—which is close to the regime in

all our other experiments.

We then artificially separate the full system dynamics into the drive response and the
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thermalized inertial fluctuations q(A+τ) = q(A) + q(τ), just as in the last section, and run

through a similar analysis as that in Eq. S32. Here, the cross correlation terms
〈
δq

(A)
i , δq

(τ)
j

〉

again vanish by assuming that due to fast thermalization on the many strong nonlinearities

in the system, the inertial noise ends up being uncorrelated with the drive pattern. This

way, with Eq. S27, we expect pA+τ
ss (q) ∝ det

(
C(A)(q) + C(τ)

)−γ/2
. Thus, as we tune up

τ , configurations that used to be low-rattling (C(A) ∼ 0) get substantially suppressed, while

chaotic configurations are only weakly affected (and may even become slightly more probable

as normalization changes).

We can do more by analytically estimating the dependence of C(τ)
ij on τ . We know that in

the steady-state, the rate of heat dissipation dQ = dt
∑

i ẋ
2
i /τ from inertial smarticle motion

must balance the rate of input work dW , which will be related to motor speeds, and so

be independent of both τ and configuration q. Note that the heat dissipation here must be

written in terms of real-space physical coordinates xi, rather than any abstract configuration-

space observables. For us, the chosen configuration-space parametrization reflects physical

motion, so we can approximately use qi directly, thus getting dQ =
∑

i

〈
dt q̇

(τ)
i , q̇

(τ)
i

〉
/τ =

tr C(τ)/τ . Balancing this against a constant work input dW , we thus get tr C(τ) = τ dW .

Now, if we further assume that as we tune τ , the inertial noise anisotropy C(τ)
ij does not

change shape, then we can write det C(τ) ∝ τ d, where d is the configuration-space dimension,

and the proportionality constant depends on dW and the precise noise characteristics. This

way, for low-rattling states ql.r. we get the prediction:

log p(A+τ)
ss (ql.r.) = −γ d

2
log τ + const (S35)

which is the solid black curve shown in fig. S8A. Note that once again, while rattling was

used as a concept in the derivation, this result directly relates experimental quantities of

interest in a novel and measurable way. Similarly, using the superadditivity property of the

determinant, we can predict the probabilities of other states based on their rattling values
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in the overdamped regime R(A)(q):

log p(A+τ)
ss (q) ≤ −γ

2
log
(

eR
(A)(q) + τ d

)
+ const (S36)

which are shown as the dotted lines in fig. S8A. All these use two fitting parameters: vertical

offset (normalization constant) and vertical scaling (γ = 3.1 here). Again, τ is assumed to

affect the normalization much less than it does the probability of the ordered configurations,

which is permissible as long as there is a wide variety of pss values.

Figure S8B once again verifies that the steady-state probabilities for various friction values

all fall on the same correlation line pss ∝ e−γR. This again illustrates generalizability of the

notion of rattling: the non-determinism in response to drive, and noise from thermalized

inertial motion have the same effect of state probabilities.
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Figure S9: Rattling prediction is robust across system parameters. (A) illustrates
that for larger numbers of smarticles N , the correlations between pss and R given by Eq. 3
persists. (B) similarly shows robustness to varying arm-lengths A, shown in units where
middle link (body) is length 1. Simulation data shown, experiments qualitatively confirmed
these trends.

4 Simulations of larger swarms

To check that our results are not restricted to the three smarticle system or other parameters

used, we simulated and ran experiments with larger ensembles and various arm-lengths. In

fig. S9 we see that in all cases, rattling remains predictive of the steady state as given by Eq. 3.

On the other hand, we also see that the range of pss variation observed becomes qualitatively

smaller in larger ensembles (fig. S9A). To understand this, we focus on the 5 and 15 smarticle

swarms (fig. S10). In the former case, as for three smarticles, we observe globally ordered

behaviors that self-organize and persist for substantial periods of time until stochastically

transitioning. As the configuration space of the swarm is larger, so is the entropic cost of

such fine-tuning, which practically means that there are more possible fluctuations that can

take the system out of such ordered motion. This makes them generally less robust than

in the 3-smarticle swarm. We characterised this behavior in simulations and qualitatively
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confirmed it in experiments.

In contrast, for 15 smarticles global self-organization is no longer visibly obvious, but

we do see the appearance of local pockets of metastable order in groups of 2-4 smarticles

(fig. S10A). These do not tend to persist for much longer than 5 drive cycles, as they are

strongly affected by their chaotic neighbors (see movie S2). Nonetheless, studying these

transient ordered behaviors may allow understanding and predicting the global dynamics of

the swarm, as pockets of local order appear frequently and can be seen as controlling the

overall behavior. Furthermore, such partial organization is what we typically observe in most

many-body active self-organization processes, and so we want to ensure that our framework

can address these.

In both, the 5 and 15 smarticle swarms, we verify that local measures of rattling are still

predictive of the steady-state density around those configurations (fig. S10B). For these larger

swarms, it is much harder to reliably sample the steady-state distributions over the entire 3N -

dimensional configuration space. As such, we can run the analysis described in Materials and

Methods on lower-dimensional coarse-grainings of the configuration space—which is also how

many-body active matter is typically characterized. As long as the selected parametrization

captures a diversity of possible system behaviors (e.g., can distinguish between ordered and

chaotic states well), the correlation between rattling and steady-state density persists (see

fig. S1, D and E).

As we move to larger many-body systems, we may want to ask more detailed questions

about the dynamics that cannot be addressed by a single scalar rattling value. In particular,

when rattling drops, this may be due to strong self-organization in a part of the system, or a

slight reduction of noise throughout. We want to distinguish these behaviors, and explicitly

to identify our 15-smarticle dynamics with the former regime. We first remember that the

motion of each smarticle is realized along its own dimensions in the configuration space.

This way, if the dynamics of a few smarticles become regular, the system trajectory through

configuration space will be confined to a sub-space corresponding to the remaining chaotic
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Figure S10: Comparing 5 and 15 smarticle swarms. (A) visualizes the swarm
dynamics for 3 drive cycles, same way as in Fig. 2E. While globally ordered motion
dominates the 5-smarticle behavior, for 15 smarticle swarm we only find organization in
local metastable groups of 2-4 smarticles. This way, the correlation in (B) is still seen in
both cases, but the relative likelihoods of swarm configurations vary over a larger range for
5 smarticles. We further probe these behaviors in (C) by plotting log-eigenvalues of the
covariance matrix C over time at a particular realization of a self-organizing transition in
each swarm size. Qualitatively, we see that a gap in the spectrum appears near the top for
5 smarticles, signifying global organization, and near the bottom for 15. Black line shows
the average value, which is proportional to R (by our definition in Eq. S37). Similarly,
(D) shows the standard deviation of log λC averaged over 1000 runs from random
initializations. This shows that the spectrum eventually spreads out in most runs,
indicating some degree of organization.
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smarticles’ exploration.

Indeed, any degree of organization in a many-body system restricts the configuration-

space trajectory to a submanifold, as some configurations become inaccessible. Then, the

covariance matrix C(drive)
ij ≡

〈
δqi√
δt
,
δqj√
δt

〉
(drive)

can be seen as a local estimate of the shape

of that submanifold. If some configuration space dimensions are explored much more than

others, this matrix will have vast diversity of eigenvalues. In a qualitative sense, the number

of “large” eigenvalues will give the number of dimensions of the restriction submanifold. This

is to say, globally ordered dynamics, being restricted to a one or two dimensional subspace,

will have all but one or two eigenvalues be near zero. If only a small part of the system self-

organizes, on the other hand, then we expect to see the few corresponding eigenvalues drop to

zero, while the rest remain large indicating chaotic exploration by the rest of the system. In

either case, when some ordered motion emerges in the system, we expect to see an increased

diversity of eigenvalues of C, and perhaps even a gap appearing in the spectrum. This is

in contrast to the scenario where all motion becomes slightly less noisy, shifting the entire

spectrum uniformly down. Note also that these eigenvalues capture similar information as

Lyapunov exponents, though here we are working with a stochastic coarse-grained system,

and so do not necessarily expect exponential divergences of trajectories.

In fig. S10C, we plot the evolution of these eigenvalues over time for a single realization

of a 5 and a 15 smarticle run. Note that by our definition of rattling in Eq. 2, we have that

R =
1

2

∑

i

log λCi (S37)

Thus, the mean value of the curves in fig. S10C, shown in black, gives the behavior of R.

In these plots, we picked a time-window showing a self-organization transition to illus-

trate the concepts described above. We see that at the onset of global order in 5 smarticles,

most eigenvalues drop off, leaving only one larger value, as the swarm motion gets (largely)

confined to a one dimensional submanifold of the configuration space. In contrast, for 15

smarticle swarm, most of that space continues being explored, with only a few of the eigenval-

ues dropping off significantly from the rest, indicating the part of the system that organized.
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Note also that unlike for 5, the spectral gap for 15 smarticles does not persist stably over

time, indicating the instability of these ordered pockets. This agrees with and quantifies the

behaviors we observed visually.

To check that these findings hold generally in an ensemble of system runs, we can look at

the mean standard deviation of these eigenvalues, specifically:
〈
std
(
log λCi

)〉
ensemble

. Thus,

while their mean (i.e., rattling), indicates “how noisy” the overall system’s response to

drive is, the standard deviation signifies the degree of anisotropy in the configuration space

exploration. This way, the plots in fig. S10D, along with the knowledge that rattling is

decaying over time (Fig. 1C), show that swarm motion typically gets confined over time to a

progressively lower dimensional submanifold of possible configurations. This trend indicates

that the degree of organization in the swarm grows on average in an ensemble of runs.
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Movie Captions

• Movie S1: Smarticle dynamics. Smarticles are simple 3-link robots comprised of a

pair of servomotors programmed by a microcontroller that receives remote commands

from a wireless radio. Smarticles cannot locomote on their own because their arms

cannot touch the flat ground they rest on. However, a swarm of smarticles can ex-

hibit complex dynamics resulting from purely repulsive interactions with one another.

The confining ring ensures that they maintain contact, avoiding the trivial decoupled

attractor.

• Movie S2: 15 smarticle swarm. To study variations of system parameters, as

well as larger smarticle ensembles, we developed a simulation platform in MATLAB.

When we simulate the dynamics of larger swarms of smarticles—15 smarticles in this

illustration—we discover small pockets of meta-stable emergent order. These regular

dynamical states are mostly comprised of groups of 3-4 smarticles, which eventually

get broken up by their chaotic neighborhoods.

• Movie S3: Self-organized behaviors. When we closely study groups of 3 smarticles

at a time, we find that the swarm can exhibit strikingly ordered dynamics, both in

experiment and simulation. Moreover, we find that even for a single pattern of driving

(i.e., smarticle arm movement pattern) the swarm can self-organize into several distinct

orderly “dances” that may be explained by the low-rattling selection principle.

• Movie S4: Rattling illustration. To qualitatively illustrate the difference between

high and low rattling configurations, we simulate a system of 3 smarticles first ini-

tialized at 5 nearby low rattling configurations and then at 5 nearby high rattling

configurations. We observe that the low rattling configurations remain orderly and

in close synchrony despite their different initializations, while the trajectories start-

ing from high rattling configurations rapidly diverge from one another. While this
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may be reminiscent of local Lyapunov exponents, their technical relation to rattling is

non-trivial.

• Movie S5: Stochastic flights between dynamical attractors. For the smarticle

system, we have shown that for a given drive pattern there are several corresponding low

rattling states that the system can inhabit. By assuming that the collective smarticle

dynamics are “messy,” we posit that they are well-approximated by configuration-space

diffusion. Here, we demonstrate one sense in which this assumption holds. Rather than

remaining trapped in a single low rattling state, the smarticle swarm spontaneously

diffuses between such states.

• Movie S6: Mixing drive patterns. To illustrate the predictive power of the rat-

tling theory, we quantitatively predict the nonequilibrium steady-state of the smarticle

swarm under a “mixed-drive” protocol, which is shown here. Figure 3 in the main text,

along with Eq. 4, illustrate that this steady-state contains only those configurations

that have low rattling under both drives A and B independently. This suggests one

way in which rattling may be used to engineer collective behaviors.

• Movie S7: Low friction experiment. We can dramatically lower the friction

between the smarticles and the surface they slide on by adding a layer of light plastic

beads. The orderly “dances” observed without the beads may still be identified in the

transients, but are very unstable, making the system behavior largely random. By

interpolating between the low and high-friction regimes using simulation, we show in

fig. S8 that rattling quantitatively predicts how these dances are destabilized. This is

explained in terms of an increased rate of internal entropy production when friction is

low, which flattens the rattling landscape, destroying the low-rattling configurations.

• Movie S8: Melting low rattling states. Starting with a deterministic arm motion

pattern, we introduce a probability of making a random arm movement, which we then

gradually tune from completely deterministic to completely stochastic (in simulation).
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We note that the self-organized smarticle dances are initially present but gradually

become destabilized as we tune up drive randomness. This quantitatively agrees with

predictions based on rattling (see Fig. 4). As the last movie showed the role of internal

entropy generation, this illustrates that external entropy injection has the same effect

on the smarticle swarm behavior. Such agreement validates the rattling framework by

showing that steady-states are independent of the details of the dynamics, as long as

rattling landscape is the same.
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