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Abstract—Many-legged elongated robots show promise for
reliable mobility on rugged landscapes. However, most studies
on these systems focus on planar motion planning without
addressing rapid vertical motion. Despite their success on mild
rugged terrains, recent field tests reveal a critical need for
3D behaviors (e.g., climbing or traversing tall obstacles). The
challenges of 3D motion planning partially lie in designing
sensing and control for a complex high-degree-of-freedom system,
typically with over 25 degrees of freedom. To address the first
challenge regarding sensing, we propose a tactile antenna system
that enables the robot to probe obstacles to gather information
about their structure. Building on this sensory input, we develop a
control framework that integrates data from the antenna and foot
contact sensors to dynamically adjust the robot’s vertical body
undulation for effective climbing. With the addition of simple,
low-bandwidth tactile sensors, a robot with high static stability
and redundancy exhibits predictable climbing performance in
complex environments using a simple feedback controller. Labo-
ratory and outdoor experiments demonstrate the robot’s ability
to climb obstacles up to five times its height. Moreover, the
robot exhibits robust climbing capabilities on obstacles covered
with shifting, robot-sized random items and those characterized
by rapidly changing curvatures. These findings demonstrate an
alternative solution to perceive the environment and facilitate
effective response for legged robots, paving ways towards future
highly capable, low-profile many-legged robots.
Page: https://juntaohe.github.io/Climbing RSS2025/

I. INTRODUCTION

Mid-sized elongated many-legged robots, ranging from 5 to
10 cm in height and 1 to 2 kg in weight, demonstrate excep-
tional mobility in navigating confined spaces and challenging
terrains. For instance, studies [20, 22] have shown that these
robots can traverse environments featuring pine straw, robot-
sized rocks, mud, bushes, and leaves. Despite these advance-
ments, most research on these systems primarily focuses on
2D planar motion planning [20, 22, 50, 11, 10, 9, 1, 34, 54].

Achieving 3D behaviors, such as climbing or steep slope
ascent, is essential, as it significantly broadens the range of
environments these robots can navigate. This is particularly
important for mid-sized robots navigating among real-world
obstacles (e.g., rocks with height 10− 30cm, metal wreckage
with height 20−40cm, and boxes/tubes with height 20−30cm,
Fig.1).

Despite the challenges in many-legged robots, extensive
climbing studies have been conducted on other few-legged

Fig. 1. Tacitly sensing multilegged robot climbing in different envi-
ronments. (Top) The robot climbs a large rock, four times its height, in
a confined space with terrain covered in mud, grass, and scattered boulders.
(Middle) The robot successfully navigates confined environments with vertical
obstacles, unstable metal bars, and flowable plastic disks. (Bottom) The robot
climbs obstacles five times its height with rapidly changing curvatures in a
laboratory setting.

robots[23, 32, 8, 19, 38, 47, 49]. Quadrupedal robots accom-
plish impressive parkour tasks by incorporating vision into
their control frameworks [23, 32, 8]. Hexapod and quadrupedal
robots utilizing adhesion mechanisms, such as vacuum pumps
[53, 16, 33], magnetic adhesion [17, 26, 24], and bio-inspired
claws [47, 49, 19, 3, 42, 7], have demonstrated robust climbing
capabilities on vertical walls and trees.
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However, directly transferring the few-legged climbing
behaviors to many-legged robots presents substantial chal-
lenge. The first challenge is the vision quality. Climbing in
quadrupedal robots relies heavily on camera data to recon-
struct the geometric features of obstacles for motion planning
[44, 23, 8]. The vision in many-legged robots suffers from the
inherent poor quality because (i) many-legged robots often
operate in confined environments where low-light conditions
obstruct vision [56, 46, 57], (ii) many-legged robots experience
substantial body orientation oscillation during locomotion,
which significantly compromise the focus of the vision, and
(iii) the position of camera is typically positioned too close
to the ground, limiting the ability to gather whole-terrain
information. The second challenge is the adhesion design.
Adhesion-based robots are constrained by their specialized
foot designs, which limit their deployment to specific surfaces,
such as metal pipes [17, 26, 24] or smooth glass walls
[53, 16, 33]. To enable many-legged robots to traverse more
general terrains, adhesive foot designs are impractical for en-
hancing climbing capabilities. Finally, 3D motion planning is
particularly challenging for these complicated high degree-of-
freedom (DoF) systems, which have over 25 DoF. That is, the
complexity of their dynamic, whole-body interactions with the
environment poses additional difficulties in developing robust
control strategies. Partially because of a lack of systematic
locomotion research on their biological counterparts, we have
limited intuition on “what to sense” and “how to respond” in
many-legged systems.

In addition to vision, tactile sensing offers a reliable short-
range perception framework [6, 13]. Recent studies [52, 29, 2,
43] highlight its ability to accurately estimate the geometric
features of objects at close range. Compared to vision-based
approaches, tactile sensing provides advantages such as lower
computational requirements and insensitivity to lighting con-
ditions, despite its limited detection range.

Building on these advantages, recent studies have integrated
tactile sensing into mid-sized robotic systems for tasks such
as environmental geometry estimation and terrain roughness
assessment. Bio-inspired tactile antennas [35, 36, 27, 28] have
been successfully incorporated into robotic control frame-
works, enabling behaviors like wall-following and climbing.
Snake robots have demonstrated impressive mobility on com-
plex terrain using tactile sensing [15, 45]. Similarly, tactile
sensing has been integrated into hexapod systems [37, 31, 52]
to support effective gait adaptation in challenging environ-
ments. Many-legged robots [20, 22, 21] have also employed
tactile foot contact sensors to adapt their gaits, showing
significant improvements in speed over rugged terrain. These
advances suggest that a tactile sensory system is particularly
well-suited for many-legged robots performing climbing tasks,
especially in highly rugged and low-light environments.

In this work, we demonstrate that a mechanically intelli-
gent many-legged robot, characterized by high static stability
and redundancy, achieves predictable climbing performance
in highly complex environments by integrating simple, low-
bandwidth tactile sensors with a simple feedback controller.

First, we propose a tactile antenna system for short-range
(10 cm) contact sensing to reconstruct obstacle geometry.
We then investigate control algorithms for robot climbing,
including open-loop and feedback-based approaches. Open-
loop control, which coordinates limb stepping with horizontal
and vertical body undulation, effectively handles obstacles
up to twice the robot’s height but has limited capability. To
overcome these, we develop a feedback control framework
that integrates antenna data and foot contact sensors. This
controller raises the robot’s head upon detecting an obstacle,
pitches it downward to position it on top, and guides it along
the obstacle’s contour using antenna contact data. Additionally,
it accelerates the transition of floating segments to stable
positions through pitch-down motions based on duty factor
data from foot contact sensors.

Laboratory and outdoor experiments demonstrate the robot’s
ability to climb obstacles up to five times its center height.
Moreover, it successfully navigates obstacles with rapidly
changing curvatures and those covered with shifting, robot-
sized debris. We also validate the robustness of this climbing
controller in complex outdoor environments: the robot suc-
cessfully completed a pipe inspection within a 20 cm radius
pipe filled with robot-sized rocks and leaves and climbed out
of a 30 cm gap under a bridge, maneuvering over scattered
giant rocks, dense weeds, and other vegetation.

II. BACKGROUND: WAVE TEMPLATES IN MANY-LEGGED
ROBOT

Fig. 2. Robot wave templates: A. Overhead view of the robot: θleg
(shoulder angle) and θbody (horizontal body joint angle) are determined by
leg amplitude Θleg and body amplitude Θbody , respectively. B. Side view of
the robot: θv (vertical body joint angle) is determined by vertical amplitude
Av .

Previous studies [9, 11, 10, 20, 22] have demonstrated that
successful navigation of many-legged robots over rough terrain
relies on coordinating leg movements with horizontal and
vertical body undulations (Fig. 2). Specifically, forward motion
is achieved by prescribing leg stepping and body undulation
patterns as sinusoidal traveling waves. In this work, we utilize
the wave template presented in this section to design an open-
loop controller. For the feedback controller, we independently
regulate the pitch motion of two vertical joints while the
remaining joints follow the wave templates.



The robot’s legs provide propulsion by retracting during the
stance phase to maintain ground contact and protracting during
the swing phase to disengage. During the stance phase, each
leg moves from the anterior extreme to the posterior extreme,
reversing direction during the swing phase. The anterior and
posterior excursion angles (θleg) for a given contact phase (τc)
are modeled using a piecewise sinusoidal function:

θleg,l(τc, 1) =

{
Θleg cos (

τc
2D ), if mod(τc, 2π) < 2πD

−Θleg cos (
τc−2πD
2(1−D) ), otherwise,

θleg,l(τc, i) = θl(τc − 2π
ξ

n
(i− 1), 1)

θleg,r(τc, i) = θl(τc + π, i) (1)

where Θleg is the maximum shoulder angle, and θleg,l(τc, i)
and θleg,r(τc, i) are the shoulder angles for the i-th left and
right leg, respectively, at contact phase τc. The shoulder angle
peaks (θleg = Θleg) when transitioning from swing to stance
and reaches its minimum (θleg = −Θleg) during the reverse
transition. Unless otherwise specified, D is assumed to be 0.5.

Horizontal body undulation is introduced by propagating a
wave along the robot’s body from head to tail:

θbody(τb, i) = Θbody cos(τb − 2π
ξb

n
(i− 1)), (2)

where θbody(τb, i) is the angle of the i-th body joint at phase
τb, and ξb indicates the number of spatial waves along the
body. For simplicity, we assume that the number of spatial
waves in both body and leg movements is equal (ξb = ξ),
allowing the lateral body wave to be parameterized by its phase
τb.

The gait of the many-legged robot is determined by the
phases of contact (τc) and lateral body undulation (τb), com-
bining leg and body waves. Effective coordination, ensuring
proper leg retraction during motion, is achieved when τc =
τb − (ξ/N + 1/2)π.

Vertical body undulation is introduced via a wave propa-
gated along the robot’s backbone:

θv(τb, i) = Av cos(2τb − 4π
ξb

n
(i− 1)), (3)

where θv(τb, i) represents the vertical angle of the i-th body
joint at phase τb, and Av defines the wave’s amplitude.

III. TACTILE SENSORY SYSTEMS

In this section, we introduce two sensory mechanisms inte-
grated into the climbing feedback control framework. The first
mechanism, the antenna, estimates the obstacle’s geometry
using its hit data. The second mechanism, the foot contact
sensor, detects the binary foot contact state and monitors the
floating state of each robot segment.

A. Tactile Antenna design

We developed an antenna equipped with two Force Sensing
Resistor (FSRs) sensors capable of detecting forces within a
range of 0 to 10 N. As shown in Fig. 3.A.1, each FSR is
mounted on a flat surface, with the base of the antenna attached

Fig. 3. Tactile sensory system. A. Antenna design. A1. The base of the
antenna is attached to a Force Resistive Sensor (FSR) using screws. The inner
part of the antenna is connected to its tip with two springs, allowing it to
deform upon contact with obstacles, thereby preventing jamming. A2. Antenna
contact states: A value of 0 represents no contact (void state), while 1 indicates
an obstacle has been detected. B. Binary limb contact sensing system. B1.
Design of a binary contact sensor for each foot, based on capacitive sensing.
B2. Contact state of the leg: 0 indicates no contact, while 1 indicates contact.

to the opposite side of the FSR using screws. The inner part
of the antenna is connected to its tip via two springs, allowing
it to deform upon contact with obstacles, thereby preventing
jamming. According to our experiments, the addition of the
antenna does not limit the robot’s physical capabilities, such
as speed or maneuverability.

The contact states of the antenna are expressed using a
binary system. When the antenna touches an obstacle, it is in
the “Hit” state, represented by 1; otherwise, it is in the “Void”
state, represented by 0. The FSR transmits an analog signal



ranging from 0 to 1024 to the onboard controller, based on
the magnitude of the force detected. In this work, we define a
“Hit” state (1) for analog values exceeding 300, corresponding
to approximately 1 N, and a “Void” state (0) for values below
this threshold.

B. Binary limb contact sensing system design

We implemented a low-bandwidth binary contact sensor
system (Fig. 3.B) to monitor foot-ground interaction for each
leg, allowing us to compute duty factor of each robot segment
and using this information as a feedback into our control
system. Contact capacitive sensors (MPR121) embedded at
the tip (highlighted in green in Fig.3.B.1) of each leg detect
capacitance variance. The toe (highlighted in red in Fig.3.B.1)
has a slight range of linear motion, resulting in minimal ca-
pacitance when the leg is suspended and maximal capacitance
when it is grounded. The analog value shows a significant
difference between the suspended state (greater than 200) and
the grounded state (less than 5). Therefore, we classify any
analog value below 50 as indicating contact.

IV. CONTROL FRAMEWORK FOR CLIMBING

This section first examines the limitations of an open-
loop controller, which coordinates limb stepping and horizon-
tal/vertical body undulation wave patterns using the templates
described in Section II. The open-loop controller is limited
to overcoming obstacles up to 10 cm in height, equivalent
to twice the robot’s height. To address this limitation, we
propose a feedback controller that adjusts vertical joint motion
by integrating antenna data and foot contact sensor inputs. This
feedback controller extends the climbing capability to obsta-
cles up to five times the robot’s height. We further demonstrate
the robustness of this controller in highly unstructured lab-
based and outdoor environments.

A. Open-loop control

The robot’s belly is naturally elevated above the ground,
allowing it to overcome low obstacles (with obstacle height
lower than the belly height, hbelly = 5 cm) with the direction-
ally compliant limbs [41].

To test this, we evaluated the robot locomotion performance
on box-shaped obstacles with heights of 5 cm and 10 cm.
The obstacle dimensions are 45 cm in width and 120 cm
in length, with the robot moving forward along the width
direction. In the experiments, the robot was positioned 5 cm
in front of the obstacle and allowed to run for 10 motion
cycles (a total of 30 seconds). The motion was tracked using
the Opti-Track motion tracking system. Climbing was defined
as successful if the robot’s head fully passed to the other
side of the obstacle. Experimental results showed that the
robot successfully traversed the 5 cm obstacle. However, when
attempting the 10 cm obstacle, the robot could only place
its first two segments on the obstacle before becoming stuck
(Fig.4.A). Here we set Θbody = π/18 and Θleg = π/6.
Our choice of gait parameter is based on the preliminary
work [11, 10, 20] and empirical experiments.

Fig. 4. Open loop experiments. A. Forward/vertical displacement vs. time
plot showing the robot climbing 5 cm and 10 cm obstacles without vertical
body undulation. The inset illustrates how the robot becomes blocked without
the use of vertical waves. B. A forward/vertical displacement vs. time plot
showing the robot climbing 5 cm and 10 cm obstacles with vertical body
undulation. The inset demonstrates how introducing vertical body undulation
raises the robot’s belly height, increasing its maximum climbing capability.

To overcome higher obstacles, and building on previous
success in using vertical waves in rough terrain [11, 20], we
propose utilizing vertical body undulation, which periodically
raises a portion of the body. We tested our vertical wave
modulation on robot experiments. Introducing vertical body
undulation into the gait raises the belly height (hbelly,v),
thereby increasing the expected maximum climbing height.
As discussed in Section II, the maximum vertical joint angle
is controlled by adjusting the vertical amplitude Av , making
hbelly,v dependent on Av . The maximum Av that ensures sta-
ble forward motion is 2π/9, corresponding to a max(hbelly,v)
of 9 cm.

We conducted experiments on obstacles with heights of 5
cm, 10 cm, and 15 cm using the gait with vertical body undu-
lation. The results show that the robot successfully traverses
obstacles up to 10 cm in height but is fully blocked by the 15
cm obstacle.

In summary, the robot using open-loop control can traverse
obstacles up to a height of 10 cm (Fig.4).

B. Feedback control

To increase the robot’s maximum climbing height, we
developed a control framework that independently controls the
vertical motion of up to two body joints, instead of coupling
the entire vertical body undulation to a single sinusoidal wave,
as described in Section II.

1) Obstacle height estimation using antenna: Climbing
requires an estimation of an obstacle’s geometric features.
Here, we use the antenna introduced in Section III-A to
estimate obstacle height for subsequent robot control.

The antenna is programmed to oscillate vertically, with
its joint angle following a sinusoidal function, Aa sin(wat),



Fig. 5. Obstacle height estimation. The z-position of the antenna tip relative
to the head joint can be estimated using a rigid transformation, based on the
length of the head segment (L1) and the antenna (La), along with the joint
angle history.

where Aa represents the oscillation amplitude and wa is the
temporal frequency. In this study, Aa is set to 5π/18, ensuring
the antenna can touch the ground when the robot operates on
flat terrain. The temporal frequency wa is set to 4, enabling
the antenna to complete one full oscillation cycle within 1/4
of the robot’s gait cycle. The robot’s vertical motion is also
adjusted at this frequency.

As shown in Figure 5, we use the antenna’s “Hit” (1) and
“Void” (0) information (Fig. 3.A.2) to estimate the obsta-
cle’s position relative to the head segment joint. An array
H = [h(t − T ), h(t − T + 1), ..., h(t)] is created to store
antenna’s contact history, where T represents the time interval
for sampling the antenna’s hit information. For example, at
time t, if the antenna detects a hit, then h(t) = 1 is appended to
the contact history array H . Otherwise, h(t) = 0 is appended
to H . This process generates a binary sequence that records
the antenna’s hit history over time.

Using the robot’s dimensions and the joint angle history
of the head segment’s vertical joint and the antenna joint,
the Z-position of the antenna tip relative to the head joint
is approximated via a rigid transformation (Fig. 5):

z(t) = L1 sin(θv,1(t)) + La sin(θv,1(t) + θa(t)), (4)

where L1 and La are the lengths of the head segment and the
antenna, respectively, and θv,1 and θa are their corresponding
joint angles. Since the length ratio between the tip and the
base is less than 1:5, the error caused by tip deformation can
be safely ignored. Similar to H , an array Z = [z(t−T ), z(t−
T + 1), ..., z(t)] is created to store the Z-position history of
the antenna.

By combining the antenna contact history, H , with the Z-
position history, Z, we estimate the Z-positions of the hit
points during probing. For the hit points which have positive Z-
coordinates, the highest three values are averaged to determine
Zmax. Similarly, for hit points with negative Z-coordinates, the
lowest three Z-values are averaged to compute Zmin. If no hit
points have positive Z-coordinates, Zmax left empty. Similarly,

Zmin is empty if there are no hit points with negative Z-
coordinates.

2) Vertical body undulation control: We divide the climb-
ing process into two phases: “raise up” (Fig. 6.A) and “drag”
(Fig. 6.B). During the “raise up” phase, the controller inde-
pendently adjusts the vertical joint angle of the first (head)
segment to position it quickly atop the obstacle. This motion
is guided by a proportional (P) controller, which uses antenna
measurements to estimate the obstacle’s lowest and highest
points. We choose to control only the head segment for the
raise-up phase instead of additional segments for two reasons
[14, 40, 55]. First, the motor’s torque capability is sufficient
to lift only one segment. Second, lifting two segments would
cause severe instability. The first two segments and the antenna
account for 45% of the robot’s weight, making it easy for the
center of mass to shift outside the base of support, resulting
in unpredictable yawing and pitching motions. In the “drag”
phase, the head segment are fully positioned on the obstacle,
pitching down the vertical joint near the obstacle edge speeds
up the transition of the subsequent segment from floating to
resting atop the obstacle.

Fig. 6. Climbing controller working principle. A. Raise-up phase. 1.
The robot raises its head when the antenna detects an obstacle. 2. The robot
pitches its head downward to position its legs on top of the obstacle once
the antenna detects that the robot has cleared the obstacle. B. Drag phase.
During the drag phase, the robot calculates the duty factor using data from
ground-foot contact sensors to monitor the percentage of missed steps. A
segment with a duty factor below the threshold is defined as floating, and the
segment with the smallest index is identified as the one nearest to the edge.
The closest vertical joint ahead of this segment then pitches downward, lifting
the segment to the top of the obstacle. In this sketch, the 3rd segment has
a duty factor below the threshold, so the second vertical joint is controlled
to pitch down. C. Special case. The sketch illustrates the special case where
the antenna detects no obstacle. In this scenario, the robot is assumed to be
beginning its descent, and a 2π/9 pitch-down motion for the head is hard
coded to facilitate the process.

We propose a head controller to regulate the vertical motion
of the robot’s head segment for both “raise up” and “drag”



phase. This controller is inspired by the wall-following al-
gorithm [36, 5]. In wall-following, the robot is controlled to
maintain a constant distance between its center and the wall.
Similarly, in our approach, the head controller adjusts the pitch
motion of the head segment to ensure the head joint maintains
a constant distance from the contour of the obstacle.

In the raise-up phase, the controller lifts the head segment
above the obstacle (Fig. 6.A1) and pitches it downward to
place the legs on top of the obstacle (Fig 6.A2). In the drag
phase, the controller keeps the underside (belly) of the head
segment closely aligned with the obstacle’s surface, allowing
the legs to maintain ground contact. Consistent contact with
the ground is essential, as the robot generates thrust by period-
ically engaging its legs with the surface [11, 10]. This behavior
is achieved using a proportional controller that leverages the
history of H and Z values from the antenna.

Fig. 7. Feedback control framework for climbing. Two parallel controllers
independently manage the pitch motion of the head segment and a subsequent
segment. Using the Z-positions (Zmax and Zmin) of the obstacle measured
by the antenna, the head controller adjusts the head segment to closely follow
the contour of the obstacle. Based on the duty factors (D1, ..., D5) measured
by foot contact sensors, the pitch-down controller identifies the appropriate
floating segment nearest to the edge and pitches it down to accelerate the
transition from floating to being positioned on top of the obstacle.

The controller first compares the absolute values of highest
(Zmax) and lowest (Zmin) Z-position (Fig. 6.A). If |Zmax|
is larger, then head segment is raised, with its vertical joint
angle controlled by Kp(Zmax + a). Here, a is the distance
between the head joint and the ground when the robot is in its
initial state (Fig. 5.A). Otherwise, the head segment pitches
downward to keep a constant distance between the head joint
and the obstacle contour, with the joint angle controlled by
Kp(|Zmin| − a).

In the special case where no “hit” detection occurs (Fig.
6.C), it indicates that the robot is descending back to the
ground. In this scenario, the controller pitches the head seg-
ment downward by a constant value θ0. This hard coded
downward motion ensures that the robot’s legs land properly
on the ground.

The vertical joint angle of the head segment is dynamically
computed as:

θv,1 =

Kp,1(Zmax + a) for Zmax ≥ |Zmin|,
Kp,2(|Zmin| − a) for Zmax < |Zmin|,

θ0 for no hit detects,
(5)

where Kp,1 and Kp,2 are proportional gains, and θ0 is a
constant that pitches the head downward when no contact

is detected. The constant a accounts for the vertical offset
between the head joint and the ground, as the local frame (Fig
5) is defined at the head segment joint, located a cm above
the ground. The value of a varies depending on the robot’s
dimensions.

During the drag phase, some segments are fully positioned
on the obstacle, while subsequent segments and legs remain
floating due to the level change (Fig. 6.B top). This results in
a slowdown as some legs lose ground contact, reducing the
overall thrust.

To accelerate the transition over the obstacle, a localized
pitch-down motion is applied to the vertical joint nearest to
the obstacle’s edge. The duty factor (D) of each segment
is monitored using data from contact sensors, and segments
with a duty factor below a threshold are identified as floating.
Among these, the floating segment with the smallest index is
considered closest to the edge. The vertical joint immediately
ahead of this segment is then commanded to pitch downward
(Fig. 6.B). Note that the index starts from 2, as there is no
vertical joint ahead of the first segment.

The pitch-down joint angle is defined as:

θv,i = Ap sin(4t) + θp, (6)

where θv,i is the vertical joint angle, Ap is the amplitude of
the periodic pitch motion, and θp is a negative constant that
biases the motion downward.

In cases where i = 1, both the head controller and the pitch-
down controller attempt to control the head simultaneously.
To resolve this conflict, we assign higher priority to the pitch-
down controller, ensuring that the head’s motion is governed
by it in such situations.

The overall feedback control framework is illustrated in Fig.
7. Note that only the pitch motion of the head segment and the
floating segment closest to the obstacle’s edge are controlled
by the controllers, while the limb stepping, horizontal body
undulation, and the remaining vertical joint undulation follow
the wave templates described in Section II.

Fig. 8. Sketches for two types of bounds. A. Illustrations of key distances:
the distance between the head and center of mass of mechanism ahead of the
head joint (Lc), and the distance between the head joint and the tip hook point
(Lh). B. When the front legs land on the obstacle, gravity acts as resistance,
slowing forward motion. This scenario can be approximated as movement on
a slope, where the effective slope angle α is determined by the obstacle height
H and robot’s length L.



3) Maximal vertical climbing capacity: In this section we
will explore the upper bound of the vertical climbing capacity
for our robot. Notably, for this analysis, we assume the
obstacle has a box-like shape.

The first bound is determined by robot’s dimension. In the
raise-up phase, the head segment is lifted and positioned atop
the obstacle. We define the pivot point as the point on the
robot that makes contact with the top of the box. There are
two possible pivot points: the belly or the leg.

We first consider the case where the pivot point is on the
belly. In this scenario, the maximum theoretical height the
robot can hook onto is determined by Lc, the distance between
the head joint and the center of mass of mechanism ahead of
the head joint (Fig. 8). Specifically, we consider a pivot point
to be stable if it lies on Lc, as pivot points along this line
ensure that the center of mass of the front mechanism enters
the obstacle’s region.

Notably, the robot’s legs can also function as pivot points
[48, 12], providing additional anchoring to enhance the head-
hooking process (Fig.8.A). The corresponding maximum box
height is denoted as Lh, which represents the distance between
the head joint and the farthest front legs. This anchoring
increases the climbing height limit, which can be expressed
as:

b1 : Hmax < h0 + max{Lc, Lh},

where h0 is the maximum distance between the head joint and
the ground over gait cycle. Note that, parameter h0 functions
as an offset that raises the belly above the ground.

The second bound arises from the mechanics of the robot.
During the drag phase, the robot naturally forms a slope along
its backbone due to the level difference between the head and
tail segments. In this configuration, gravity acts as a resistive
force, opposing forward motion. As Fig.8.B shows, the robot’s
motion can be conceptualized as movement on an inclined
plane. When the effective “slope” angle α—determined by the
robot’s geometry and the obstacle height—exceeds a certain
threshold, the robot’s forward movement becomes significantly
hindered, and it may barely be able to move forward. Here, we
define the threshold as 80% of the friction angle and the denote
the corresponding obstacle height as H ′. Then the second
bound H ′ is computed as sin(0.8 tan−1(µ))L, where L is
length between legs on the head and tail segments.

Finally, the combination of two types of bounds is expressed
as:

b1 :Hmax < h0 + max{Lc, Lh}. (7)

b2 :Hmax < sin(0.8 tan−1(µ))L (8)

Given the robot’s dimension and wave pattern parameters
in this paper, we have h0 = 7 cm, Lc = 15 cm, µ ≈ 0.5,
Lh = 17 cm, L = 95 cm and H ′ = 34 cm. Therefore, the
estimated obstacle height limit is approximately 24 cm.

C. Experiment results
We evaluated our climbing feedback controller in both

laboratory-based and outdoor environments. In these experi-
ments, the limb stepping wave amplitude (Θleg) was set to

Fig. 9. Locomotion performance comparison between open-loop and
feedback controllers across two obstacle types. A. Snapshots of the robot
traversing a 25 cm bundled-cylinder (five times the robot’s height) using the
feedback controller. B. The x indicates the robot’s forward displacement. The
left half of the graph corresponds to the box-shaped obstacle, and the right
half corresponds to the bundled-cylinder obstacle. We conducted 10 trials for
each experiment. C. This plot illustrates the forward and lateral displacement
history of the robot as it traverses a 20 cm box-shaped obstacle and a 25 cm
bundled-cylinder obstacle.

π/6, the horizontal body wave amplitude (Θbody) to π/18, and
the vertical wave amplitude (Av) to π/9. The wavenumber
of the three waves is set to 1.5. These parameters were
chosen to optimize the robot’s speed while minimizing yaw
motion during climbing, based on findings from preliminary
work [11, 10, 20] and empirical experiments. The frequency
of pitch motion adjustments made by the controllers is every
quarter cycle of motion. The Kp,1,Kp,2, a and θ0 in Eq. 5 are
set as 2, 1, 6 and 2π/9 in all experiments. Ap and θp in Eq.
6 are set as π/12 and π/6 respectively. These parameters are
tuned empirically to be most effective for our experiments.

1) Single obstacle: For the laboratory experiments, we
tested the robot’s ability to navigate box-shaped obstacles
(120 cm length × 45 cm width, Fig. 9.b) with heights of
15 cm and 20 cm, as well as bundled-cylinder obstacles
(Fig. 9.b) with heights of 15 cm and 25 cm. The second
obstacle is a trapezoidal prism constructed by stacking layers
of cardboard tubes with progressively decreasing widths. The
base layer consisted of four tubes, each 9 cm in diameter
and approximately 70 cm in length. The cylindrical shape was
chosen to evaluate the controller’s robustness when navigating



Fig. 10. Robot displacement, obstacle height estimation, and segment
duty factor tracking history. A. The geometric center history of the robot
during a single trial on a 15 cm box-shaped obstacle. B. (Top) The history
of Zmax and Zmin estimated by the antenna. If Zmax or Zmin is empty,
we set its value to 0 to simplify data visualization. (Bottom) The history of
the head joint angle determined by the Z-position data. C. The duty factor
history for each segment. Black indicates duty factors below the threshold
(D < 0.2), and the red curve connects the floating segment closest to the
obstacle edge. The index starts from 2 because there is no vertical joint ahead
of the first segment.

rapidly changing curvatures. We conducted 10 trials of test on
each obstacle.

In each trial, the robot was positioned with its antenna
5 cm in front of the obstacle. For the experiments on box-
shaped obstacles, the robot was operated for 14 motion cycles
(a total of 42 seconds). For the experiments on bundled-
cylinder obstacles, the robot was operated for 10 motion
cycles (a total of 30 seconds). The total displacement of those
experiments are plotted in Fig. 9.B. According to the results,
the robot successfully climbs a 20 cm box-shaped obstacle,
which is just below the 24 cm theoretical limit derived in the
previous section. Additionally, we observe that the climbing
limit increases when the robot is tested on the bundled-cylinder
obstacle. This is because the obstacle is not entirely vertical; its
slope (around 60◦) raises h0 in Eq.8, thus raises the climbing
limit.

Additionally, we provide a plot showcasing detailed antenna
and contact sensor data from a trial in which the robot
successfully climbed a 15 cm box-shaped obstacle. In this
trial, the robot was positioned with its antenna 5 cm in front of
the obstacle and ran for 10 motion cycles. This visualization
is intended to help readers better understand the working
principles of our controller.

In Fig. 10, A shows the trajectory of the robot’s center of
geometry. The top of B displays the history of Zmax and Zmin,
as measured by the antenna, while the bottom of B illustrates
the history of the head segment’s vertical joint angle, adjusted
by the controller based on the measured Z-position data. C
records the duty factor history for each segment, with segments
shown in black when the duty factor falls below the threshold
of 0.2. The red curves connect the floating segment closet to
the obstacle’s edge. Since the indices of floating segments start

at 2, the black grids are not connected for the first segment.
Recall that the head controller raises the head segment when

the antenna detects an obstacle and subsequently lowers it to
ensure stable leg contact with the ground. As shown in Fig.
10.B, during the raise-up phase, the antenna first detects the
obstacle, prompting the head joint angle to gradually increase.
Once the antenna determines that the area ahead of the robot
is clear, the head pitches down to place the legs securely on
the ground.

Following this, the robot transitions into the drag phase as
the first segment is fully positioned on top of the obstacle. In
this phase, the head controller regulates the vertical motion of
the head segment to maintain a consistent distance between
the robot’s belly and the contour of the obstacle.

When the head reaches the far edge of the obstacle and
begins to leave its surface, the robot enters the descent phase.
During this phase, the antenna may either detect no obstacle
or measure a Z-position lower than the head segment joint.
As expected, the head controller pitches the head downward
to facilitate a smooth descent.

In addition, the pitch-down motion controller adjusts the
floating segment closest to the obstacle’s edge, pitching it
downward to expedite its transition from floating to being
positioned on top of the obstacle. As shown in Fig. 10.C,
during the drag phase, the index of the floating segments
shifts sequentially from 2 to 5, indicating that these segments
become closest to the edge in succession. The pitch-down
controller dynamically adjusts the nearest vertical joint ahead
of these segments, facilitating a faster transition.

Fig. 11. Traversal of two consecutive obstacles A. Snapshots showing the
robot traversing two obstacles (0.15 m and 0.13 m in height, spaced 0.5 m
apart) within 150 s. B. Forward (x) and vertical (z) displacement across five
trials. Shaded regions represent the standard deviation.

2) Multiple obstacles in close succession: To evaluate the
robustness of the feedback controller in handling multiple



Fig. 12. Robot navigating unstable obstacles. Snapshots show the robot
traversing a pile of unstable, shifting obstacles — 9 cm diameter cylinders of
varying lengths (5 – 15 cm), covering a 60 cm × 60 cm area and reaching up
to 20 cm in height.

obstacles, we tested the robot on two consecutive obstacles
(0.15 m and 0.13 m in height), spaced 0.5 m apart (Fig. 11.A),
ensuring that the tail remained on the first obstacle as the
head ascended the second. Both obstacles were covered with
metal beams to increase the complexity of the task. The robot
successfully traversed both obstacles in all five trials. Tracking
results for forward and vertical displacement are shown in
Fig.1.B.

3) Shifting obstacles: We also tested the robot on a pile of
shifting cylinders (Fig. 12). The pile covered a 60 cm × 60
cm area and reached a height of up to 20 cm, consisting of 9
cm diameter cylinders with varying lengths (5 – 15 cm). In all
five trials, the robot successfully reached the peak and exited
the pile. Fig. 12 shows snapshots from a representative trial
in which the obstacles collapsed and shifted during traversal.

4) Outdoor test: For the outdoor tests, we evaluated the
robot’s climbing ability in confined spaces containing robot-
sized rocks, mud, and leaves. The robot successfully climbed
obstacles up to four times its height (20 cm) in these chal-
lenging environments. Fig. 13 shows the robot traversing a 0.2
m radius, 3 m long pipe in 80 seconds. The pipe contained
randomly placed robot-sized rocks, requiring the robot to
utilize its climbing capabilities, while leaves and pine straw
introduced entanglement challenges, further increasing task
complexity. An onboard sports camera mounted on the robot
captured footage for inspection. A compilation of outdoor tests
is available in the SI video.

V. CONCLUSION

In this work, we identified an alternative approach for
perceiving and responding to the environment during legged
locomotion, contrasting with conventional vision-based con-
trol frameworks. Specifically, we introduced a tactile-based
antenna design that enabled an elongate many-legged robot to
sense short-range contact information and reconstruct rough
geometric features of obstacles. By integrating antenna sens-
ing with another low-bandwidth foot contact tactile sensor,

the mechanically intelligent many-legged robot demonstrates
predictable climbing performance in complex environments.

Specifically, we first investigated the robot’s maximum
climbing capability under open-loop control, achieved by
coordinating limb stepping with horizontal and vertical body
undulation wave patterns. Building on this foundation, we
developed a control framework that integrates antenna data
and binary foot-ground contact information to dynamically
plan vertical body undulation, enabling effective climbing.
Laboratory and outdoor experiments demonstrated the robot’s
ability to climb obstacles up to five times its center height and
navigate challenging terrains, including obstacles with rapidly
changing curvatures and those covered with flowable, robot-
sized random items. The robustness of this climbing controller
was further validated in complex outdoor environments. For
example, the robot successfully traversed a 0.2 m radius, 3 m
long pipe filled with robot-sized rocks, leaves, and pine straw.

These findings underscore the value of integrating tactile
sensory systems and control frameworks address the chal-
lenges of 3D motion planning in many-legged robots. Given
its 3D motion capability in confined spaces, the robot also
shows strong potential for pipe inspection [25, 51, 39].

We used GPT to refine our writing.

VI. LIMITATIONS

In this work, we focused on how the antenna enables climb-
ing for a many-legged robot. With its ability to provide short-
range estimations of obstacle geometry, the antenna’s potential
extends beyond climbing to include functionalities such as
obstacle avoidance [18, 4, 30], which could further enhance the
robot’s versatility in complex environments. Exploring these
additional capabilities is a key area for future research.

We observed that the robot successfully climbs obstacles
when no strict height limit is imposed. However, the current
controller struggles to differentiate between “ceilings” and
climbable obstacles, leading to failures in specific scenarios.
To address this limitation, we plan to develop a filtering
mechanism in the control framework to correctly interpret such
cases, ensuring robust and reliable performance across diverse
terrains.

The current antenna design (Fig. 3) includes a compliant
section near its tip. Since the base of the antenna is rigid,
it occasionally experiences jamming when interacting with
obstacles. To mitigate this issue, we propose replacing the
current design with a TPU-printed antenna. This modification
would enhance flexibility, reduce the impact of environmental
interactions, and improve overall performance.

In our feedback control framework, a linear controller
adjusts the head segment’s pitch angle based on Zmax and
Zmin, while the pitch-down motion of the other vertical
joints is predefined based on missing step information derived
from the duty factors [D1, . . . , D5]. However, the optimal
mapping from sensory inputs to joint angles is likely more
complex and nonlinear. In future work, we plan to implement
reinforcement learning to train a learning-based policy, where
neural networks will provide a more sophisticated nonlinear



Fig. 13. Robot traverses a pipe. The robot completed an “inspection” task in 80 seconds within a cylindrical pipe measuring 0.2 m in radius and 3 m in
length. The pipe contained randomly placed robot-sized rocks, requiring the robot’s climbing capability, while leaves and pine straw introduced entanglement
challenges, increasing task complexity. A camera mounted on the robot captured footage during the traversal.

mapping. We anticipate that this RL-based approach will
further enhance the robot’s climbing speed.

In our analysis of climbing capacity, we found that adhesion
can aid in climbing performance. In future work, we plan
to explore adhesion-based mechanisms for the robot’s feet or
belly to further enhance its climbing ability.
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Mark R Cutkosky. Locomotion as manipulation with
reachbot. Science Robotics, 9(89):eadi9762, 2024.

[8] Xuxin Cheng, Kexin Shi, Ananye Agarwal, and Deepak
Pathak. Extreme parkour with legged robots. In 2024
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 11443–11450. IEEE, 2024.

[9] Baxi Chong, Yasemin O Aydin, Jennifer M Rieser, Guil-
laume Sartoretti, Tianyu Wang, Julian Whitman, Abdul
Kaba, Enes Aydin, Ciera McFarland, Kelimar Diaz Cruz,
et al. A general locomotion control framework for multi-
legged locomotors. Bioinspiration & Biomimetics, 17(4):
046015, 2022.

[10] Baxi Chong, Juntao He, Shengkai Li, Eva Erickson,
Kelimar Diaz, Tianyu Wang, Daniel Soto, and Daniel I
Goldman. Self-propulsion via slipping: Frictional swim-
ming in multilegged locomotors. Proceedings of the
National Academy of Sciences, 120(11):e2213698120,
2023.

[11] Baxi Chong, Juntao He, Daniel Soto, Tianyu Wang,
Daniel Irvine, Grigoriy Blekherman, and Daniel I Gold-
man. Multilegged matter transport: A framework for
locomotion on noisy landscapes. Science, 380(6644):
509–515, 2023.

[12] Markus Eich, Felix Grimminger, and Frank Kirchner.
A versatile stair-climbing robot for search and rescue
applications. In 2008 IEEE international workshop on
safety, security and rescue robotics, pages 35–40. IEEE,
2008.

[13] Ronald S Fearing and Thomas O Binford. Using a
cylindrical tactile sensor for determining curvature. In
Proceedings. 1988 IEEE International Conference on
Robotics and Automation, pages 765–771. IEEE, 1988.

[14] Qiyuan Fu and Chen Li. Robotic modelling of snake
traversing large, smooth obstacles reveals stability bene-
fits of body compliance. Royal Society open science, 7
(2):191192, 2020.

[15] Qiyuan Fu and Chen Li. Contact feedback helps snake
robots propel against uneven terrain using vertical bend-

ing. Bioinspiration & Biomimetics, 18(5):056002, 2023.
[16] Xueshan Gao and Koki Kikuchi. Study on a kind of wall

cleaning robot. In 2004 IEEE International Conference
on Robotics and Biomimetics, pages 391–394. IEEE,
2004.

[17] Xueshan Gao, Zhihong Jiang, Junyao Gao, Dianguo Xu,
Yan Wang, and HuanHuan Pan. Boiler maintenance robot
with multi-operational schema. In 2008 IEEE Inter-
national Conference on Mechatronics and Automation,
pages 610–615. IEEE, 2008.

[18] Alison Gibson, Andrea Webb, and Leia Stirling. Eval-
uation of a visual–tactile multimodal display for surface
obstacle avoidance during walking. IEEE Transactions
on Human-Machine Systems, 48(6):604–613, 2018.

[19] G Clark Haynes, Alex Khripin, Goran Lynch, Jonathan
Amory, Aaron Saunders, Alfred A Rizzi, and Daniel E
Koditschek. Rapid pole climbing with a quadrupedal
robot. In 2009 IEEE international conference on robotics
and automation, pages 2767–2772. IEEE, 2009.

[20] Juntao He, Baxi Chong, Jianfeng Lin, Zhaochen Xu,
Hosain Bagheri, Esteban Flores, and Daniel I Gold-
man. Probabilistic approach to feedback control enhances
multi-legged locomotion on rugged landscapes. arXiv
preprint arXiv:2411.07183, 2024.

[21] Juntao He, Baxi Chong, Zhaochen Xu, Esteban Flores,
Daniel Soto, and Daniel Goldman. Tactile feedback
enhances multi-legged locomotion on rugged landscapes.
Bulletin of the American Physical Society, 2024.

[22] Juntao He, Baxi Chong, Zhaochen Xu, Sehoon Ha,
and Daniel I Goldman. Learning to enhance multi-
legged robot on rugged landscapes. arXiv preprint
arXiv:2409.09473, 2024.

[23] David Hoeller, Nikita Rudin, Dhionis Sako, and Marco
Hutter. Anymal parkour: Learning agile navigation for
quadrupedal robots. Science Robotics, 9(88):eadi7566,
2024.

[24] Seungwoo Hong, Yong Um, Jaejun Park, and Hae-Won
Park. Agile and versatile climbing on ferromagnetic
surfaces with a quadrupedal robot. Science Robotics, 7
(73):eadd1017, 2022.

[25] Iszmir Nazmi Ismail, Adzly Anuar, Khairul Salleh Mo-
hamed Sahari, Mohd Zafri Baharuddin, Muhammad
Fairuz, Abd Jalal, and Juniza Md Saad. Development
of in-pipe inspection robot: A review. In 2012 IEEE
Conference on Sustainable Utilization and Development
in Engineering and Technology (STUDENT), pages 310–
315. IEEE, 2012.

[26] Giuk Lee, Geeyun Wu, Sun Ho Kim, Jongwon Kim, and
TaeWon Seo. Combot: Compliant climbing robotic plat-
form with transitioning capability and payload capacity.
In 2012 IEEE International Conference on Robotics and
Automation, pages 2737–2742. IEEE, 2012.

[27] Jusuk Lee, Simon N Sponberg, Owen Y Loh, Andrew G
Lamperski, Robert J Full, and Noah J Cowan. Tem-
plates and anchors for antenna-based wall following in
cockroaches and robots. IEEE Transactions on Robotics,



24(1):130–143, 2008.
[28] William A Lewinger, Cynthia M Harley, Roy E Ritz-

mann, Michael S Branicky, and Roger D Quinn. Insect-
like antennal sensing for climbing and tunneling behavior
in a biologically-inspired mobile robot. In Proceedings
of the 2005 IEEE International Conference on Robotics
and Automation, pages 4176–4181. IEEE, 2005.

[29] Hao Li, Chengyi Xing, Saad Khan, Miaoya Zhong, and
Mark R Cutkosky. Whisker-inspired tactile sensing: A
sim2real approach for precise underwater contact track-
ing. arXiv preprint arXiv:2410.14005, 2024.

[30] Lorena Lobo, Patric C Nordbeck, Vicente Raja, Anthony
Chemero, Michael A Riley, David M Jacobs, and David
Travieso. Route selection and obstacle avoidance with a
short-range haptic sensory substitution device. Interna-
tional Journal of Human-Computer Studies, 132:25–33,
2019.

[31] Mindaugas Luneckas, Tomas Luneckas, Dainius
Udris, Darius Plonis, Rytis Maskeliūnas, and Robertas
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