arXiv:2505.15036v1 [cs.RO] 21 May 2025

Fault-Tolerant Multi-Robot Coordination with
Limited Sensing within Confined Environments

Kehinde O. Ainal, Hosain Bagheri?, and Daniel I. Goldman?

! Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, USA.
2 School of Biological Sciences, Georgia Institute of Technology, USA.
3 School of Physics, Georgia Institute of Technology, USA.
{'kaina3, ’hbagheri, >daniel.goldman}@gatech.edu

Abstract. As robots are increasingly deployed to collaborate on tasks
within shared workspaces and resources, the failure of an individual robot
can critically affect the group’s performance. This issue is particularly
challenging when robots lack global information or direct communication,
relying instead on social interaction for coordination and to complete
their tasks. In this study, we propose a novel fault-tolerance technique
leveraging physical contact interactions in multi-robot system, specifi-
cally under conditions of limited sensing and spatial confinement. We
introduce the “Active Contact Response” (ACR) method, where each
robot modulates its behavior based on the likelihood of encountering an
inoperative (faulty) robot. Active robots are capable of collectively repo-
sitioning stationary and faulty peers to reduce obstructions and maintain
optimal group functionality. We implement our algorithm in a team of
autonomous robots, equipped with contact-sensing and collision-tolerance
capabilities, tasked with collectively excavating cohesive model pellets.
Experimental results indicate that the ACR method significantly im-
proves the system’s recovery time from robot failures, enabling continued
collective excavation with minimal performance degradation. Thus, this
work demonstrates the potential of leveraging local, social, and physical
interactions to enhance fault tolerance and coordination in multi-robot
systems operating in constrained and extreme environments.

Keywords: multi-robot fault-tolerance, multi-robot coordination, contact-
based learning, emergent multi-agent control, swarm robotics.

1 Introduction

Multi-agent systems are preferred over single-agent systems in domains that
require distributed execution or control, collaboration, and concurrency .
The key to successful multi-agent coordination lies in the system’s robustness
and fault tolerance, which are essential for maintaining continuous operation
and achieving the group’s task objectives. While robustness ensures the system
performs reliably under uncertainties and disturbances, fault tolerance enables
it to continue functioning effectively despite the failure of one or more agents.
Swarm robotics, a robust multi-agent system, has been applied in various fields
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Fig. 1: A model constrained and confined environment for multi-robot collective excava-
tion of cohesive granular media. Robots respond to environmental cues using onboard
sensors. Robot length is 32 cm.

such as environmental monitoring , military demining @, and healthcare
. However, the inherent uncertainty and non-stationarity in swarm systems
can lead to unforeseen failures, jeopardizing the mission.

Swarm robotics draws inspiration from the principles of coordinated interac-
tion seen in self-propelled entities that exhibit collective behaviors . For
instance, social insects demonstrate selective engagement in densely populated
environments lacking global cues [13H15|. Considering the complexity of their
environments, physical and localized interactions enable their robustness and fault
tolerance, allowing for rapid recovery in the face of disasters [16H18]. However,
unlike living systems, conventional robots typically lack mechanical compliance.
Therefore, most robotic collective control strategies focus on avoiding physical in-
teractions to prevent collisions [19-22]. On the other hand, multi-robot or swarm
control strategies necessitating a high level of coordination and control (e.g., )
are often impractical and can lead to catastrophic failures in environment where
precision and accuracy are important .

Motivated by these challenges, we explore fault tolerance in autonomous
robots equipped with limited sensing and operating in uncertain environments.
Our robot models are simplified but include core functionalities applicable to
real-world systems like warehouse or domestic robots. Consider the swarm robotic
scenario depicted in Figure[I] where wheel-driven ellipsoidal shape robots perform
tasks in a crowded and confined environment without centralized control or direct
communication. These robots rely on local cues and simple onboard sensors, such
as capacitive touch sensors and inertial measurement units (IMUs). This sets
them apart from other systems that rely on overhead tracking or positioning
systems for autonomous navigation and control. This aligns with certain examples
of swarm robotics systems where robots must participate in local and social or
contact interactions to collectively achieve their tasks . In this context, a
malfunctioning robot in a critical area can cause cascading effects of difficult-to-
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resolve interference and congestion. This can drastically hinder task completion
and may result in severed pathways that disrupts the workflow [28].

Our previous work developed principles that leverage local and physical
interactions within dense active systems to address the challenges of robot coordi-
nation in crowded environments [27}28]. Physical constraints imposed by such an
environment make collisions and jamming unavoidable. We observe how adaptive
idleness produces emergent coordinated flow and enhances the performance of
robotic collectives by generating workload inequality and adapting reversal be-
haviors [27[28]. These behaviors collectively emerge through contact interactions,
enabling robots to adapt to the dynamic structure of the environment.

Building on this, we introduce a fault-tolerance technique that improves a
multi-robot system’s ability to recover from individual robot failures. In particular,
we propose an egocentric dynamic contact map that enables robots to localize
and retain their contact interaction history. Upon encountering another robot, a
robot can use this map to predict whether it has contacted a faulty stationary
robot. It then either attempts to actively displace the stationary robot to a less
obstructed configuration, thereby facilitating its eventual exit from the tunnel
(Active Contact Response), or avoids further interaction to prevent it from
being pushed further into the tunnel and causing additional obstruction (Passive
Contact Response). This leads to emergent behavior where the group collectively
repositions the faulty robot, minimizing the impact on overall performance.

2 LITERATURE REVIEW

In the past few decades, researchers have explored several approaches to im-
proving fault tolerance in multi-agent systems. Failures can arise from software
malfunctions, hardware issues, or a combination of both [29]. While software-
related failures are often easier to detect and resolve due to the flexibility of
provisioning and cloning software systems to create redundancy, fault tolerance
in physical systems presents more significant challenges. This is because physical
systems often lack the flexibility to create redundancy schemes needed to easily
resolve or substitute faulty components.

To enhance fault tolerance in multi-agent systems, various redundancy schemes
have been proposed, including agent replication and high-availability hybrid
architectures [29-31]. Fedoruk et al. [32], along with other researchers, [33H36]
investigated replication as a method to maintain copies of agent states across
systems. This approach is effective in software-based systems, where faulty agents
can be detected and substituted with minimal disruption. However, in physical
systems where mechanical compliance is lacking, the problem extends beyond
replicating agent states to ensuring seamless recovery from hardware failures.

Fault detection in multi-agent systems is often achieved through inter-agent
communication via “keep alive” messages or periodic status exchanges [37]38].
While communication is an essential part of detecting and maintaining fault
tolerance in multi-agent systems, it introduces complexity and load factors in
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that it often requires the integration of information exchange channels among
numerous agents, potentially leading to decreased system performance.

Several researchers have studied fault tolerance specifically in multi-robot
systems. For instance, Park et al. [39,40] proposed a decentralized control law
to address the multi-robot rendezvous problem, consisting of nonconforming
or faulty robots. The technique is based on distributed control policy that is
robust to undetected faults in the system. Al Hage et al. [41] developed a
fault-detection method for the collaborative localization task of multi-robot.
The approach relies on the Informational form of the Kalman filter to detect
and exclude faulty sensors from the team. Yang et al. [42] outlined several
approaches for fault tolerance in cooperative control of multi-robot systems. In
multi-agent systems, increased redundancy and flexibility bring about heightened
complexity and challenges. Hence, the authors introduced four categories of fault-
tolerant cooperative control methodologies: individual, cooperative, topology
reconfiguration-based, and composition reconfiguration-based.

Our approach differs from traditional fault tolerance techniques as it does not
rely on explicit fault detection and identification. Instead, we employ a passive
fault-tolerance scheme in which robots leverage local interactions to collectively
address failures. This method is particularly effective in noisy and partially observ-
able environments, where explicit fault identification may be impractical. Robots
make decisions based on their private contact interaction history, potentially
providing scalability to our method. Furthermore, the decentralized nature of the
ACR method enables the collective to accomplish the task without requiring the
activity history of neighboring robots. This presents a distinct advantage over
numerous established swarm robotics methods, which rely on shared information
between agents to complete a collective task [9L11}[12].

3 MULTI-ROBOT COLLECTIVE EXCAVATION

The multi-robot collective excavation problem, as described in previous work
[27./43], involves a team of homogeneous robots assigned to continuously retrieve
cohesive model granular media (“pellets”, 3D-printed hollow spheres with embed-
ded loose magnets) within a narrow and confined tunnel (Figure[l)). The objective
is to maximize the number of pellets collected within a fixed time frame. Each
robot is equipped with basic sensors such as an IMU, wheel encoders, capacitive
touch sensors, force-sensing resistors, magnetometers, and terminal rod capacitive
sensors, but lacks global control and access to other robots’ states.

Each robot begins a trip by departing from the home area and following guid-
ance trails towards the excavation site, which is detected using a magnetometer
at the robot’s anterior base. Upon locating the cohesive pellets via magnetic
field sensing, the robot initiates the excavation routine in an attempt to collect
the pellets. If successful, the robot transports the pellets back to the home area.
While navigating through the tunnel, robots may detect and differentiate contacts
or collisions with other robots or the tunnel walls. When robot-to-robot contact
is detected during transit to the excavation area, a robot may abandon or “give
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up” its digging attempt based on a predefined reversal probability, P, (Figure [2]),
a behavior referred to as Reversal Behavior [27]. This behavior is also triggered
when a robot is unable to reach the excavation site within a specified time frame,
T,, preventing prolonged tunnel congestion when the robots are in a gridlock.

3.1 Robot Controller

We adopt a behavior-based control model consisting of two layers of a Finite
State Machine (FSM) [44]. The top layer uses a probabilistic FSM model, in
which the robot decides which operational mode to enter, determined by an
entrance probability parameter, P.. The robots choose whether to operate in
Active Mode, meaning they enter the tunnel to participate in pellets excavation,
or in Conservative Mode, where they remain in the home area and refrain from
participating in excavation. If a collision occurs while entering the tunnel, the
robot decides to “give up” and return home based on the reversal probability
P,.. At the bottom layer, the robot initiates state transitions in response to
physical cues from the environment. Each of the sensors on the robot (Figure [1))
is configured with a trigger condition that enables it to transition between
different states. Figure [2] shows the model of the robot’s controller. The robots
can exist in one of several internal states depending on their operational mode
and environment interactions. These internal states include:

1. Going to Dig: This state is activated at the beginning of a trip, k, if the robot
decides to enter the tunnel for excavation based on the probability P, (k). It
is the first state in the robot’s Active Mode.

2. Digging: Once the robot approaches the cohesive granular media, the magne-
tometer at the robot’s anterior base detects the magnetic field, prompting
the robot to start its excavation routine.

3. Going Home: This state captures the robot’s return back home, either fol-
lowing a successful pellet retrieval (Successful Trip) or an unsuccessful pellet
retrieval (Unsuccessful Trip). The controller guides the robot from the tunnel
to the home or deposit area. The entrance probability for the next trip,
P.(k 4+ 1), is updated based on the success of pellet retrieval (Algorithm .

4. Resting: A robot transitions into this state when it chooses not to enter the
tunnel, triggering the Conservative Mode. A robot will enter this state at
the beginning of a trip based on resting probability P, (k) =1 — P, (k). The
robot remains idle in the home area for a fixed amount of time, T;., avoiding
tunnel traffic and reducing congestion.

5. Collision: This state is triggered when a robot makes contact with the tunnel
wall or another robot through its capacitive sensors. The robot can respond
in one of three ways depending on its previous state:

(a) Default Maneuver: The robot executes a random turning maneuver to
resolve the collision and continue with its task.

(b) Reversal Behavior: The robot abandons its task to avoid further conges-
tion and returns to the home area.
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Fig.2: (A) Block diagram of the individual robot controller based on Finite State
Machine. P, is the probability of switching to Active Mode. P, is the probability of
switching to Conservative Mode. P, is the probability of “giving up” upon detecting
contact with another robot. R, is the probability that the contact is from a faulty robot.
(B) Schematic of experimental setup showing three active robots (green, blue, and red),
and one faulty robot (yellow). The origin of coordinate system is indicated.

(c¢) Active Pushing: The robot attempts to actively push the obstructing
robot or obstacle to reposition it into a less obstructive configuration.

Note that a robot can transition to collision state from any state other than

the Resting state. This is omitted in Figure [2| (A) to avoid visual clutter.

We developed a stochastic model with two parameters to control the entrance
rate and reversal rate (give-up rate) of the robots. Let P. (k) be the tunnel
entrance probability and P, (k) be the reversal probability of each robot at
trip attempt number k. A trip begins when a robot samples from the entrance
probability, P. (k) and decides whether to “go in and dig” or “stay at home
and rest”. This parameter controls the number of robots in the tunnel, directly
influencing tunnel density and congestion rate. The reversal probability, P, (k),
on the other hand controls how a robot responds to a collision when it occurs,
directly influencing the duration of congestion in the tunnel. A robot samples
from this parameter and decides if it should “give up” or to continue its journey.

4 ACTIVE CONTACT RESPONSE METHOD

Here we introduce the Active Contact Response (ACR) algorithm, which main-
tains a transient space-time contact map of each robot’s contact encounters in
the tunnel. This enables robots to infer the likelihood of contact with a faulty
robot and take the necessary actions to mitigate persistent interference. Initially,
each robot’s contact map is initialized to zero, implying that they have no prior
information about the distribution of active and passive (faulty) robots in the
environment.

As collective excavation progresses, each robot continuously updates its contact
map based on the contact type (e.g., robot or wall) it encounters. Using the
capacitive touch sensors (Figure , robots can distinguish between robot-to-
wall and robot-to-robot contacts. Adopting a time-varying cumulative map to
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represent interaction history enables the robots to develop a belief state regarding
the potential location of a faulty robot in the environment, should one exist.
Specifically, the robot updates: 1) the frequency of each contact type, ¢, and ¢y,
and 2) the longitudinal position, [, where the contact occurred. The contact map,
M(.,.), which is a function of contact type and longitudinal position, undergoes
conditional updates using the following equation (Algorithm :

M(le)t-l-l = M(Cr,l)t + wy % w

1
M(cw, )41 = M(cw, 1)t + wyp x W (1)

where:
Cr = robot-robot contact
Cw = robot-wall contact
l = estimated contact position

M(ep, 1) = frequency of robot-robot contact at position [
M (ew, 1) = frequency of robot-wall contact at position I

Wy = conditional likelihood of detecting a robot-robot contact
W = conditional likelihood of detecting a robot-wall contact
%% = weighting factor

The conditional likelihood values w, and w,, are obtained through the cali-
bration of a contact sensor’s sensitivity to robot and wall contacts respectively.
At regular intervals, the frequency of each contact type is decreased by a con-
stant, 3, to reduce the effect of noise and the non-stationarity of the multi-robot
environment: M (c,{)i41 = M(c, 1) — .

Each robot uses its dynamically updated contact map to make Active Contact
Response decisions based on the likelihood R, that a robot-to-robot contact is
originating from a faulty robot. The likelihood is calculated as follows:

oS M(erl) @

o> M(crl) 1 o> M(cw.l)
Where Y is over the projected length of the robot. The rationale for this
expression relies on the normal distribution of robot contact frequency along the

tunnel’s length, where the mean contact frequency correlates with the location
of the faulty robot. See algorithms [I] and [2] for the implementation pseudo code.

R.=

An active robot going into the tunnel to excavate seeks to resolve collisions
and improve group performance by voluntarily “giving up”. However, a wrongly
positioned inactive or faulty robot will impede group performance by causing
persistent jamming or gridlock. As mentioned in the previous section, if a contact
is detected, a robot has three options, conditioned on the internal state: 1) execute
the default maneuver to resolve contact - passive contact response, 2) execute
reversal behavior to avoid tunnel clogging - reversal behavior, or 3) execute
the ACR maneuver to displace the supposed faulty robot to a less obstructive
configuration. For instance, when a robot has a high confidence (R. = 1) that
it has encountered a stationary faulty robot en route to the excavation site, it
maneuvers around it by implementing either the reversal behavior or the passive
contact response. However, upon the robot returning home from excavation, it
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Algo 1: Active Contact Response

Algo 2: UpdateContactMap()

Initialize: k = 1, P.(k) =1, P, = 0.64,
tprev = 0, M(:,:) = 0;

Set: expt. duration,Te; prob. update, Ar;
“giving up” time,Ty; resting time,T}.; update
rate,AC; R-R likelihood,w,; R-W
likelihood,w,,; weight,W; decay rate,f3.

while t < T. do

if p~U(0,1) < Pc.(k) then

should_dig = 1

while should_dig == 1 do

if ContactDetected then

UpdateContactMap()

if ¢ ~U(0,1) > P.(k) then

should_dig = 0
L should_go_home =1
break

if GrabsPellets or (t > Ty)
then
should_dig = 0
should_go_home = 1
L break
if (t — tprev) > AC then
for c =0; ¢ < C; c++
for 1l =0;1 < L; l4++
M(c,l) = M(c,l) — B

tprew =t

while should_go_home == 1 do
if ContactDetected then
| UpdateContactMap()

if ReturnsHomeWithPellets
then
Pe(k+1) =
max (1.0, P. (k) + Ar)
should_go-home = 0
break
else
P.(k+1)=
max(0, P (k) — Ar)
should_go_home = 0
L break
if (t —tprev) > AC then
forc =0; ¢ < C; c++
for l =0; 1 < L; I++
M(c,l) = M(c,l) — B

tprev =t

else
while (¢t — teyr) < T do
L RestRobot()

k=k+1

EXPERIMENT

I = getRobotX Coordinate()
if robot-robot contact then
M(Cr, l)t+1 = ]\J(Cr7 Z)t 4w, x W
M(cw,)t41 =
M(cw, )t + (1 —wyp) * W

else

M(er, D41 =
M(cr, D)+ (1 —wy) * W
M(cw,)t41 = M(cw, )t + ww * W

X M(ersD)

eX Mer D) 4 o5 M(ew 1)

R. =

if State = GoToDig() then
if ¢ ~U(0,1) > P, then
|  GoToHome()

else
| PassiveContactResponse()

else

if ¢ ~U(0,1) < R, then

| ActiveContactResponse()
else

| PassiveContactResponse()

will bias its behavior by continu-
ously pushing the stationary faulty
robot until it can proceed without
obstruction (i.e., ACR maneuver).
However, if the robot fails to make
progress in repositioning the faulty
robot within a set time frame T,
it transitions to passive contact ma-
neuver. In passive contact maneu-
ver, robot ceases biased behavior
and resorts to default contact resolu-
tion maneuvers to avoid further con-
gestion and gridlock. This fallback
mechanism adds robustness to the
ACR method, ensuring that robots
do not become ”stuck” in repetitive,
ineffective maneuvers.

We implemented the Active Contact Response (ACR) algorithm described in
Section I'V on physical multi-robot system to evaluate its performance against our
baseline algorithm. In the baseline algorithm, robots neither employ a contact map
nor actively respond to or bias their behavior when they detect collision with other
robots. Instead, robots either attempt to resolve collision and continue (Passive
Contact Response), or “give up” on excavation efforts (Reversal behavior).
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In our experimental setup, three active robots are tasked with excavating
pellets, while a fourth stationary robot, powered off, serves as a model for the
faulty robot (Figure . The active robots were unaware of the presence of a
“faulty” robot. Instead, they had to infer the likelihood of encountering a stationary
robot based on the distribution of collision frequencies along the tunnel length.
We designed the tunnel width to accommodate two robots either moving in the
same direction, or moving in opposing parallel directions.

At the start of each experiment, we placed the faulty (stationary) robot per-
pendicularly in the middle of the tunnel (Figure . The perpendicular orientation
of the faulty robot with respect to the length of the tunnel was selected to ensure
sufficient contact interaction with the active robots. Positioning the faulty robot
in the middle of the excavation path ensures it remains adequately distant from
both the home area and the excavation site.

It is important to note that the position of the faulty robot is critical in
determining the group’s overall performance. For example, the interference is
maximum when the passive robot’s orientation is perpendicular to the longitudinal
direction of the tunnel, as well as when its position is close to the excavation
area, where robots would need to execute turning maneuvers more frequently
(Figure . This faulty robot configuration further constrains the dimension of
the excavation arena and impacts the group’s excavation performance.

On the other hand, interference is minimal when the faulty robot’s orientation
is parallel to the longitudinal direction of the tunnel and its position is close to
the home area, where there is enough space for the robots to make turns without
much collision or interference. This configuration is termed less obtrusive because
the robots can still complete their excavation and deposition tasks.

The ACR algorithm functions by implicitly minimizing interference caused
by the faulty robot through indirect displacement and reorientation into a less
obstructive configuration. As described in the previous section, the active robots
use their cumulative sum of contact experiences to estimate the likelihood of
encountering a stationary robot. In the case when there is no faulty robot in
the tunnel, the collision map or collision frequency across the tunnel length
would follow a uniform distribution. This implicitly reduces the probability that
a contact interaction stems from a stationary robot.

The experiment was conducted in a tunnel of fixed length, with each robot
using independent FSM (Section 3). The experiment duration was set to 30
minutes, with the initial tunnel entrance probability, P., set to 1, ensuring
that all robots started in Active Mode. Key hyper-parameters, including reversal
probability (P,), resting time (T7.), and give-up time (T}), were optimized through
preliminary trials. Adjustments to these parameters may lead to varied learning
and convergence times, but the robots will demonstrate similar overall behavior.
During the experiment, P, was gradually adjusted based on the robot’s excavation
success, as described in the workload distribution methods in our prior work [27].

At the conclusion of each experiment, the final configuration (position and
orientation) of the faulty robot was measured to assess the level of obstruction it
introduced to the system. Three experimental trials were conducted for both the
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Fig. 3: 1. Comparison of excavation performance between the Baseline and ACR methods
across three trials. Solid-dotted and dash-dotted lines represent the mean excavated
pellets, with shaded areas indicating the standard deviation. 2. Final configuration of
the faulty robot after each trial: (A) Three Baseline trial, and (B) Three ACR trials. .

ACR and baseline methods to ensure consistency and reliability in the results.
Each trial provided valuable insights into how the positioning and interaction of
the faulty robot impacted overall excavation performance.
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Fig.4: 1. Robot trajectories tracked overtime for (A) Baseline method, and (B) Active
Contact Response (ACR) method. Tunnel spans from 0 cm (home area) to 300 cm
(digging area). 2. Top-view snapshots of the ACR experiment: (A) Initial configuration
of faulty robot obstructs traffic flow, resulting in clustering at the middle of the tunnel.
(B) Subsequently, active robots update their collision map and maneuver around the
faulty robot to reach the excavation area. (C) Finally, active robots effectively reposition
faulty robot into a less obstructive configuration through active pushing and nudging.

6 RESULTS AND DISCUSSION

Figure 3] 1 highlights the cumulative pellet deposition for both the ACR and
Baseline methods (measured by monitoring of a scale onto which pellets were
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deposited). Initially, both methods demonstrate similar excavation rates during
the first 10 minutes, but a divergence occurs as the experiment progresses. The
Baseline method exhibits a consistently lower excavation rate throughout the
remainder of the experiment. This decline is largely due to frequent collisions
with the faulty robot, which led to more robots giving up and resting rather than
attempting to reposition the faulty robot to a less obstructive configuration. In
contrast, the ACR method more effectively managed the presence of the faulty
robot by actively repositioning it, resulting in a significant improvement in the
overall excavation rate. By the end of the 30-minute experiment, the ACR method
had excavated and deposited nearly twice as many pellets as the baseline method.

At the conclusion of the experiment, we measured the final position and
orientation of the faulty robot to assess obstruction levels. Optimal configurations
are characterized by orientations close to zero degrees (parallel to the tunnel)
and positions near the home area, which minimize obstruction. As shown in
Figure [3]2, the ACR method successfully displaced and reoriented the faulty
robot into a less obstructive position in two of the three trials. The third trial
is not considered a failure, as no total obstruction occurred. Typically, total
obstruction arises when the faulty robot is oriented perpendicular to the tunnel,
preventing the active robots from bypassing it. In contrast, the Baseline method
resulted in more obstructive final configurations across all trials, which directly
contributed to the reduced excavation performance (see youtube link for demo).

Figure [4] illustrates the robot trajectories in one trial for each method. The
Baseline method trajectories depict a scenario where active robots unintentionally
pushed the faulty robot deeper into the tunnel, exacerbating the obstruction
near the excavation site. In contrast, the ACR method resulted in active robots
consistently pushing the faulty robot out of the tunnel towards the home area,
reducing its obstruction potential. As previously discussed, the orientation of
the faulty robot plays an important role in determining the level of obstruction.
Faulty robots positioned perpendicularly to the tunnel create the most severe
obstructions, which was more common in the baseline trials.

Contact interactions in the ACR method play a dual role: first, they enable
robots to learn the collision map to infer the dynamics of the tunnel; second,
they help regulate the number of active robots based on the parameter (P.) [27].
The position of the faulty robot significantly impacts collision frequency, which,
in turn, influences the workload distribution. When the faulty robot is located
at the tunnel’s extremities (e.g., near the home area or close and parallel to the
wall), it causes minimal collision, thereby maximizing the number of active robots
and reducing the need for ACR activation. However, when the faulty robot is
positioned in the middle of the tunnel or near the excavation area, it creates a
substantial bottleneck, decreasing the number of active robots and increasing
the likelihood of ACR activation. This adaptability indicates the robustness of
the ACR method across different initial configuration of the faulty robot.

Despite the robustness of the ACR method, certain limitations remain. Specif-
ically, the method struggles with edge cases where the faulty robot is positioned
in dead-end areas (e.g., excavation zone), rendering active pushing ineffective. Ad-
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ditionally, as the number of robots increases, convergence becomes more difficult
due to overcrowding and the highly non-stationary environment, which impedes
task execution. To mitigate this challenge, a “curriculum learning” approach
could be employed, where the the number of robots is increased gradually.
Comparing our method to existing fault-tolerance techniques presents chal-
lenges due to the unique reliance of the ACR method on contact-based interactions.
Most contemporary methods depend on precise state estimation, localization,
and inter-robot communication for centralized control. By contrast, the ACR
method is designed for extreme environments with limited resources, making it
highly suited for such conditions. A statistical analysis was conducted on three
trials per method, with ANOVA tests performed on the results (Baseline: one-way
ANOVA F =0.74, P = 0.49; ACR: one-way ANOVA F = 0.31, P = 0.74). The
p — values exceeded the significance threshold of o = 0.05, confirming that the
trials adequately capture the distribution of experimental data for our objectives.

7 CONCLUSION

In this work, we demonstrated how leveraging contact interactions can enable
emergent fault tolerance in decentralized multi-robot systems, even in envi-
ronments where precise sensing and global control mechanisms are absent. By
utilizing noisy contact measurements and localization, each robot is able to
estimate the conditional likelihood of encountering a faulty robot. This allows in-
dividual robots to adjust their behavior to collectively reposition the faulty robot
into a configuration that minimizes interference and maintains optimal group
performance. The proposed Active Contact Response (ACR) algorithm enables
robots to autonomously recover from system disruptions caused by individual
robot failures, ensuring continuity in collective tasks.

The ACR technique has the potential to be scaled to larger teams of robots,
offering promise for broader applications. Future research will investigate the
scalability and generalizability of the ACR method, particularly by simulating
larger multi-robot systems and comparing the performance of ACR against other
existing fault-tolerance techniques. In more complex, dynamic environments with
a higher number of robots, introducing local information exchange—such as
collision map sharing—could further enhance system performance. Additionally,
this technique has the potential to be applied in other multi-agent scenarios, and
smart active matter systems, where individual agents can leverage social, local,
and physical interactions to improve fault tolerance and tackle more intricate
challenges. This work opens avenues for expanding fault-tolerant strategies in
distributed, resource-constrained robotic systems.
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