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SUMMARY

Legged locomotors effectively manipulate their appendages to traverse com-

plex environments that are challenging for wheeled vehicles. Jumping is a common

impulsive mode of legged locomotion for various animals. It is used as a primary

mode of locomotion, to reach higher places, for predation, and also as a survival

mechanism. With the advent of robots designed with inspiration from nature’s excel-

lent jumpers, it is important to understand the fundamental factors and mechanics

that optimize jumping performance. Animals often amplify their jumping power with

effective use of compliant structures by performing catapult jumps, squat jumps and

countermovements. Certain animals utilize a variant of countermovement known as

the stutter jump, where the jump is preceded by a small initial hop. Biologically

inspired robots have taken a cue from nature to produce hopping gaits, catapults

and squat jumps, yet systematic studies of the movement trajectories that maximize

jumping performance are relatively scarce.

Jumping locomotors that exhibit such high speed movements have been described

in certain literature by complex models. Yet even on hard ground, simple spring-mass

jumpers can exhibit rich dynamics and provide insight into more complex systems. In

this dissertation we discuss how, even on hard ground, the jumping performance of a

one dimensional actuated spring-mass hopper is sensitive to its active self-deformation

strategy, which induces motion coupled to both aerial and passive spring-mass dy-

namics. In concert with simulation, we systematically varied the robot’s actuation

trajectory and uncovered how a countermovement produced a stutter jump that is op-

timal at a frequency lower than the natural frequency, f0, and a squat jump produced

a single jump that is comparably optimal but at a higher frequency, which requires
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more internal power. An analysis of the dynamical model revealed how optimal lift-off

results from non-resonant transient dynamics.

We then posited that understanding the dynamics of rapidly self-deforming ob-

jects in complex media would require a robophysics (the pursuit of principles of self

generated motion) approach that could grant new insights into both nonlinear robot

dynamics and soft matter physics. Thus, we studied the performance and dynamics

of the spring-mass hopper in granular media via a three-fold approach. First, we per-

formed jumping experiments in a bed of granular media that was constructed such

that it controlled volume fraction (loose packed, φ = 0.58, to close packed, φ = 0.63)

via air fluidization, air pulses, and bed shaking (Fig. 38) and automated the perfor-

mance and kinematic data collection of hundreds of jumps in succession. Second,

we performed systematic empirical measurements of quasistatic resistive forces dur-

ing slow constant speed intrusions. We also performed a particle image velocime-

try analysis of granular flow during jumping that granted insights into substrate

inertia and a jammed granular cone that developed beneath foot during intrusion.

Finally, we compared experimental jumps with a simulation using various granular

force models acting on the foot which combined velocity-dependent inertial drag and

depth-dependent hydrostatic friction. These experiments led to the development of

a reactive force theory incorporating a granular cone-based added mass force that

was able to reproduce experimental jump heights in simulation. This model was then

embedded into a motion planning optimizer to produce optimal open-loop controlled

jumps.
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CHAPTER I

INTRODUCTION

1.1 Motive and Overview

Terrestrial organisms [13][61] as well as robots [128][163][162] run, climb, and jump

over diverse terrain to traverse complex environments in ways that conventional

wheeled vehicles are unable to accomplish [20], and do so by effectively bending

their multi-jointed appendages and bodies. In particular, jumping is a common mode

of locomotion for various animals [84][29][174][130][219][1][42] as well as for robots

[20][183][173][78]. Unlike periodic gaits such as hopping or running, whereby energy

generated in previous cycles can be leveraged to efficiently sustain motion, jumping

relies almost purely on a transient burst of activity to produce take-off from rest.

While bioinspired robots have utilized jumping mechanisms revealed from biological

studies, there have been few systematic studies of the dynamics of these transient

behaviors, particularly on complex media like sand. And with the advent of robots

taking inspiration from nature’s excellent jumpers, there is a need to understand the

mechanisms that influence jumping performance.

This dissertation presents a robophysics approach (the pursuit of principles of self

generated motion [4]) to systematically study the dynamics of jumping on both hard

and deformable ground. For jumping on hard ground, the present work expands on

the results from Aguilar et al. [3], which characterized the dependence of jumping

performance on the robot’s hybrid air/ground dynamics, and analyses how relative

jumping performance and power requirements of different actuation strategies change

at different as a function of mass, gravity, stiffness and forcing amplitude. To contrast

with the dynamics of jumps on hard ground (in which the unyielding ground supplies
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the necessary normal force to counteract downward motion), we study a relatively

simple deformable medium: dry granular media, which can exhibit both solid and

fluid-like dynamics. Through the simultaneous analysis of both the robot and granular

dynamics during jumping, our study reveals not only actuation principles crucial to

jumping on complex media, but also new granular physics [2], like an added mass

effect induced by a jammed granular cone beneath the robot’s foot. Additionally, in

collaboration with the Professor Aaron Ames’ group at Georgia Tech, we incorporate

these granular dynamics into a motion planning optimizer to produce optimal open

loop controlled jumps.

Within this framework, this Chapter (I) provides an overview of previous work on

jumping animals, robots and theoretical models as well as granular modeling. Chapter

II presents research on hard ground jumping, Chapter III presents our research on

jumping on granular media, and Chapter IV concludes and proposes future directions.

1.2 Hard Ground Jumping

1.2.1 Biological Jumping

Jumping is an important and common behavior among legged terrestrial locomotors

in nature. Animals jump to escape predators and conversely as a predatory behavior

[107][140], to reach higher ground, and even as a primary means of locomotion. As

such, many animals have become specialized in jumping. Cats, bushbabies, frogs,

and a variety of insects are some of the best jumpers (Fig. 1).

There has been considerable interest over the years in understanding the mecha-

nisms of jumping that maximize performance [90]. At the most basic level, jumping

involves a transient burst of motion in which the muscles of an animal’s grounded

appendages shorten and lengthen, interacting with bone and connective tissue to

generate a force that propels the body away from the ground, generating lift. Size,

relative muscle mass used for jumping, and relative limb length are factors that can

2



affect jumping performance [227][52]. Yet in various animals, the overall power out-

put of a jump is many times greater than the maximum power provided by muscles

used for jumping [29][66][31]. The following sections provide an overview of research

on the mechanisms that affect the jumping performance of animals.

We note that there are many metrics used in literature to quantify jumping perfor-

mance. For example, Wilson et al. [215] considered take-off velocity, jump distance,

maximum power, average acceleration, and contact time in studying how jumping

performance changed with body mass amongst striped marsh frogs. These metrics

scaled differently among different species and groups, and the jump performance

metrics vary amongst different studies. In our research on the dynamics of a simple

jumping robot[3, 2], we only considered one dimensional vertical jumping. We used

jump height as the performance metric, which is directly related to take-off veloc-

ity. In many biological studies, the notion of jump ”ability” was used, in which,

jump height or distance was compared against the animal’s size (typically snout-vent

length) [227, 174]. A similar nondimensionalization is made later in our analysis in

which jump height is scaled with forcing amplitude (for a single cycle of sinusoidal

forcing), which may be analogous to leg length.

3



Figure 1: Various jumping animals: Felis catus, Galago senegalensis, Craugastor

fitzingeri, Homo sapiens, Petrogale xanthopus, and Pulex irritans. Michael Jordan

photo courtesy of NBA, other images courtesy of Wikipedia.

1.2.2 Effects of Size and Morphology

Organisms that are adept at jumping exist over a large range of sizes, from fleas

to kangaroos. Larger animals typically have more muscle mass and produce higher

jump height (Fig. 2(a)). There have been numerous studies in which this scaling effect

has been examined directly within specific animal species. Zug [227], for example,

studied the jumping performance of 84 different species of frogs. The amphibians were

tested in rectangular arenas in the laboratory, and their jump distances were recorded.
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Within a species, jumping distances increased with body size, characterized by snout-

vent length (head to tail). Similar results were found in Wilson’s study of striped

marsh frogs when comparing differences in mass to various performance metrics, all

of which correlated positively with increases in mass [215]. In a study comparing

the jump performance of 15 species of Anolis lizards, jump distance increased with

increasing snout-vent length. Demes compared the kinematics of 4 species of Malagasy

lemurs of varying body mass [59]. Since the animals were observed jumping in their

natural habitat, jump heights were not systematically measured. However, it was

observed that acceleration times increased with increasing body mass.
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Figure 2: Comparing the jump performance of different sized animals. (a) Jump

height vs. size. (b) Jumping ability vs. size. Biological jump height data compiled

from numerous studies [84, 29, 70, 94, 44, 174, 175, 227, 52, 53, 179, 130, 206, 219, 91,

88, 60, 59, 197, 1, 97, 120, 56, 42, 208, 123, 100, 116, 68, 143]. Note: Values shown

for frogs were reported as distances rather than heights; angles of take-off vary, but

are approximately around 45◦ [139].
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Many studies have demonstrated that, when considering jumping ability (jump

height relative to body size), the relationship is inverse to body size (Fig. 2(b)).

Among six species of Anurans (frogs), size was inversely correlated to relative jump-

ing distance [174]. Similarly, Zug also found that, while absolute jumping distance of

frogs increased with increasing snout-vent length, relative jumping ability decreased

with increasing snout-vent length [226][227]. The values related to this inverse re-

lationship varied among different species. Particularly, amongst different species,

performance differed depending on leg morphology. Rand’s findings revealed a posi-

tive correlation between relative hind limb length and jumping ability; arboreal frogs

had moderately long legs relative to body size and high jumping ability, whereas the

terrestrial frogs possessed the shortest legs and poorest jumping ability [174]. Fur-

ther evidence supporting the effects of morphology on jumping performance in frogs

was found in a set of take-off experiments with seven Anuran species [53]. Both

relative leg muscle mass and relative hind leg length, which together characterized

contractile potential, correlated positively with take-off velocity. Some studies found

no correlation between hind limb length and jump performance [65][108]. Addition-

ally, amongst the arboreal species, high tree jumpers under-performed animals that

jumped on grass reeds. For primates, branch compliance may be too large to be

advantageous in locomotion, and instead increases energy cost of arboreal locomotion

[12]. Similar principles may apply with grass reed dwelling frogs, requiring them to

compensate with increased muscle mass.

Jump performance is also affected by morphology in other animals. Both hind

limb length and lean extensor muscle mass relative to body mass have strong positive

correlations with take-off velocities in cats [91]. In Anolis lizards, hind limb length,

forelimb length, and tail length all correlated with jumping distances in 15 different

species [130]. Yet, since there were also strong correlations in these morphological

traits with body size for these species, a phylogenetic and statistical analysis was
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performed which found that the evolution of hind limb length was associated with

the evolution of jumping ability regardless of body size.

1.2.3 Elastic Energy Storage

Animals have been observed to amplify the power output of their muscles during

jumping [66]. Fleas, for example, jump by generating impulsive forces that have a

duration of only 0.75 ms, while the latency in the muscle is on the order of 3 ms,

making it impossible to generate sufficient power and propel the jump through means

of conventional muscle forcing [29]. Similarly, in locusts, maximum power output of

each extensor tibiae muscle is 36 mW, while the max power output of the jump is

about 0.75 W, or a tenfold power amplification [28]. The Galago senegalensis (bush

baby) has an excellent jump capability of 2.25 m or six body lengths. Assuming

constant acceleration during push off, Bennett-Clarke [28] estimated a power output

of 2350 W kg−1 for the bush baby. He inferred that, due to the fact that this value

was far higher than typical values for theoretical maximum powers in muscles (such

as 371 W kg−1 in frog hind limb muscles [132]), power amplification occurred in bush

babies [30]. This was later confirmed through experimental measurements [87]. Thus,

many animals must use power amplification mechanisms to propel their jumps.

Power amplification in jumps result from energy storage in elastic elements in the

appendages responsible for jumping. In vertebrates, this elasticity is largely found in

the tendons, which tend to have uniform properties among many mammalian species,

with a nearly constant tangent modulus of elasticity of 1.5 GPa for stresses greater

than 30 MPa [32]. The tangent modulus of elasticity is an estimate of Young’s

modulus where the stiffness used in the modulus calculation has been approximated

from force vs. displacement curves of tensile loading tests on tendons. Tendons have

low energy dissipation. When tendons recoil, they dissipate only 7% of the work done

when stretched as heat [11]. The energy that can be stored from tendons has been
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well documented in other animals [146] and was found to be up to 52 J in humans

while jogging [98].

The muscle-tendon complex, such as that of the main extensor of the human foot,

also stores elastic energy [98]. Hof’s study used strain gages, a potentiometer, and

a piezo-electric accelerometer to measure moments and angular displacements on 12

humans that bent their ankles in an ergometer. A muscle-tendon complex model

was considered that identified two elastic components, one in series (SEC) with the

contractile element and one in parallel (PEC). The SEC was identified as the Achilles

tendon. Using this model, the measurements of moment and angular displacement

were converted to values of stiffness. The effective stiffness in the complex was cal-

culated to be 306 Nm rad−1 at a muscle moment of 100 Nm, which agreed well with

Hooke’s law estimates using data on Young’s modulus and cross sectional areas of the

Achilles tendon. Azizi and Roberts found that the muscles of frogs are more com-

pliant than those of mammals, which improves the muscles’ force production during

jumping [24].

The role of elastic energy storage improves jump performance by amplifying power

output [11]. Muscles are restricted in the amount of power that they can produce,

which is determined by the product of muscle force and shortening speed. As the

shortening speed increases, the force available decreases [96], with the shortening

speed being optimal at around 30% of the max shortening speed [216], and since

tendons can recoil at a faster rate than muscles shorten, they can act to amplify

power.

This power amplification is evident in dramatic fashion in insects like the flea,

which possess a catapult mechanism that slowly coils and tenses elastic material

known as resilin, while a catch mechanism keeps the legs locked in a flexed position

until maximally tensed and then releases all the stored energy at once [29]. This is

a similar concept to flicking your fingers. Bennett-Clarke found the jump height of a
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rabbit flea to be 4.9 cm, or over 30 body lengths, and a human flea (Pulex irritans) of

comparable mass was recorded jumping to a height of 13 cm and considered capable

of up to 20 cm jumps [29], making fleas among the best jumpers in the world in terms

of jumping ability. Similar catapult mechanisms have been found in other insects

such as click beetles, flea beetles, and locusts [70][44][94]. And while frogs do not

have a catch mechanism similar to insects, their own weight is considered to be a

catch mechanism [179, 23]. A frog’s hind limb muscles are uncoupled from whole

body movement, and as such are able to shorten their muscles and pre-stretch their

tendons and store elastic energy before any movement occurs, doing so at a slower

rate than if whole body movement and muscle shortening were coupled [179]. This

effective catapult mechanism in the frog makes its jumping strategy more similar to

insects than to other squat jumping vertebrates.

Other vertebrates, however, have not evolved such catch mechanisms which enable

the release of stored elastic energy as a catapult, and must instead rely on specific

inertial movement strategies to fully leverage power amplification through elastic

energy storage. A study [77] of a theoretical model consisting of a muscle, compliant

element and inertial load in series demonstrated how such a system could experience

power amplification with tendon recoil. The model revealed that power amplification

is primarily influenced by the amount of inertial loading.

The two most common methods for jumping are countermovements and squat

jumps. A countermovement is characterized by starting upright, and then quickly

squatting and pushing upward. A squat jump is characterized by starting from rest

in a squatting position. Alexander developed a theoretical bipedal model of jumping

that predicted that animals that produce insect-like ground forces (characterized by

high ground forces relative to body weight, 58mg, m for mass and g for gravity) would

benefit exclusively from catapult jumping, which has been found to be a common

method of jumping in insects [8]. For animals that produce bush baby-like ground
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forces (12mg) or human-like ground forces (2.3mg), countermovements and catapults

would both achieve greater jump heights than squat jumps, catapults more so in

bush baby type forces. The countermovement causes elastic energy storage to occur

through passive inertial loading during the preparatory phase, which pre-stretches the

muscles and tendons that then recoil and amplify power during the push-off phase.

The performance of countermovements and squat jumps has been compared in hu-

mans in a number of studies [123][208][120]. The countermovement always performs

better than the squat jump. In fact, more than twice as much energy is stored in the

tendons during a countermovement than a squat jump [208]. A similar result was

found in a study of jumping in Anolis lizards, in which the species that performed

the countermovement produced a greater muscle mass specific power output than the

species that performed a regular squat jump [206]. Many prosimian primates, like the

bush baby (Galago senegalensis), have also been observed performing countermove-

ments [88][60][59][1]. In bush babies, elastic energy storage occurs both during the

preparatory phase of the jump and during the early push-off phase. The energy is

then suddenly released at take-off. Thus the bush baby likely performs some combi-

nation of a countermovement, squat jump and catapult [1]. The countermovement is

so pervasive among prosimian primates that it is performed regardless of substrate. It

was observed in vertical jumps in both natural environments on compliant branches

[59] as well as in a laboratory setting on rigid force plates [88], and even by clingers

that jump horizontally off of tree trunks to other trunks [60].
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Figure 3: Illustration of the jump sequence of a flying squirrel [116].

Similar principles of elastic energy storage have been used to explain the efficient

hopping gait of various marsupials [34][117][10][35]. A preparatory hop preceding

the countermovement is a particularly interesting version of the countermovement

that has been observed in some species. In this dissertation, we call this maneuver

a stutter jump. Demes’ study reported this behavior for all four species of lemurs

observed [59]. In Gunther’s study, this was observed in the Galago moholis jumps [88].

The stutter jump was also observed in flying squirrels, chipmunks and red squirrels

prior to take-off from the edge of a pine board [68][116](Fig. 3). The stutter jump in

the animals was so consistent that it was referred to as a “stereotyped preliminary

hop”. Bush babies may on occasion produce a movement similar to the stutter in
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which a jump occurs “out of previous forward motion”, which, though not clear, likely

suggests a running start, similarly introducing additional momentum to the start of

the countermovement [197]. In comparison of jumping versus steady state hopping in

wallabies, a “moving jump” was utilized by the animal in which a short-lived hopping

gait to the force plate preceded the jump to an elevated platform [143]. The forward

velocity of the hopping gait did not differ between steady hopping and jumping.

Table 1: Various animals and their observed jumping strategies
Animal Jump Types Stutter?

Insects (fleas, click
beetles, locusts, flee

beetles)
[84][29][70][94][44]

Catapult No

Frogs
[174][175][227][52][53][179]

Squat / Catapult No

Anolis Lizards [130][206] Countermovement, Squat No
Cats [219][91] Squat No

Lemurs (Avahi laniger,
Indri indri, Propithecus

diadema, Propithecus
verreauxi) [88][60][59]

Countermovement Yes

Senegal Bushbabies
[197][1]

Countermovement /
Squat / Catapult

Yes

Mohol Bushbabies [88] Countermovement Yes
Humans [97][120][56]
[42][88][208][123][100]

Countermovement, Squat Yes (Volleyball)

Rodents (Chipmunk, Red
Squirrel, Flying Squirrel)

[116][68]

Countermovement Yes

Yellow footed rock
wallabies [143]

Hop Yes

In humans, drop jumps, which have similar qualities to the stutter jump, have

been compared with the performance of regular countermovements. The drop jump

is a countermovement preceded by a drop from a slightly higher platform. In general,

the performance of a drop jump is comparable to the countermovement [42], and

is better than the squat jump [120]. But whether the drop is better than regular
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countermovements is under debate and seems to vary among men and women as

well as males of varying athletic ability[120]. In volleyball, two different jumping

techniques are used: a “hop jump”, which is a quicker stutter jump while using

both feet at the same time, and a step close approach, which is more of a skip,

with one foot after the other. Both jumping techniques produced comparable jump

heights, though the hop jump, which is the quicker and more impulsive approach,

required greater muscle effort [56]. Another drop jump study uncovered how a proper

prelanding angular velocity of the knee joint in which a larger knee flexion just before

landing would produce a bouncing type drop with greater take-off velocity [100] (Fig.

4). These findings suggest that the movements involved in the stutter jump must

be precisely timed to achieve a mechanical and energetic advantage over a regular

countermovement.

Figure 4: Illustration of two type of drop jumps [100].
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1.3 Jumping Robots

1.3.1 Biological Inspiration

In robotics, biologically inspired designs have resulted in machines that are able to

traverse diverse terrain. Animals are regularly tasked with maneuvering complex

environments, and it can be argued that they have evolved to become adapted to these

challenging environments in ways that conventional technologies cannot yet rival.

Particularly, wheeled vehicles are the accepted standard of terrestrial locomotion

using conventional technology. Wheeled locomotion is effective at traversing smooth

terrain, but can fail when confronted with large obstacles.

Armour et al. [20] and Sayyad et al. [183] provide extensive reviews of robots

that researchers have created which utilize hopping and jumping strategies. Sayyad

et al. highlight the advantages as well as the challenges with using hopping gaits ver-

sus wheeled solutions in robotic locomotion. They argue that legged locomotion can

be superior, allowing for active body suspension, isolated footholds, and generally

dealing less damage to the environment than wheeled vehicles [183]. Most impor-

tantly, however, legged robots are capable of more complex maneuvers and thus have

increased adaptability to uneven and complex terrain.
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(a) (b) (c)

(d) (e)

Figure 5: Biologically inspired jumping robots. (a) Uniroo [221]. (b) Jollbot and (c)

Glumper [20]. (d)(e) Arm swinging robot [156].

Researchers have developed interesting robotic interpretations of animal jump-

ing and hopping mechanisms. The Uniroo was a 3-leg-link hopping robot based on

kangaroo locomotion, with a soleus spring arrangement [221] (Fig. 5(a)). Using hy-

draulic actuators, the hopper achieved over 40 hops in a given trial. Armour and

researchers developed two jumping robots that utilized the catapult jumping mech-

anism: Glumper and Jollbot [20] (Fig. 5(b,c)). As the name would suggest, the

Jollbot, was inspired not only by the catapult jumping mechanisms seen in various

insects and frogs, but also the rolling ability of certain organisms like the web-toed
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salamander and tumbleweed. It used a combination of jumping and rolling for loco-

motion, in which the rolling mechanism also worked to orient the direction and angle

of jumping. The Glumper, inspired by the gliding capabilities of flying squirrels, con-

sisted of four legs surrounding the top and bottom of its exterior body with two leg

links each to perform a catapult jump. The Glumper could also glide using the air

resistance on the sails attached to the legs. The Glumper performed better than the

Jollbot, jumping nearly 2 m high. One interesting adaptation to hopping robots was

the addition of two rotating symmetric arms with masses attached, similar to how

humans use arm swing to improve jump height [156] (Fig. 5(d)). The robot was able

to perform high jumps while hopping in place.

1.3.2 An Engineer’s Perspective

Legged robots that can adapt to complex environments also have more complex dy-

namics than wheeled vehicles, with distinct phases and gaits creating nonlinear be-

havior. This can pose a challenge to engineers to control these robots. Also, wheeled

vehicles can carry larger payloads relative to their weight, and in legged robots, greater

carrying loads require larger actuators which in turn increases the carrying load. How-

ever, while there may generally be increases in the complexity in legged robots versus

wheeled vehicles, the hopper constructed by NASA’s Jet Propulsion Laboratory (JPL)

(Fig. 7) was developed with the premise that wheeled vehicles for celestial exploration

can have a large number of actuators and linkages, increasing complexity of control

and chance of failure [89]. The resulting robot was able to reduce the number of

actuators and jump via a catapult mechanism using a six bar linkage, and also had

self-righting capabilities after landing.
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(a) (b)

Figure 6: Hopping robots of varying complexity. (a) Kenken [104]. (b) Sandia

Hopper [78]

Hopping robots have typically been built with an engineering approach to the

challenges intrinsic to legged locomotion. The intent has not only been to apply a

biologically observed physical principal of jumping or hopping, but also to improve

designs by tackling these challenges. For example, one of the initial improvements to

the design of hopping robots was to change actuation technologies from pneumatic

[173] and hydraulic [221] to electric actuators such as small DC electric motors [5].

Such motors were chosen as the cleaner, safer and less expensive alternatives while

still having high torque-weight ratio [183].

Researchers have also developed hopping robots with increased mechanical com-

plexity (e.g. more articulated links). Such an increase in complexity can be seen in

Kenken [104], which was a hopping robot based a bio-inspired articulated 3-link leg

(Fig. 6(a)). Hyon and researchers argued that there are practical advantages to an

articulated leg such as large clearance between foot and ground, and while there is

added complexity compared to a telescopic leg, the structure is simple to build, since

it connects two link ends with a rotary joint. Hoppers such as Kenken as well as

Uniroo [221], Zhang’s Uniped [225], and Berkemeier and Desai’s robot had more leg
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links than most other hoppers [33]. However, complexity, does not necessarily cor-

relate to performance, as evidenced by Sandias simple telescopic hopper, which was

capable of hopping 20 feet in height and about 100 hops on one tank of fuel [78](Fig.

6(b)).

Figure 7: Self-righting sequence of the JPL Hopper V2 [89].

Researchers have worked to make robots that are functional and autonomous.

These robots are not necessarily made as experimental platforms to learn the fun-

damental physics behind animal jumping. Thus, relatively few robot jumpers are

treated as simple experiments constrained to only move in the vertical direction

[156][147][204][168]. Jumping robots typically are allowed to move in 3D [20][184][154],

or 2D with a planarizer [160][225][136][33][47]. Even the simplest one-legged, one-

link, hoppers have both active [173] and passive [178] balancing strategies. And some

robots even have self-righting or orienting capabilities [20][89](Fig. 7). In contrast,

this dissertation presents a robophysics approach (the pursuit of principles of loco-

motion [4]) to study the mechanics of jumping, whereby a simple one-dimensional

spring-mass hopper is automated to perform jumps at systematically varied parame-

ters of actuation and substrate properties (in the case of jumping on granular media,

see Chapter III). This methodological approach combined with analysis and simula-

tion revealed fundamental principles of jumping.
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1.3.3 Robotic Jumping Strategies

(a) (b) (c)

Figure 8: Robots with various jumping methods. (a) Hopping in ARL Monopod

II [5]. (b) Catapult in the miniature 7g robot [122]. (c) Squat jump in Niiyama’s

bipedal robot [153].

Figure 9: Jump height versus size of various catapulting robots compared with ani-

mals [20]
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The jumping strategies employed in robots are generally classified as hopping, cat-

apult or squat jump, the last two of which are forms of maximum height jumping

(Fig. 8). There are many designs that use the catapult mechanisms often seen in

insects [191][200][20][184][89][16][150][122]. The jump heights of many of these cata-

pulting robots have been compared with animals (Fig. 9) and have a similar positive

correlation with body size as shown in Figure 1. The large majority of the jumping

robots that exist are hoppers (Table 2). Hopping is a qualitatively different mode

of locomotion than maximum height jumping, since maximum height jumping pro-

duces much higher power output than in hopping gaits [143]. While the work of this

dissertation focuses on maximal height jumping, it is important to highlight hopping

robots, since the hopping gait stores tendon elastic energy through body movements

like the squat jump and countermovement. Additionally, hopping robots tend to have

simpler and smaller designs than the squat jumping robots, which can be bipedal and

have as many as 4 leg links, based on animals such as humans and dogs [153][154][25].

These simple designs can be beneficial to consider for an experimental study on the

fundamentals of jumping.

1.4 Theoretical jumping models

1.4.1 Introduction

Researchers have proposed a variety of theoretical models used to describe and un-

derstand different kinds of jumping such as hops and vertical jumps. Mathematical

models have been used to express the fundamental locomotor and structural features

of jumping. These models range in complexity. Simple models can often explain

the underlying properties of jumping in specific manners using fundamental physical

principals with a reduced number of parameters. These models make numerous as-

sumptions of the leg structure and physics involved, and as such constrain the models
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Table 2: Various robots and their jumping strategies

Jumper
Number
of Leg
Links

Actuator Type Jump Type

Balancing Robot [141] 1 Electric Solenoid Hopping
Raibert Hopper [173] 1 Hydraulic Hopping

Prosser and Kam [168] 1 Electric Hopping
Mehrandezh [147] 1 Electric Hopping

Okubo [156] 1 Electric Hop in Place
Ringrose Monopod

[178]
1 Electric Hopping

Bow-Leg [47] 1 Electric Hopping
ARL Monopod II [5] 1 Electric Hopping
Wei Monopod [213] 1 Electric Hopping

Sandia [78] 1 Internal Combustion Hopping
Peck [161] 1 Electric Hopping

Pendulum [93] 1 Electric Momentum Based (arm
swing)

Takeuchi [194] 1 Pneumatic Hopping
Uno [204] 1 Electric Hopping

Scout [191] 1 Electric Catapult
Akinfiev [6] 1 Electric Hopping

Dashpod [51] 1 Pneumatic Hopping
Slip Hopper [182] 1 Electric Hopping
Rescue Bot [200] 1 Pneumatic and

Solenoid
Catapult

Jollbot [20] 1 Electric Catapult
Grillo [184] 1 Electric Catapult

Lee Monopod [126] 2 Hydraulic Hopping
Papantoniou [160] 2 Electric Hopping

Olie [136] 2 Electric Hopping
JPL Hopper V2 [89] 2 Electric Catapult

Luxo [7] 2 Electric Hopping
Allison Monopod [16] 2 Electric Catapult

Mini Whegs [150] 2 Electric Catapult
Airhopper [118] 2 Pneumatic Hopping

Acrobat-Like [125] 2 Pneumatic Hopping
Ohashi [155] 2 Electric Hopping
Glumper [20] 2 Electric Catapult

Miniature Hopper [122] 2 Electric Catapult
Uniroo [221] 3 Hydraulic Hopping

Zhang Uniped [225] 3 Electric Hopping
Berkemeier [33] 3 Electric Hopping
KenKen [104] 3 Hydraulic Hopping
Niiyama [153] 3 Pneumatic Squat Jump
Mowgli [154] 4 Electro-pneumatic Squat Jump

Biarticular Bot [25] 4 Electric Squat Jump
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to describe a particular type of jumping. Such models are not only useful in describ-

ing locomotion in animals, but also serve to simplify control of biologically inspired

robots [39]. For example, the spring-mass model used to describe running and hop-

ping in animals can be utilized in robotics such that the running gate stabilizes in

the presence of disturbances without having to sense and actively adjust for such dis-

turbances [39]. Simple models are often called templates (Fig. 10) and can be used

in more elaborate fashion by treating them as individual features of a body such as

legs and leg links to improve modeling accuracy [76]. More complex models have also

been studied to solve problems that cannot be considered with a single telescopic leg

or 2-link articulation [9] and have also been used to understand the role of specific

muscle groups [157][205].

Figure 10: Illustration of template models [76]

Physical models can also be useful to both verify mathematical models and per-

form experiments that are not feasible in animals [9]. For example, McGeer verified

the predictions of his mathematical model of bipedal walking by constructing a phys-

ical passive walker, which showed that, when put on a slope, the model would enter
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a stable un-actuated walking gait [142]. Most models used in jumping are described

by mathematical differential equations, such as the spring-loaded inverted pendulum

(SLIP) model. However, while engineers have employed this SLIP model in the design

of hopping robots [183], the robots themselves are not generally treated as physical

or robotic models, rather more as functional robots.

1.4.2 Hopping

To describe hopping in animals, the model most commonly used is the planar spring-

mass model, or the spring-loaded inverted pendulum (SLIP). This model is comprised

of a point mass connected to a massless spring in series (Fig. 11). Raibert was among

the first researchers to consider the SLIP model for hopping and developed theoretical

models and prototype hopping robots [172] that inspired a plethora of one-legged

robots [183] as well as further research into the SLIP model. To analytically study

Raibert’s SLIP hopper, Koditschek and Bühler [119] constrained the planar SLIP

model to the vertical dimension and considered the task of maintaining a stable and

recurring hopping height through actuation. They analyzed the model using both a

linear and a nonlinear spring. Both models clearly demonstrated unique solutions for

a stable state in which the domain of attraction is nearly every state. Interestingly,

the nonlinear spring model also produced a period-two “limping” gate.

Figure 11: Illustration of the SLIP model [38]
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Blickhan used a similar model to study dynamics of both hopping in place as well

as hopping with forward motion [37]. He characterized hopping and running based on

how measures such as step frequency, contact time, ground reaction forces, and spe-

cific power of such gates changed with forward speed. In hopping, the stride frequency

remained constant and within a narrow band regardless of forward speed, whereas

stride frequency during running gaits increased with increasing speed. Additionally,

ground forces were greater during hopping than in running, and these ground forces

increased with increasing velocity. The model showed that even with active forces,

bouncing and running systems behave in a similar manner to a simple mass-spring

arrangement.

(a)

(b)

(c)

Figure 12: Theoretical hopping models. (a) SLIP as interpreted by McMahon and

Cheng [144]. (b) Running biped [142]

McMahon and Cheng also presented a simple spring mass model of running and

hopping in animals and made predictions of how stiffness coupled with speed, com-

paring their predictions with animal data [144]. In a different study, Cavagna et al.

argued that, during running, elastic energy was stored during mid-step in stretched

tendons [50]. With this principle in mind, a model consisting of a mass with a spring

leg was presented (Fig. 12(a)) that bounced on the ground according the initial
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conditions of the system and stiffness of the leg. Two versions of the model were

considered, one in which the model hopped in place, and another in which the model

was given a forward velocity. From these two models, two effective stiffnesses were

calculated, the actual leg or spring stiffness, kleg, and the vertical stiffness, kvert, where

kvert was a fraction of the vertical component of the change in ground reaction force

and the change vertical displacement. When hopping in place, both values were the

same, while when hopping or running forward, the leg landed at an angle, θ0, and

kvert > kleg for any finite θ0 not equal to 0. The model was iteratively integrated to

find the required kleg to maintain a stable hopping gate. Given the parameters for

initial forward and vertical velocity and θ0, kleg needed to create a gait in which final

velocities and θ exiting the ground phase were identical to initial conditions. The

parameter space was swept within values reasonable for animal comparison. When

compared with animal data of dogs, a rhea and a human, assuming constant leg stiff-

ness, the model accurately described how stride length and step length increased with

speed in bipeds and quadrupeds.

A number of researchers have used and elaborated on the SLIP model to compare

the one-legged SLIP model with multi-legged organisms. McGeer elaborated on the

simple mass spring system for bipedal running by adapting the model with two legs

(Fig. 12(b)), each with a mass and spring in series and a curved foot connected to the

bottom end of the springs [142]. These legs were connected at a hip joint with a point

mass and a torsional spring. Running was a passive mode in this model. Blickhan and

Full compared the planar spring-mass monopode model to the dynamics of the hop,

trot and running gates in a diverse cross-section of animals with varying numbers of

legs [38], and found that the simple model provided a good approximation of those

dynamics. Increasing pairs of legs acting simultaneously increased the whole body

stiffness in the virtual monopode, increasing natural frequency and stride frequency.
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Raibert considered the control algorithms for the one-legged SLIP model for gener-

alizing to multi-legged systems [171]. Four-legged gaits that step with one foot at a

time could use the single-leg SLIP algorithms for each leg. Gaits that use two feet

simultaneously such as trots, paces, and bounds were represented with a virtual leg.

1.4.3 Maximal Jumping

This section discusses all non-hopping jumping models in which the goal of the jump

is maximal height or distance. Many of the models focus on various types of athletic

jumps performed by humans, and are all generally more complex than the SLIP model

used for hopping. For example, Yeadon’s model of the human body was considerably

more complex than the telescoping SLIP model [218]. This model was used to explain

the twisting and somersault moves in divers and trampolinist athletes. It comprised of

11 segments and 10 joints, requiring 66 equations of motion. Hatze presented another

complex 2D human model to study long jumping composed of 17 segments controlled

by 46 major muscle groups [92]. The control scheme for long-jumping was optimized

in this study. A high jumping model [101] was also developed which, in this case, was

actually fairly simple. The goal was to find the minimum kinetic energy requirement

to clear a given height in which every point on the body clears the height. The model

was a long rectangular rod (Fig. 13(a)), mimicking the size of a human body. The

result of this study was an expression that described the height cleared by an object

based on its initial conditions as well as its shape size and inertial parameters. They

found that, for a given initial amount of energy, the maximum height cleared would

be less for objects with larger moments of inertia.
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(a) (b)

Figure 13: Theoretical high jumping models. (a) Hubbard and Trinkle [101]. (b)

Alexander [14]

Alexander introduced a model of jumping that was used to study both long jumps

and high jumps [14]. The model consisted of a rigid trunk connected to a two-segment

leg that bends at the knee (Fig. 13(b)). He used Hill-type muscles [96] for actuation

of extensor muscles that were in series with compliant tendons. With this model,

he made predictions for the optimal movement methods for take-off to achieve both

high jumps and long jumps: high jumpers must approach the jump with moderate

speed and land the take-off foot at 45◦ to the horizontal, while long jumpers should

approach their jump at the highest speed possible at a steeper angle. Seyfarth et

al. expanded upon Alexander’s model by incorporating a more realistic version of

the muscle-tendon complex for the knee extensor muscle [187]. The muscle had in-

series tendon compliance as well as compliance in parallel to the muscle actuation.

The muscle also had the Hill-type force-velocity relationship in addition to eccentric

forces, or forces due to lengthening contraction that work to decelerate a moving joint.

The performance of the jump benefited from the enhancement of eccentric forcing,

and was in agreement with experimental jumping performances.
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(a) (b) (c) (d) (e)

Figure 14: Theoretical model of standing bipedal jumps [8]. (a) Two-link model.

(b) Three-link model. Comparison of different jump strategies with (c) human-like,

(d) bushbaby-like and (e) insect-like isometric forces.

Alexander also developed a model to study the performance of various types of

standing jumps [8]. In this relatively simple model, a main body mass was connected

to two symmetric legs at the hips (Fig. 14(a,b)). Alexander considered both two-

link and three-link legs. As in the high jumping model, Hill-type muscles were used

with series compliant springs. The parameters chosen resembled values in animals

ranging in size from locusts, to bush babies to humans. Parameters such as relative

leg masses were also considered. Alexander varied parameters such as compliance

and muscle-shortening speed as well as legs with 2 and 3 links. Chief among the

results of this study was the comparison of the jumping performance using different

jump strategies in animals that produce insect-like forces, bushbaby-like forces and

human-like forces (Fig. 14(c-e)). Amongst all animals, the squat jump was the worst

jump regardless of compliance value. For animals that produce insect-like forces,

the catapult was the best overall jump. For human-like forces, the catapult and

countermovement performed comparably. Animals that produce bushbaby like forces

benefit the most from catapults, then countermovements. It has been suspected that

the Senegal bushbaby performs a combination of catapult, countermovement and

squat to produce its jump [1].
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(a) (b)

Figure 15: Maximum height jumping model [157]. (a) Schematic of 4-link jumping

model. (b) Schematic of muscle-tendon complex model.

Pandy’s model [157] for maximum height jumping is more realistic than Alexan-

der’s model. The model is planar, consisting of 4 articulated segments driven by 8

skeletal muscles modeled by Hill-type force laws with series and parallel elasticity and

elastic tendons (Fig. 15). The purpose of this study was to use numerical methods to

find an optimal control method for maximum height jumping. The optimal strategy

discovered by the model was a countermovement. However, unlike in experimental

human jumping results in which the countermovement was pronounced [158], the

model’s optimized countermovement nearly resembled squat jump, since the initial

downward phase was subtle. Pandy and researchers hypothesized that this incongru-

ence was a result of the model’s inability to produce strong enough hip moments. A

similar model was used by Soest et al. [205] to understand the role of the biartic-

ularity of the gastrocnemius muscle (GAS) in maximum height jumping. Bobbert

used this model to understand how the elasticity of series elastic elements (SEEs)

in the triceps surae affected the performance of maximum height jumping [41]. He

found that longer more compliant tendons allowed for greater power output and thus

greater jump height.
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1.5 Impulsive interaction with granular media

1.5.1 Introduction

Jumping models have been primarily developed with an assumption or objective

of hard ground jumping. However, many situations [127, 149] exist where animals

perform fast locomotion in more complex substrates like dry granular media, mud,

soil and leaf litter. Performance is typically reduced in sand as compared to hard

substrates. Toads, for example, achieve greater jump distances on a grassy lawn (300

to 575 mm) than on sand (150 - 375 mm) [174]. The yielding properties of sand

produce a dissipative effect during maximal human jumps; on average, volleyball

players achieved 64% of hard ground jump heights while utilizing more energy [151].

This damping effect is beneficial for plyometric training on sand to improve jumping

and sprinting performance with less muscle soreness than athletes that trained on

grass [105]; training on sand was superior to training on grass in improving the

countermovement jump.

While many jumping robots have been designed and tested for hard ground, a

minimalist hopper by Burdick and Fiorini [48] with a six-bar geared spring as well

as self-righting and steering capabilities was designed with a focus on robustness

during celestial exploration (where sandy environments are common). Furthermore,

the ability of sand and other soft substrates to yield has been considered in the design

of a jumping robot that can simultaneously roll and jump [20], where the design of the

robot’s outer surface reduced contact pressure with the ground such that the robot

would be enabled to travel over yielding substrates without significantly sinking or

getting stuck. However, a systematic analysis of the performance and dynamics of

robotic interaction with granular media during impulsive actuations such as jumping

had not been considered. And since such substrates are commonly found in a wide

variety of environments, understanding the dynamic interactions in these situations is

also robotically relevant for applications such as search and rescue operations [46, 224]
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or the exploration of planets and other celestial bodies [49].

Aside from being a ubiquitous substrate commonly found on beaches, deserts and

celestial bodies, dry granular media stands out among complex substrates as an ex-

cellent system to illustrate the challenge of analyzing complex environments. Dry

granular media displays a rich variety of behaviors in response to forcing and occur

in environments (deserts, dry regions of beaches) and regimes (small inertial number,

see discussion in [18]) encountered by robots. Such properties (especially homogene-

ity and lack of moisture) allow for precise experimental controllability of granular

states. However, granular media (ubiquitous and studied though it may be) is not

fully understood. No fundamentally derived theoretical models (like Navier Stokes

in fluids) exist and thus cannot be solved analytically or in computer simulation (al-

though progress has been made to this end with the use of plasticity theory [21],

discussed more in Section 1.5.3). Thus, a robophysical approach becomes essential

when trying to understand robotic movement in such environments, whereby easily

controllable robots behave as “physical simulations” of locomotion, and complemen-

tary theoretical models and simulations are used for further insight.

While no Navier Stokes-like theory yet exists for granular media, simplified models

(sometimes empirical) of granular forces describing bulk behavior have been utilized.

Further, such materials are relatively simple to model computationally at the grain

level: they can be described as an ensemble of individual particles whose emergent

interactions are dominated by repulsive dissipative contact forces. Thus, while un-

derlying principles of granular interaction may be difficult to intuit from individual

particle iterations, modeling such interactions can nonetheless be performed with

computer simulations which need only account for colliding spheres. In fact, such

numerical simulation of individual grain particles, known as discrete element method

(DEM), is a common solution when fundamental continuum models are unavailable.
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Here we provide a brief overview of DEM. We then provide an overview of contin-

uum models and bulk force models that have proven useful for the analysis of robotic

interactions with granular media.

1.5.2 Modeling granular media: DEM

Discrete element method (DEM) computer simulations model granular media as mul-

tiple particles interacting under Newton’s laws and collisional forces. DEM is simple

to implement for small numbers of spherical particles. However efficient simulation of

granular media is not trivial, particularly in modeling grain-grain contacts. A common

method for modeling contacts in hard ground simulations is to formulate the contact

process into a linear/nonlinear complementarity problem (LCP/NCP). During col-

lision, non-penetration constraints are imposed [131, 138, 148] and integrated into

the Newton-Euler equations of motion together with other bilateral constraints (e.g.,

from joints). In the absence of friction, the equations can be linear in either accelera-

tion [27, 159] or velocity [19, 189, 190] (with proper discretization in time). Unknown

constraint forces/impulses (from contacts of joints) can then be determined from op-

timization techniques (e.g., successive over relaxation, gradient descent). Frictional

(Coulomb-like) forces introduce nonlinear constraints into the system. To re-cast as

a linear complementarity problem, these forces can be discretized.

However, for large scale problems like dense granular flow with millions of particles,

using the LCP formulation as is done for hard ground becomes untenable. The LCP

iterative solver is of order N2 in time (where N is the number of contacts and is

proportional to the number of grains in the system) for each iteration. Furthermore,

the solver needs to be called at every time step to resolve the collisions. In contrast,

DEM uses compliant particles (the “regularization method” [82]) instead. Combined

with a grid partition scheme for collision detection, the time scaling can be reduced

to order N for many practical problems.

33



The accuracy of DEM for dense granular flow is well established and reliable

[165, 176], provided collision force parameters (typically more than two but fewer

than 6) are tuned correctly and the time step is small enough. These parameters

(restitution, friction coefficients,etc.) can be empirically tuned such that simulated

forces on intruders moving in a granular medium (e.g., a rod dragged horizontally)

match experimental measurements [134, 62]. DEM allows one to obtain information

such as forces and flow fields of the granular media that are difficult to measure in

experiment. Particularly when coupled with a multi-body dynamic simulator, DEM

has been useful in describing body-media interactions during locomotion, facilitating

parameter variation and the development of locomotor principles [135, 170, 224].

To demonstrate the efficacy of this approach, we briefly discuss the work of our

group (Goldman Lab [134, 135]) coupling DEM to a multibody solver, Working Model

2D, to simulate both the subsurface locomotion of an undulatory robot and the animal

(sandfish) that inspired the design of the robot. The simulation has two phases at

each time step. In the first phase, DEM computes the interaction forces between the

robot body and every particle it contacts; the state (position, velocity, orientation)

of the particles are also integrated using the contact forces. In the next phase, the

multibody solver updates the state of the robot, based on the constraints, controls

and the accumulated interaction forces. When the contact model parameters are

calibrated against physical experiments (impact and drag in the specific granular

media), the combined DEM-Multibody approach was able to accurately predict the

undulation efficiency of the robot for all undulation frequencies (1−4 Hz) and all wave

amplitudes tested. The sandfish simulation also matched the animal experiment and

indicated that the sandfish targets an optimal undulation strategy that maximizes its

speed.

Qian et al. [170] used DEM coupled with MBDyn [79] (a 3D multibody simu-

lator) to investigate how a lightweight robot, the DynaRoACH [99], could achieve
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high locomotion performance on granular media. The DynaRoACH’s speed in both

laboratory experiments and DEM simulation agreed well, and exhibited a transition

in locomotor mode from walking at low frequencies to running at high frequencies

(Fig. 16c). Measuring ground reaction forces in simulation (which were impossible

to measure in the experiment), Qian et al. found that low frequency walking where

the robot used the quasistatic “rotary walking” mode [169, 128], relied on the pen-

etration depth-dependent hydrostatic-like forces. In contrast, high frequency gaits

induced speed-dependent hydrodynamic-like forces resulting from inertial drag, al-

lowing the robot to achieve rapid running on the leg-fluidized substrate. Zhang et

al. [224] also demonstrated the capabilities of DEM simulation for parameter variation

by varying the coefficients of particle particle friction, particle leg friction, and leg

width over a wide range, and tested the effects of these parameters on robot locomo-

tion performance. The particle friction parameters are difficult to vary continuously

and independently of other parameters in experiment.
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Figure 16: A small, lightweight robot (DynaRoACH, 10 cm, 25 g), with size compa-

rable to fast-running animals, can use two distinct propulsion mechanisms for effective

locomotion on granular media: a low frequency walking mode (shaded light blue in

(c)) and a high frequency running mode (shaded pink). (a) The lightweight, hexapedal

DynaRoACH robot. (b) The simulated DynaRoACH robot in MBDyn [79]. (c) Aver-

age robot CoM forward speed vs. leg frequency. Blue circles represent experimental

data and green circles represent simulation data. Grey dashed curve represents rotary

walking model prediction derived using a heavier robot (SandBot, 30 cm, 2500 g). (d)

Time sequences of the two locomotion modes observed for DynaRoACH moving on 3

mm glass particles. Adapted from [170].
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The future of direct granular simulations looks promising; the cone complemen-

tarity problem (CCP) formulation proposed by Tasora [196] (which is also being used

in Chrono::Engine) uses a matrix-free iterative solver with time proportional to N

for each iteration. Compared with the DEM method, where the time step needs to

be much smaller (due to grain stiffness), the non-smooth dynamic (complementarity)

approach can potentially use larger time steps and remain stable. However, CCP

remains under development, and substantial validation and application and results

have not yet appeared.

1.5.3 Modeling granular media: Force models and continuum descrip-
tions

While DEM simulations are effective at simulating granular kinematics during loco-

motor interaction, to gain an intuitive understanding, it is useful to analyze bulk

dynamic responses to locomotor intrusions. Yet, even in this well-studied system,

little is known about such dynamics, particularly during active impulsive interactions

such as those that occur during jumping. In the generalized 3D case, continuum equa-

tions for granular media in the so-called “rapid flow regime” in which particles do not

experience enduring contacts (i.e., the system does not exist in solid-like states) have

a long history [109] and have shown predictive power in shock formation in complex

3D systems [43]. However, their efficacy has not been tested in situations relevant to

locomotion, in which solid-like and fluid-like states coexist.

Thus, during such high speed locomotor interactions with granular media, which

can induce complex inertial reaction forces from the substrate[114, 203, 198], direct

particle simulation has often been the solution of choice. However, in the simplified 1D

intrusion case, many studies of fixed-shape (non-locomoting) objects impacting and

penetrating dry granular media have revealed reaction forces (FGM) on the objects

that can be described by

FGM = Fp(z) + αv2, (1)
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where v and z are the object’s velocity and depth, respectively [114, 199, 203]. The

hydrodynamic-like term, αv2, results from momentum transfer to the grains (signifi-

cant during high speed impact[69, 164, 180, 26, 15, 73]), where α is the inertial drag

coefficient. This inertial drag term has its origins in the study of ballistics that date

back to the time of Euler [69] and Robins [180], where they sought to understand the

principles of drag on ballistics through various media, homogeneous granular media

included. They described the resistance to penetration as a constant value indepen-

dent of speed to produce a negative acceleration: −dv/dt = γ, where γ is constant.

Though suggested by Euler, credit has typically been granted to Poncelet who later

described such drag as the summation of γ and αv2, where α is constant. Allen et

al.[15] performed experiments of ballistic impact in sand at speeds greater than the

sand’s speed of sound and discovered that one could fit data with a more generalized

form, −dv/dt = αv2 +βv+γ, or a form that follows −dv/dt = βv2 +γ for low speeds

or −dv/dt = αv2 (where α < β) for speeds greater than a speed (about 100 m/s)

associated with the sand’s speed of sound.

The dynamics of lower speed impacts (much less than the granular speed of sound)

have been of more recent interest to the granular physics community with respect

to the mechanics and energetics of impact cratering [202, 152, 54, 212, 58, 199].

Ciamarra et al. performed 2D impact experiments as well as DEM simulations of

the impact cratering events of a disk and revealed that an impact event’s kinematics

can be qualitatively divided into the initial impact phase, the penetration phase,

and the collapse phase where the crater fills in. For the majority of the trajectory,

they observed a constant drag force that was proportional to the impact velocity.

During such impact events one must consider also the hydrostatic-like force Fp(z),

which results from gravitational pressure and grain-grain Coulomb frictional forces.

Fp(z) is typically considered to scale as kz for submerged or flat intruders[199] for slow

intrusions, where k characterizes the medium’s penetration resistance, although it has
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been described as constant [58] as well as in exponential form [17] for shallow spherical

impacts. Katsuragi and Durian [114] combined this hydrostatic term with the inertial

term, αv2, by experimentally measuring projectile dynamics for low speed impacts and

determining that forces can be described as Equation 1. However, Umbanhowar and

Goldman [203] experimentally examined the dynamics of granular spherical impact

at various volume fractions, φ, and found that the inertial drag coefficient, α, was

independent of intrusion depth only at the critical packing state, φc. Volume fraction,

φ, which approximately ranges from 0.55 to 0.64 [110] is the ratio of the collective

volume of individual grains vs the volume the grains occupy in bulk. The qualitative

behavior of granular media under shear is determined by φ, whereby, at low values,

the granular substrate tends to consolidate under shear and reach a higher volume

fraction, and high values causes a dilation effect under shear and reduces φ. The

φ that remains constant and neither dilates nor consolidates is the critical volume

fraction , φc [185]. This value can be determined in various substrates by measuring

the change in volume after impact events [203, 83], whereby the volume change at φc

is 0 (the volume change is negative a low φ and positive at high φ).

While inertial drag must be considered to describe the dynamics of low speed

impacts, the Goldman group has discovered that, in many relevant granular loco-

motion scenarios that are relatively slow (low inertial number [166, 74, 18]), we can

forego both DEM (surprisingly avoiding many of the challenges of hard ground and

fluid modeling) and the consideration of inertial drag. Over the past few years,

Daniel Goldman’s group has developed a granular resistive force theory (RFT) to

describe thrust and drag forces on an intruder moving within granular media, which

is essentially an extension of the hydrostatic-like term, Fp(z), beyond 1D forces and

intrusion directions. Such work has helped explain the kinematics of slow moving

locomotors[129, 135, 133]. This approach was inspired by the early theoretical mod-

eling of swimming of microorganisms in fluids. In the presence of complex moving
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boundaries, full Navier-Stokes equations for complex flows often could not be solved

(without CFD). Instead, pioneers made simpler approximations in viscous fluids. The

best known of these, called Resistive Force Theory (RFT) [85], assumes that the de-

forming body can be partitioned into segments, each experiencing drag, and that

the flow/force fields from these segments are hydrodynamically decoupled and do not

influence the fields of other segments. Therefore, the normal and tangential forces

on a small element depend only on the local properties, namely, the length of the

element ds, the velocity v and the orientation t̂ (the fluid is homogeneous so position

dependence is dropped). The net force on the swimmer is then computed from the

integral

F =

∫
(dF⊥ + dF‖) =

∫
ds(f⊥(v, t̂)n̂ + f‖(v, t̂)t̂), (2)

where the functional forms of f⊥ and f‖ can in principle be determined from the Stokes

equations. The characteristics of f⊥ and f‖ are different between viscous fluids and

granular media. For low speed motion in fluids, RFT forces are velocity dependent

both in direction and magnitude, whereas forces in granular media are independent of

the velocity magnitude. Additionally, unlike in fluids, grain-grain friction and gravity

lead to a depth dependence in granular RFT forces.

To determine fluid RFT forces, experiments are often needed, because analytical

solutions to the Stokes equations cannot be easily obtained even in simple cases (e.g.,

a finite length cylinder moving in the axial direction). Similarly in granular media,

where there is no constitutive law, f⊥ and f‖ has primarily been determined from

experiment or DEM simulation. Most recently in a study by Askari and Kamrin [21],

however, a friction-based continuum model known as plasticity theory has been shown

to reproduce experimental granular RFT measurements when simulated with FEA

techniques. Moreover, the study was able to analytically uncover how, even though

RFT was originally developed to simplify the analysis of viscous fluid interactions,

the superposition of RFT forces is more predictive in granular media than in fluids.
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Through the analysis of granular RFT, they have a developed an analytical criterion

that determines which types of substrates will observe the assumptions necessary for

RFT (chief among them the ability to perform a linearly independent superposition

of resistive forces acting on different surface elements of an intruder). Through the

use of this criterion, they have discovered that certain cohesive media such as gels,

pastes and muds comprise a new class of RFT-analyzable substances.

RFT has exhibited predictive power for legged locomotion on granular media in

the quasistatic locomotor regime [129, 133] (Fig. 17). Using a small RHex type robot,

Xplorer, the forces on the foot during slow walking modes have been found to be re-

producible with the continuum equations of RFT [223]. RFT was also extensively

used to investigate various aspects of sand swimming in both artifical [135] and bi-

ological [64, 63] locomotors. For example, granular RFT was used to model how

neuromechanical phase lag (NPL) (a phenomenon observed in many undulatory an-

imals during which the wave of muscle activation progresses faster than the wave of

body bending [188]) emerges. Ding et al. [63] used RFT to explain the source of NPL

during sand swimming in the frictional (non-inertial) regime. The timing of torque

onset (which corresponds to muscle activation), computed from RFT, agreed well with

experimentally observed electromyography signals in a sandfish lizard, indicating that

NPL may depend strongly on details of the environmental interactions.
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Figure 17: Resistive Force Theory applied to legged locomotion on dry granular

media. (a) RHex-like robot (Xplorer) robot during alternating tripod gait locomotion.

(b) Illustration of the basic idea behind Resistive Force Theory (RFT) for movement

of a RHex c-leg into granular media. Each infinitesimal element ds on the intruding

leg is characterized by its tangent direction t̂ (or normal direction n̂) and its velocity v;

each element experiences a force dF⊥,‖. In true fluids, these forces can be described by

Stokes law, while for granular media, they are measured in experiment. (c) Simulation

of Xplorer locomotion using RFT. Red arrows indicate granular reaction forces at

each segment. (d) Comparison of forward speed vs time between an experimental

robot and corresponding RFT simulation using c-legs and reversed c-legs. Adapted

from [129] (Note: Forces were measured in dFz,xinstead of dF⊥,‖ as shown in (b))

However, during fast locomotion, RFT alone is an insufficient descriptor of lo-

comotion dynamics in granular media; such a granular model does not account for

grain-based inertia effects. For example, the performance of the DynaRoACH’s high
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speed gaits [170] deviated from the rotary walking model, which, similar to RFT, as-

sumes quasistatic interactions. This deviation implies that hydrodynamic-like gran-

ular inertial effects contributed significantly to the reaction force, making quasistatic

continuum equations like RFT ineffective. Recent studies of free impact in dense corn-

starch solutions [211] and dry granular media [115] as well as rapid lightweight robot

running on granular media [224] have shown the importance of hydrodynamic-like

effects during high-speed interactions. One such effect includes added mass, which

effectively increases the inertia of an intruder displacing material (see [45] for a review

of added mass in fluids). Added mass can contribute to a shear-thickening response

in dense suspensions [211]. In the realm of actively forced impacts, added mass effects

contribute to the impulse developed during the slap phase of a basilisk lizard running

on water[80]. In fact, the term in Equation 1 defining inertial drag during granular

impact, αv2, is derived from what was considered a classical aerodynamics equation

for penetration forces [81], −mdv/dt = 1
2
CAρv2, where m is the projectile’s mass, A

is the projected surface area, ρ was fluid density and C is a scaling constant. Poncelet

attributed this term to the momentum change associated with colliding inelastically

with a virtual mass [164], which accumulates when the impactor accelerates surround-

ing material, d(mav)
dt

= dma

dt
v+maa. Added mass for an intruder impacting a fluid has

been approximated by the hemispherical volume of liquid accelerated forward in front

of the intruder, consistent with the velocity change imparted by an inelastic collision

with a mass equal to the added mass[177, 210].

Insight into high speed granular locomotion will improve by extending this reactive

forces, or dynamic RFT, for 3D motion. This will require a careful study of granular

kinematics and dynamics during a variety of high speed locomotor interactions. We

posit that it may be possible to integrate such theory with the continuum methods

treating fast deforming granular media as a dense gas [109], perhaps using methods

like those developed in [113], which focus on steady flow. Additionally recent work by
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Askari and Kamrin [21] suggests that a continuum model based on plasticity theory,

which has shown effectiveness in explaining quasistatic RFT forces in granular media,

may be of use at the high speeds observed during robotic jumping.
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CHAPTER II

HARD GROUND JUMPING DYNAMICS

2.1 Summary

Jumping is an important behavior for many animals and robots. Unlike periodic

gaits such as hopping or running, whereby energy generated in previous cycles can

be leveraged to efficiently sustain motion, jumping relies almost purely on a transient

burst of activity to produce take-off from rest. While bioinspired robots have utilized

some jumping mechanisms revealed from numerous biological studies, there have been

few systematic studies of the dynamics of these transient behaviors. We performed

a study which characterized the dependence of jumping performance on the robot’s

hybrid dynamics [3].

In this Chapter, we discuss the results and analysis of these jumping experi-

ments [3] as well as other experiments which probed the role of vibrational resonance

in producing lift-off. Further, we expand on this work by examining - primarily

through simulation - how various nondimensional parameters pertaining to the iner-

tially forced spring-mass model influence the relative performance and optimal fre-

quency of different jumps. Through simplifications and an analysis of the stutter

jump’s kinematics, we also develop predictive formulas for the optimal frequency of

the stutter jump based on a small number of system parameters. Interestingly, we

can make predictions of how jumping performance changes based on gravity, useful

for robotic applications during the exploration of celestial objects.

45



2.2 Methods

2.2.1 Automated Robotic Jumping Apparatus

Hard ground jumping experiments were conducted with a robot consisting of a linear

actuator (Dunkermotoren ServoTube STA11) (Fig. 18(c)) with a series spring rigidly

attached to the bottom end of the actuator’s lightweight thrust rod. The ServoTube

STA11 provides a force proportional to the current delivered. Similar to rotational

electric motors, the linear motor has a stator and a rotor, except in the linear motor

configuration, the stator and rotor is unrolled to produce a linear force instead of a

torque. In the STA11, the thrust rod acts as the stator, encasing rare-earth mag-

nets, and the exterior case constitutes the rotor that receives current to produce an

electromagnetic force on the rod. Encoders allow for feedback control of the rotor’s

position relative to the thrust rod.
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Figure 18: The hard ground robot apparatus. (a) Diagram of robotic apparatus,

robot was oriented to θ = 75◦ to reduce motor strain from force of gravity. (b)

Picture of robot setup. (c) Close up of the Dunkermotoren ServoTube STA11 motor,

image courtesy of Dunkermotoren.

The actuator is mounted to an air bearing for nearly frictionless 1D motion (Fig.

18(a,b)). The air bearing carriage adds significant weight to the robot. To mitigate
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overheating in the motor, the bearing is oriented to 75◦ relative to the vertical axis,

reducing gravity to 0.276g. We control the motor position with a feedback/feed

forward control scheme (Fig. 19(a-c)). Reducing the value of the position feedback

gain to 6% of the value for optimal control damps the entire system. This allows for

faster automation of experiments by eliminating spring vibrations after a jumping

experiment. Most gain values supplied are sufficient to control the motor trajectory

with the exception of the position proportional gain, which is tuned manually. Figure

19(c) illustrates the commanded versus actual positions as collected from the amplifier

for a relevant range of forcing frequencies while the robot is suspended.
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Figure 19: Motor Control and Data Acquisition. (a) Schematic of data communi-
cation to and from computer. Labview logo courtesy of National Instruments. (b)
High level block diagram of feedback motor control loop. (c) Commanded vs. actual
relative actuator position xa as measured from encoders. The motor was controllable
for a wide range of forcing frequencies.

To detect lift-off, we attached a continuity sensor to the bottom end of the spring

(Fig. 18(a)). The sensor consists of a wire coiled around the bottom of the spring and

wire connected the metal base that the robot jumped on. These wires are connected

to a USB DAQ board (National Instruments NI-USB-6009) that supplies a 2.5 V

load and measures the voltage of the circuit. When the spring leaves the ground

and disconnects from the metal base, the resulting open circuit causes a change in

voltage. The sensor operates at 1000 Hz, allowing the detection of metrics such as
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time to lift-off from the onset of motor activation and time of flight to 1 millisecond

resolution.
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Figure 20: Data collection. (a) Raw image take for video tracking. (b) Sample

threshold image. Green rectangle indicates initial tracking window; green circle in-

dicates white space centroid location. (c) Actuator position xa and video tracked

position of the thrust rod xp, and the lift-off sensor voltage with a sinusoidal forcing

amplitude of A = 0.30 mm in which the robot lifts off.

Time of flight was used to measure jump height (Fig. 21), derived from the equa-

tions of projectile trajectory. Vertical position vs. time, x(t), of an airborne object is

x(t) = x0 + ẋ0t+ 1
2
at2, where the initial position is x0 = 0, and the acceleration, a, is

gravity, −g. The velocity of the object at maximum height, which occurs at time, th,

is ẋ(th) = ẋ0 − gth = 0. Thus, the initial velocity, ẋ0 = gth, can be substituted into

the position equation, which is at maximum height at time, th, x(th) = h = gt2h− 1
2
gt2h.

Since the time at maximum height, th, is half of the total flight time, tf , the equation

of jump height can be expressed as h = 1
8
gt2f . A Labview routine automated data

collection and robotic control for multiple successive jumping experiments, whereby

jumping metrics such as time of flight or time to lift off were measured for systemat-

ically varied actuation parameters.
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Figure 21: Illustration of the measurement for jumping height using flight time.

While the continuity sensor was used to measure jump height for the hard ground

experiments, a 200 FPS Point Gray camera was additionally used for real-time track-

ing of a 15 mm diameter white plastic ball attached to the thrust rod (Fig. 20(a,b)).

Video tracking of the robot became essential during jumping experiments on granular

media (see Chapter III), where the continuity sensor could not be used. A threshold-

based tracking routine in Labview calculated the centroid pixel position of the ball.

Oscillations smaller than 30 microns were detectable. An example of the coordination

of video-tracking, lift-off sensing, and motor control is illustrated in Figure 20(c).

Video tracking was also used to characterize the damping of the spring (Fig. 22).

From rest, with the relative motor position remaining constant, the robot was excited

by a tap while on the ground, and the high-speed camera captured the resulting spring

vibrations. Camera tracking was also used to determine the coefficient of restitution

(0.8 ± 0.06) from ground collisions.
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Figure 22: Measuring spring stiffness and damping. (a) Force vs. position data of

spring compression (black circles). Stiffness was found to be k = 5760.6 N/m (linear

fit in light blue). (b) Thrust rod position, xp, during free spring oscillations vs. time

(black). Position re-centered about zero to determine decay equation of oscillation

peaks (light blue, xp,peaks = 0.00015e−ζω0t), where ω0 =
√
k/m, and damping ratio

ζ = 0.0083.

We found the damping ratio to be ζ = 0.0083 by determining the exponential

decay of the oscillation peaks. The natural frequency, ω0 =
√
k/m or f0 =

√
k/m

2π
, was

determined by the overall mass, m = 1.178 kg, and the spring stiffness, k = 5760.6

N/m, which was determined from force vs. displacement measurements taken by
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compressing the spring with 6-axis robot arm fitted with a force sensor.

2.2.2 Simulated Jumping Model

xr

xm

g

Actuated 
Mass

Spring

Rod

Hard Ground

(a) (b)

gmm

grm

(c)

sF

mF

Figure 23: Diagram of the theoretical model on hard ground. (a) Overall hard
ground model. Free body diagrams of the (b) actuated mass and (c) rod.

To compare with experiment and further analyze the model, we numerically in-

tegrated a Simulink (Matlab, ODE45 integrator) model of the robot (comprised of a

linear motor and thrust rod) in series with a spring jumping on hard ground according

to the following equations of motion:

mmẍm = −mmg + Fm, (3)

mrẍr = −mrg − Fm + Fs, (4)

the subscripts, m and r corresponding to motor and rod quantities, respectively. The

rod and motor equations were combined as

Mẍr = −Mg + Fs +mmẌm, (5)
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Table 3: Empirically Measured Robot Properties
Property Units Value
Total Mass, m kg 1.178
Motor Mass, mm kg 1.003
Rod Mass, mr kg 0.175
Stiffness, k N/m 5760.6
Damping Ratio, ζ - 0.0083
Damping Coefficient, c Ns/m 1.368
Natural Frequency, f0 Hz 11.130
Resonant Frequency, fr Hz 11.129

where M = mm +mr, and the Ẍm = ẍr − ẍm. The spring force, Fs, followed Hooke’s

law for the spring between the rod and foot: Fs = −kxr − cẋr, where the damping

coefficient, c = 2ζ
√
km. Table 3 shows the parameter values used when making direct

comparisons with experiment.

The robot was considered in the grounded phase when xr ≤ 0, such that a negative

value of xr indicated that the spring was compressed. Otherwise, the robot was aerial,

and Fs = 0. A challenge of numerically integrating a 1D damped bouncing system

(even on hard ground) is mitigating Zeno effects, in which the number of bounces

approaches infinity in finite time [111]. This leads to significant simulation errors

which scale with time-step size in detecting the transition between ground and aerial

phases. To reduce such inaccuracies, we used Matlab’s ODE45 integrator, which

has a variable time step that is adjusted according the current system stiffness, thus

accurately detecting hybrid transitions.

2.3 Minimum Amplitude Experiment

During the exploratory phase of the hard ground jumping project, we examined how

to quantify jumping performance in relation to various actuation parameters. Our

initial experiment measured the minimum forcing amplitude required to achieve lift-

off, given that the robot starts from rest and the relative position of the actuator

along the thrust rod, Xm, was prescribed to move with a sine-wave trajectory, Xm =
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A sin (2πft+ φ). For a fixed frequency, f , amplitude, A, and phase offset, φ and

number of forcing cycles, N , we determined the minimum amplitude, Amin, required

to achieve lift-off. After N cycles, we used the lift-off sensor to determine if lift-off

occurred at any point. If no lift-off was detected, we selected a higher A for the

next run, and vice-versa for when lift-off was detected. We iteratively repeated this

procedure in the form of a binary search algorithm that determined Amin to within

0.00625 mm, the resolution of the actuator’s encoder. We determined Amin for a

range of values of f from 3 to 16 Hz in steps of 0.125 Hz, such that Amin vs. f

could be plotted and an optimal f could be determined based on the frequency that

produced the smallest Amin. A total of 8 plots of Amin(f) were generated for N = 1

and 5 cycles, at φ = 0, π/2, 3π/4, and π radians (Fig. 24).
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Figure 24: Minimum forcing amplitude. Left and middle columns are plots in the

A− f plane that indicate regions lift-off (light blue) and no lift-off (black) when the

robot is forced for N = 1 cycle (left column) and N = 5 cycles (middle column) at

varying phase offsets, φ, indicated by row in the right column. Vertical dashed lines

indicate resonant frequency, f0.

When we forced the motor for 5 cycles, the optimal f to achieve lift-off was

nearly f0. However, when the motor was only prescribed to oscillate for 1 cycle,

the optimal frequency to achieve lift-off was a function of the initial phase offset.

To further examine this minimum amplitude, we measured the time to lift-off (Fig.
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25) by oscillating the actuator for a maximum of N = 100 forcing cycles. The

continuity sensor measured time to lift-off in units of forcing cycles. This experiment

was performed for different phase offsets (φ = π/2, and 3π/2 shown in Fig. 26) and

over 30,000 different combinations of f and A (ranging from 0.27f0 ≤ f ≤ 1.51f0,

and 0 < A ≤ 6 mm).

rx

Time to lift-off

Figure 25: Illustration of the measurement for time to lift-off.

As A was decreased, there was a monotonic increase in the cycles to lift-off until

a limiting A below which the robot was unable to achieve lift-off within 100 cycles

(Fig. 26, data is plotted with a threshold time of 5 cycles). As f approached a

frequency near the natural frequency, f0, this limiting amplitude reached a minimum.

The frequency, f100, at which this minimum amplitude occurred, was defined as the

optimal frequency to achieve lift-off within 100 cycles with the lowest amplitude

possible. This experiment was also repeated in simulation with excellent agreement

with experiment (Fig. 26 insets), although the experimental f100 was slightly less

than the theoretical natural frequency, f0, calculated from f0 = 1
2π

√
k/m, whereas

the simulated f100 = f0. We suspect that the discrepancy is attributed to untuned PID

feedback gains in the control of the actuator, which produced unintended damping in

the robot. Taking into consideration only the characterized damping of the spring,

ζ = 0.0083, one can assume that the robot’s natural frequency, f0, is approximately

equivalent to the resonant frequency, fr = 1
2π

√
k/m

√
1− 2ζ2. However, we suspect
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that the unintended damping from the untuned feedback parameters resulted in a non-

negligible decrease in the resonant frequency. In all further experiments, the control

gains were tuned for optimal positional tracking and minimization of damping not

associated with the robot’s spring. Between jumping experiments, this damping effect

was exploited by reducing feedback gains to more rapidly slow the robot to rest upon

collision, accelerating automation times. This was especially useful for jump height

experiments (Section 2.4) which produced large bounces and vibrations.
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Figure 26: Experimental time to lift-off in number of forcing cycles versus amplitude
and frequency for (a) φ = π/2 and (b) φ = 3π/2. Insets are the respective simulation
results. Time to lift-off was not measured experimentally for parameters A > 3.5
mm and f/f0 > 0.5, as preliminary low resolution experiments indicated that such
actuations were not necessary to examine optimal frequencies.

Regardless, due to resonance, f100 was always f0 regardless of φ. Lowering the

cut-off cycle time, the minimum A increased, and the optimal frequency remained

at resonance, fN = f0, down to approximately N = 2 cycles. As N approached 1

cycle, the optimal frequency deviated from resonance and became dependent on φ.

Due to this deviation from resonance, we hypothesized that the optimal frequency

for maximal jump height, h, at a given A and φ would also be off resonance, since

typical amplitudes desired for meaningful jump heights, i.e. h > A or h >> mg/k,

produced lift-off times of 1 cycle or less, making jumping a more transient process.
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2.4 Jump Height and Motor Power

To test the hypothesis that optimal frequency during jumping is off resonance, the

next experiment involved measuring the robot’s jump height for numerous 1-cycle

jumps. Here we provide an overview of the experimental results from Aguilar et al. [3].

The actuator was commanded to move from rest in all experimental runs with a sine

wave position trajectory relative to the thrust rod at a fixed frequency, f , amplitude,

A, and phase offset, φ. Keeping A constant at 4 mm, a total of 6720 combinations of

(f, φ) for 0.4f0 ≤ f ≤ 1.4f0 (where f0 is the robot’s natural frequency) and phases

0 < φ ≤ 2π were tested, with 3 trials averaged for each set of parameters for a total

of 20160 experiments (Fig. 27(a)).

To verify the theoretical model, we recreated the experiment in simulation with

a MATLAB Simulink model that integrated Equation 4. MATLAB integrated the

model with a 1000 x 1000 data point resolution, which yielded good agreement with

experiment (Fig. 27(b)). We then used the model to generate other measures in the

experiment such as number of jumps to execute the final jump (Fig. 28), lift-off time,

and internal deformation power, Pdef , which is defined as the power generated by

internal forces required to control xa excluding external forces such as gravity and

spring forces (Fig. 27(d)).

The data in each pixel of the experiment (Fig. 27(a)) represents a jump height

averaged over three trials. The variation from jump to jump was small, with the

standard deviation being less than 0.5 mm, or approximately 1% of mean h, for

frequencies higher than approximately 4 Hz. In a few phases, certain fractions of f0

below this 4 Hz exhibited significant variance due to small multi-jumps that occurred

as a result of sub-resonant harmonics. This occurred in a fairly complex region in the

φ−f plane labeled “MJ” for multi-jumps in Figure 27(a,b). These regions, delineated

by white lines, were extracted from simulation (Fig. 28). While this complex region

is labeled multi-jumps, the model shows how this region periodically produced up

58



 

0

4

8

12

16

0

5

10

15

20

25

30

 

35

xm(t)

φ (rad)

f (
H

z)

h (m
m

)

(a)No Jumps

MJ

Single
Jumps

Single

Stutter
Jumps

fr

ST

0

π/2 π 3π/2 0 π/2 π 3π/2

(b)

4

8

12

16

0

1

2

3

4

5

6

7

8

Peak M
otor Pow

er (W
)

EXP SIM

(d)(c)

Stutter Jump
(e)

xr

xM

Single 
Jump

(f)

Figure 27: Experimental hard ground jumping results vs simulation. Color maps
of (a,b) jump height and (c,d) peak motor power for (a,c) experiment and (b,d)
simulation vs frequency and phase offset. Areas were stutter jumps and single jumps
(illustrated in e and f, respectively) occur are outlined by white lines in (a).

to 5 small jumps while the motor was still oscillating, which was also evident in the

experiment.

The maximum jump heights, h, for a given φ were similar amongst phase offsets,

ranging approximately as 20 ≤ h ≤ 35 mm or 5A ≤ h ≤ 8.75A (Fig. 27(a,b)).

However, two broad peaks in jump height occurred at φ = π/2 and 3π/2, and the

optimal frequencies, fo, at these phase offsets were off resonance, as predicted from

the lift-off experiment. At φ = 3π/2, fo > f0, which corresponds to a single jump,

in which the motor’s initial relative position was near the bottom of the thrust rod
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jumps are one jump, stutter jumps are two jumps.

and began its trajectory by immediately pushing the rod downward to compress the

spring against the ground. At φ = π/2, fo < f0, which corresponds to a stutter jump,

in which the robot pulled the rod into the air for an initial hop, and then pushed

the rod back into the ground during landing to compress the spring and produce a

second, faster lift-off. These results were verified in simulation.

2.4.1 Understanding off-resonant optimal frequency

At first glance, Equation 4 looks completely tractable. Unfortunately, the discontinu-

ity associated with the aerial phase rendered the equation “piecewise linear”, which is

to say nonlinear. Indeed, simulations of Equation 4 showed a wide variety of behav-

iors (including bifurcations, hysteresis, chaos). The situation is reminiscent of other

piecewise linear dynamical systems which display complex dynamics, including the

tent map [86] and the bouncing ball [201]. Nevertheless, using analysis and numerics,

Equation 4 allowed us to gain insight into the experimental observations. In a later
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section, we will discuss how both of these tools – numerics and analytical derivation –

allowed us to expand this work and understand how optimal frequency was affected by

changing system parameters. We were particularly interested in why optimal jumps

occurred only off resonance.

Single Jump – Consider first the peak labeled S in Figure 27(a), representing the

highest single jumps. This peak occurred at actuator phases near φ = 3π/2. For

a relatively slow thrust rod mass, jump height is proportional to the square of the

absolute motor velocity, ẋm(t) = ẋr + Ẋm, at take-off, where Ẋm(t) = Aω cos(ωt+φ).

Assuming mr << m and no damping, we can obtain ẋm(t) by analytically solving

the differential equation of the system (Equation 4) while grounded for φ = 3π/2.

ẋm(t) =
Aω2

ω2
0 − ω2

ω0

(
ω0

ω
sin(ωt)− sin(ω0t)

)
, (6)

where ω = 2πf and ω0 = 2πf0. Thus ẋm(t) is a prefactor times the sum of two

opposing sinusoids (the one at frequency f0 represents the transient response, which

mixes with the steady state contribution). The prefactor generally favors f near f0,

but destructive interference suppresses ẋm close to resonance. Moving off resonance,

the prefactor favors higher f over lower, so the optimum f lies somewhat above

f0. Thus the single jump will be optimized at a frequency, ω > ω0, or f > f0.

Additionally, while the prefactor favors a higher f over frequencies lower than f0, the

optimal frequency is also upper-bounded, since a higher f produces a faster time to

take-off, which limits the time available to amplify power. While this argument holds

regardless of A, a consequence of increasing A is that lift-off will occur even faster,

potentially increasing the optimal frequency.

Stutter Jump – Understanding the presence and optimal frequency of the stutter

jump was more complicated than the single jump; the existence of two jumps intro-

duced nonlinearities due to the piece-wise nature of the system, making it difficult to

dissect analytically. However, the emergence of the stutter jump could be understood

through a conceptual analysis. Consider, for example, the case of φ = π/2, so that
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the initial actuator acceleration is negative. This causes the less massive thrust rod to

be accelerated upward before moving down to compress the spring and lift off again.

Interestingly, the stutter jump was observed for phases somewhat larger than π,

in which the initial actuator acceleration was expected to progress positively from 0.

This phenomenon can be explained by the actuator’s physical constraint. Regardless

of phase offset, the actuator must start from rest. Any phase offset corresponding

to a non-zero initial actuator velocity caused an initial impulse acceleration to the

intended initial velocity. This resulted in an initial actuator trajectory that was not

an ideal sine wave. For a phase such as φ = π, the initial relative actuator acceleration

was large and negative (Fig. 29), which briefly caused a large upward acceleration in

the rod, causing an intermediate hop.
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Figure 29: Simulation of an initial actuator impulse. φ = π.

The key to understanding the optimization of the stutter jump was to consider

the system energetics and the conditions that maximize the total work done during
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the forcing cycle. The instantaneous power input is P = Fextvm, where the Fext

is the total external force, which includes gravity and spring forces, and vm is the

velocity of the center of mass of the robot, which can be approximated as ẋm, since

mr << mm. The total work done be external forces is maximized when ẋm both is

large in magnitude and has the same sign as Fext.
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Figure 30 illustrates this situation for φ = π/2, which is when the stutter jump
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is optimal. At f = f0 (lower panel), the actuation is too fast and the actuator’s

relative motion is finished well before lift-off. At a low f (top panel), the actuation

is too slow, causing the actuator to stop after lift-off. This results in much of the

power stroke being wasted in the air. The optimal driving frequency (middle panel)

lies somewhere in between the previous two frequencies, in which the motor is forced

until lift-off occurs, maximizing the proportion of the stroke that benefits from elastic

power amplification while on the ground.
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Figure 31: Simulated trajectory of the optimal stutter jump. φ = π/2, f = 7.98 Hz.

Grey areas indicated the grounded state; white areas indicate the aerial state.

Figure 31 illustrates the trajectory of this optimal frequency. The motor starts at

the top and moves down then back up relative to the rod (countermovement). Just

milliseconds before making contact with the ground, the motor begins to move upward

along the rod, pushing the rod down towards the ground. Interestingly, this subtle pre-

landing movement has been observed to benefit human jumping during drop jumps

[100]. Once on the ground, the spring is eventually compressed maximally due to a

combination of momentum from falling and motor forcing. When the spring reaches
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maximum compression, both Ẋm and ẍm are at maximal values. The combination of

these two maximizations causes optimal power amplification of the motor stroke and

an explosive acceleration during push-off, maximizing Ẋm at lift-off.

Thus the optimality of the stutter jump not only depends on the phasing of

competing sinusoids while on the ground, but also on the proper timing of aerial and

ground states. The latter does not generally occur at f0. The frequency range in

which stutter jumps are optimal is more narrow than for single jumps, which can

be explain by the additional sensitivity to proper timing. Another consequence is a

strong dependence of optimal f with respect to the forcing amplitude, A. A larger A

produces lower optimal f , and a smaller A results in a higher optimal f . This strong

amplitude dependence is in direct contrast to the single jump mode, which does not

show a strong dependence to A. In a later section (Section 2.5), the effect of A (and

the more generalized nondimensional scale α = mg/kA) will be discussed. We will

illustrate how simplified descriptions of the stutter jump’s trajectory simultaneously

provide intuition into how the timing of the air and ground phases affect optimal

frequency at different scales as well as equations that predict optimal frequency vs α.

In summary, the non-intuitive result of an off-resonant optimal frequency was

explained by the transient nature of the jump; for the single jump, the spring-mass

system does not have time to fully leverage resonance build-up. Thus, the optimal

frequency is more dominantly determined by the competing sinusoidal homogeneous

and particular terms of the ODE solution for the robot’s position trajectory. For the

stutter jump (φ = π/2), the piece-wise linear nature of the jump does not allow for

the same ODE analytical study, however, the robot being airborne is an indicator

that the natural frequency is not the only time scale involved; there must be proper

timing between air and ground phases to achieve optimal jump height.
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2.4.2 Peak Motor Power

In addition to jump height, we also extracted the robot’s motor power vs. time

by recording the motor’s relative velocity and current from the motor’s amplifier and

encoder, where the current is directly proportional to the force. Motor power was then

calculated by P = FV . While the jump heights of the optimal stutter jump (φ = π/2

and fO = 0.78f0) and single jump (φ = 3π/2 and fO = 1.4f0) were comparable, the

peak motor power required for the single jump was 66% greater than that required

for the stutter jump (Fig 27(c)), confirmed in simulation (Fig 27(d)). This was due to

the difference in relative motor velocities of the two velocities. While the magnitudes

of peak forces were similar between the two jumps, with the stutter only producing

25% greater peak force (and consequently jumping slightly higher), the peak velocity

of the single jump was 100% greater than that of the stutter jump. The stutter jump

– which was observed to simultaneously produce slightly higher jumps than the single

while requiring less peak power in our jumping robot – is a maneuver which has been

observed in nature in the jumps of lemurs [59], the Galago moholis bushbaby [88],

and rodents [68, 116].

2.5 Nondimensional Scale Analysis

The results of our robotic experiments, however, only apply to specific parameter

values of mass, m, gravity, g, spring stiffness, k, and forcing amplitude, A. Excluding

damping (assuming damping is small) and the mass of the thrust rod and spring

relative to the total mass, we can describe the behavior of the robot in terms of the

non-dimensional variable α = mg/kA. The analysis of previous experiments and

simulations examined the minimum forcing amplitude to achieve lift-off (Section 2.3)

and the effect of the amplitude, A, on the optimal frequency of the stutter jump

(Section 2.4.1). These experiments have hinted at the influence of α (since, changing

A while keeping other parameters constant changes α).
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To confirm observations made in Section 2.4.1 about the effect of A on f/f0 for the

stutter jump, we extended the simulations performed in Section 2.3 to measure jump

height vs f/f0 and A for both single jumps (φ = 3π/2) and stutter jumps (φ = π/2)

(Fig. 32(a,b)). The protocol for these simulations mirrored those of the jump height

experiments, whereby, instead of oscillating for N = 100 cycles as in Section 2.3, the

jumping model was simulated to oscillate for N = 1 cycle, after which jump height

was measured in terms of the robot’s maximum center-of-mass position. The phases

φ = π/2 and φ = 3π/2 were chosen, because simulations confirmed that, for all α, the

highest stutter and single jumps based on center-of-mass height always occurred at

φ = π/2 and φ = 3π/2, respectively. The white outlines in Figure 32(a,b) represent

the minimum amplitude required to achieve lift-off, and mirror the structure observed

in the time to lift-off simulations (Fig. 26). As was found in our analyses in Section

2.4.1, optimal frequency increased with increasing A for the single jump and decreased

with increasing A for the stutter jump (Fig. 32(a,b), black lines).

These effects can be considered in terms of the non-dimensional variable α. In

simulation, we studied how non-dimensionalized jump height, optimal frequency and

power changed vs. α (Fig. 32(c,d)). We performed the same parameter sweep of

relative frequency, f/f0 (for low damping, the natural frequency, f0 ≈ fr) and phase

offset, φ, as in our original experiment.
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Figure 32: Influence of scaling parameters on relative jumping performance of the

single jump and stutter jump. (a,b) Simulated jump height / amplitude of (a) stutter

jump and (b) single jump vs forcing frequency and amplitude. White lines indicate

minimum amplitude to achieve lift-off. Black lines indicate forcing frequency that

yielded the highest jump for given amplitude. (c) Optimal frequency vs α of stut-

ter jump (solid) and single jump (dashed). (d) Jump height (blue) and peak power

(green) of single jump (dashed) and stutter jump (solid). Green shaded region indi-

cates ideal stutter region. Black line indicates α of experimental robot. Ideal stutter

jumping region (α range, green shaded) vs (e) relative rod mass and (f) damping

ratio.
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As α → 0, jump heights and peak motor power of both jumps exponentially in-

creased. Jumping with high α (i.e. α >> 0.1) resulted in poor jumping performance,

particularly evident when jump height was normalized by the equilibrium position,

mg/k. For low α (α < 0.1), the single jump had a greater jump height and required

a higher peak power than the stutter jump, however, the stutter jump height and

power both surpassed that of the single jump at α = 0.09 and α = 0.28, respectively

(Fig. 32(d)). For our experimental robot, α = 0.13, which is within this ideal regime

in which the stutter jump’s height is greater than the single jump, and has a lower

power requirement. Regardless of α, however, the power efficiency of the stutter

jump, height/power, was always greater than that of the single jump.

We also examined the effect of increasing the mass of the rod relative to the total

mass as the effect of changing the spring’s damping. Increasing these parameters

reduced the jumping performance of both jumps. Increasing these parameters also

produced non-trivial changes to the α range of the ideal regime for stutter jumping

defined by lower power and higher height stutter jumps (Fig. 32(e,f)). Increasing

relative rod mass shifted this region to lower α values. Increasing the damping ratio, ζ,

produced a positive shift in the ideal α regime until stutter jump became so ineffective

as compared to the single jump that the region began to narrow and then shift

negatively for higher ζ.

2.5.1 Influence of α on optimal frequency

Increasing α decreases the forcing amplitude, A, relative to the spring-mass equilib-

rium position, which, in turn, increases the portion of time the robot spends on the

ground before final lift-off. An increasing α causes the optimal frequency fopt to ap-

proach f0 for the single jump and nearly f0 for the stutter jump (Fig. 32(a)). What

follows is an analytical understanding of fopt versus α.

For the stutter jump, a low α results in fopt < f0 with increasing fopt as α increases
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until α ≈ 0.9, at which point fopt ≈ 1.2f0 for all α ≥ 0.9. It is interesting to note that

fopt of both jump types (single and stutter) are nearly identical at this point. The

stutter jump exhibits qualitatively different dynamics depending on whether α < 0.9

or α ≥ 0.9. As such, each case has a unique analytical treatment.

We focus on developing an understanding the optimal frequency of the stutter

jump. For the case of α < 0.9, the stutter jump exhibits hybrid dynamics (both

ground and air phases), making it difficult to extract analytical solutions for opti-

mal frequency through standard means of integrating the differential equations of

the robot (as was done for the single jump [3]). However, making some conceptual

simplifications, one can still attain an estimate of the optimal stutter frequency and

understand why it is optimal below the natural frequency. Below are a few different

estimates of fopt/f0 vs. α. We assume no spring damping and a massless rod.
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Figure 33: Stutter jump simulation analysis. (a) Typical stutter jump kinematics at

optimal forcing frequency. Global motor position was offset by 2A to clearly see its

trajectory. (b-d) Comparing optimal stutter jump rod position (black) and relative

motor speed (brown) (b) below, (c) at, and (d) above the optimal frequency. (e)

Optimal stutter jump frequency vs α, including simulation and analytical estimates.

1st Estimate: A half cycle of falling – During the stutter jump, the rod is pulled

off the ground and the robot begins to fall (Fig. 33(a)). Thus, for the first estimate,

we approximate that the robot starts airborne, falls a distance of about 2A with an

acceleration of g and lands approximately half way through its forcing cycle. Applying
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kinematic equations to this argument leads to the following relation.

0 = 2A− 1

2
gt2, (7)

where t is half of the forcing period. Thus forcing frequency relative to the natural

frequency, f0 =
√
k/m/2π, is calculated as

f

f0

=
π

2

√
α. (8)

While not accurate (Fig. 33(e)), the derivation of this first guess provided basic

intuition for how the optimal frequency is broadly influenced by how much time the

robot spends in the air versus on the ground before final lift-off. This is more clearly

illustrated by the 2nd estimate of optimal frequency.

2nd Estimate: Lift-off at end of forcing cycle – Contrary to the assumption used

in the first estimate, the timing of the preliminary hop’s landing relative to the forcing

cycle depends on α. However, a consistent observation from simulation independent

of α is that, due to the phasing required to maximize output energy, the robot reached

final lift-off near the end of the forcing cycle when forced at fopt. The motor transfers

energy to the robot while the spring is in contact with the ground (xr < 0), which is

primarily during the push-off phase (Fig 33(b-d)).

Motor energy is calculated by integrating the motor power, Pm = Fmẋm, during

push-off. For low damping and low relative rod mass, Fm is dominated by the spring

force, Fs, which is proportional to the rod position (or spring compression) by k.

Thus, Pm ∝ xrẋm, where xr during push-off can be approximated by a half sine wave

at f0, and ẋm is also a sine wave. As a result, the integration of Pm is maximized

by keeping the second half cycle of the motor’s velocity trajectory approximately in

phase with the spring-mass oscillation, leading to the robot lifting off near the end of

the forcing cycle.

Revising the first estimate, the full cycle consists of the time spent falling and

the time spent on the ground. The time on the ground, dominated by the spring’s
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dynamics, is estimated as a half period of the natural frequency, thus

t = 2

√
A

g
+ π

√
m

k
, (9)

where t is now the full period of forcing. Taking the inverse of t and dividing by f0,

the relative optimal forcing frequency is then estimated as the following:

f

f0

=
1

1
2

+ 1
π

√
1
α

. (10)

While this estimate is more accurate than the first (Fig. 33(e)), it still produces a

simple expression that more directly illustrates the competition between the grounded

and airborne timescales. In fact, this competition of timescales is embedded within

the expression for the dimensionless variable, α = mg/kA, which can be rewritten as

α = T 2
ground/T

2
air, (11)

where Tair =
√
A/g is the airborne timescale, and the grounded timescale, Tground =√

m/k, is proportional to one period of oscillation at the natural frequency (2π
√
m/k).

If gravity is decreased or the forcing amplitude is increased (which corresponds to a

lower value of α), the robot will spend more time falling in the air (i.e. the preliminary

hop) relative to the time spent on the ground, thus reducing the optimal frequency

to a value lower than the natural frequency.

3rd Estimate: Consideration of the first lift-off – To achieve higher accuracy, we

now consider the time spent on the ground before the first lift-off, since, during the

initial pull-up phase, the spring must fully decompress from equilibrium before initial

lift-off. As α increases, more time is spent on the ground and less time in the air

before final lift-off. In this estimate, the full forcing cycle is a combination of the time

to first lift-off, air time, and a half period at f0.

To estimate time to first lift-off, we first establish the rod’s equation of motion

during this initial phase. The trajectory of the massless rod is approximately driven by
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the motor forcing trajectory (assuming the effect of gravitational acceleration on the

trajectory is negligible during this small amount of time). A convenient simplification

is to consider a constant acceleration profile instead of sinusoidal forcing. We chose

the acceleration required to travel a distance of 2A starting from rest in a half period

of forcing:

ar = 16Af 2

The thrust rod is accelerated at ar from rest from an initial equilibrium position of

−mg/k. Thus the equation defining the time to reach a position of 0 is as follows:

0 = −mg
k

+ 8Af 2t2FirstLift

Rearranging, we get:

tFirstLift =
1

f

√
α

8

To determine the next component of the motor’s forcing period, the time the motor

spends falling during the preliminary hop (tair), we find the roots of the equation

describing the motor’s motion during falling. Since we assume a massless rod, the

motor’s downward acceleration is determined by gravity, g:

xm = x0 + v0t−
1

2
gt2

where xm is the global position of the motor, and x0 and v0 are the initial position

and velocity of the motor at tFirstLift. Thus the roots are

tair =
v0

g
±
√
v2

0 + 2gx0

g
.

Since v0 is negative (the motor is falling) and the rooted term will always be larger

in magnitude than v0 (|v0| <
√
v2

0 + 2gx0, assuming x0 is positive), we only consider
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the positive root:

tair =
v0

g
+

√
v2

0 + 2gx0

g

Unlike in the previous estimates, a consequence of considering tFirstLift is that

the motor has already descended some distance and has a non-zero initial velocity at

tFirstLift. To find x0 and v0, we require motor’s acceleration before first lift-off. This

is obtained from the force balance equation for the rod and motor while the robot is

grounded (assuming a massless rod):

−kxr −mg = mẍm

The rod’s position, xr = 8Af 2t2 −mg/k, is obtained from the rod’s acceleration, ar,

which was used to find tFirstLift. Plugging xr into the above equation, the motor

acceleration is as follows:

ẍm = − k
m

8Af 2t2

We integrate and find the velocity and position:

ẋm = − k
m

8

3
Af 2t3

xm = 2A− k

m

8

12
Af 2t4 − mg

k

Plugging in the expression for tFirstLift, we find the initial conditions of the motor at

moment, tFirstLift, in which the motor begins to free-fall.

v0 = − g

6
√

2

√
α

f

x0 = 2A− mg

k
− αg

96f 2

Plugging x0 and v0 into the equation for tair, we get:
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tair = − 1

6
√

2

√
α

f
+

√
− α

f 2

1

144
+

2A

g
(2− α)

As before, the time of the last ground phase is approximated as half of an oscillation

cycle at the natural frequency:

tground = π

√
m

k
=

1

2f0

Adding all of the components of the cycle, we arrive at an expression for the time

of the total cycle:

ttotal = tFirstLift + tair + tground =
1

f
=

1

f

√
α

18
+

1

f

√
2A

g
f 2(2− α)− α

144
+

1

2f0

Multiplying this equation by f and rearranging the terms, we get a quadratic equation

to solve for the relative optimal frequency, f/f0.

(
1

4
− 2− α

2απ2

)(
f

f0

)2

−
(

1−
√

α

18

)(
f

f0

)
+

(
1 +

α

16
− 2

√
α

18

)
= 0

Solving the above quadratic equation, we find an expression for relative optimal fre-

quency with respect to α:

f

f0

=
1−√ α

18
1
2
− 2−α

απ2

−

√(
1−√ α

18

)2 − 4
(

1
4
− 2−α

2απ2

)(
1 + α

16
− 2
√

α
18

)
1
2
− 2−α

απ2

. (12)

This formulation, unwieldy as it may be, produces the most accurate estimate (Fig.

33(e)). It emphasizes the competition of ground and air timescales by also considering

the initial grounded phase. A decrease in α implies a relatively smaller amount of

time spent on the ground before the first lift-off, either by increasing the rate at which

the rod is accelerated to the zero position (increasing amplitude, A) or by reducing

the rod’s initial distance to the zero position (i.e. reducing the absolute value of

the equilibrium position, mg/k), which further produces an optimal frequency less
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dominated by the natural frequency. Of note is how accurate these estimates get

without the use of sinusoidal forcing functions, suggesting that the stutter jump’s

timescale dynamics discussed here are largely independent of the shape of the motor’s

periodic forcing trajectory.

When α ≥ 0.9, the entire forcing trajectory occurs while the robot is grounded;

thus, fO ≈ 1.2f0 can be explained by solving the system’s ordinary differential equa-

tion for the center of mass position and velocity trajectory and maximizing the total

energy after one forcing cycle, or t = 1/f .

The differential equation for the stutter jump is

ẍm + 2ζωnẋm + ω2
nxm = −mm

m
ω2A cosωt− g,

where ω = 2πf , ωn =
√
k/m, mm is the actuator mass, and xm is the actuator’s

position. Assuming no damping, the differential equation is solved as

xm(t) =
Amm

m
ω2

ω2
n − ω2

[cosωt− cosωnt]−
mg

k
.

The position of the rod is found as xr(t) = xm(t) − A cosωt, and thus the COM

position is x(t) = (mmxm(t) +mrxr(t))/m. The total energy equation is obtained as

the sum of the kinetic energy, potential gravitational and potential spring energy.

E(t) =
1

2
m
dx(t)

dt

2

+mgx(t) +
1

2
kxr(t)

2

We are interested in the energy of this system after the robot has completed one full

cycle of forcing, or t = 1/f = 2π/ω. The energy equation as a function of relative

frequency, ω̄ = ω/ωr = f/fr, where fr = f0 in the case of zero damping, is

E(ω̄) =
ω̄4

(1− ω̄2)2
(1− cos

2π

ω̄
). (13)

The above equation is maximal at ω̄ = 1.2. The above equation is a simplified form

that excludes constant additive terms and outer constant scaling terms that do not
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affect the location of the maximum value. Note that, in this α ≥ 0.9 case, the φ = π/2

jump is no longer technically a stutter jump by the definition of having a preliminary

air phase, and is merely a counter movement with one lift-off. While our current

jumping protocol of only one forcing cycle results in fO ≈ 1.2f0 for α ≥ 0.9, it can

be shown that a multiple cycle protocol does result in fO → f0 for increasing α.

2.5.2 Interactive demonstration of jumping dynamics and real-world com-
parisons

To illustrate the jumping dynamics discovered in [3] (and, in particular, to provide an

instructive demonstration of both the stutter jump and single jump), we developed

an interactive online simulator of the 1D jumper (Fig. 34). This demo also allowed

the user to change the robot’s parameters, giving some ability to directly visualize

how changing α influences jumping dynamics.

Figure 34: Interactive jumping demonstration. Developed with Processing pro-
gramming language. Users are able to manually control the motor’s relative posi-
tion or play a sine wave trajectory with specific actuation parameters. Fine control
of robot parameters and space and time scales were also provided. Available at
http://crablab.gatech.edu/pages/jumpingrobot/Demo.html.

It is also useful to examine parameter values of real-world jumping systems. As

a baseline, our own experimental jumper had an α value of 0.14 when performing
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the jumps in our study in Section 2.4, placing the robot within the range of α values

which are doubly ideal for the stutter jump in terms of both jump height and peak

motor power. A simple spring mass model has been used to describe hopping and

bouncing gaits in humans [72, 145]. However, obtaining values such as α for biological

jumpers such as humans can be quite difficult due to the fact that humans are far more

complex than our simplified robophysics jumping model, making it challenging to find

equivalent values for k and ζ. Moreover it has been found that humans can alter their

effective stiffness at different stride frequencies during running [71]. However, even

broad parameter estimates can be instructive in approximating what types of jumps

may be optimal in humans.

Such an attempt was made in a study [222] that had subjects stand on a force

platform while their vertical center of mass position was perturbed in a random

fashion. Using force and position data from these trials, a system identification routine

determined human values for kh = 28500 N/m and ch = 950 Ns/m, which equates to

ζh ≈ 0.32 for an assumed average human mass, mh = 78 kg. If we approximate that

half of a human’s vertical stroke during maximal jumping would yield Ah ≈ 0.5 m,

then αh ≈ 0.05. This would indicate that humans lie just outside the ideal range for

the stutter jump (in terms of jump height, and more so given the high damping, where

the model predicted about 2 m stutter jump and about a 5 m single jump). However,

at lower α, the power requirements of producing the ideal single jump rapidly eclipse

that of the stutter jump. Thus, one could postulate that a stutter jump may still be

preferable depending on the power limitations of muscles, particularly when muscles

are fatigued, which further reduces muscle power [106].

Extrapolating from human estimates for α and jumping performance, we also

compared the performance of other organisms over a wide range of length scales.

Assuming that the effective stroke amplitude, A, (which we approximate is propor-

tional to one dimension of an animals body size, i.e. their body length, l) is the only
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parameter that changes with body length would yield an increasing value of α for

decreasing values of body length. In this case, we expect jump heights relative to

body length, l, (or A) to decrease with decreasing body length. However, biological

observations illustrate the opposite trend (Fig. 35). While morphology and struc-

ture in organisms produce scaling relationships that are allometric (i.e. deviations

from isometric scaling) [36], even simplified isometric scaling arguments [207] can be

helpful to obtain an intuitive understanding of how α scales with body size.

Assuming mass scales proportionally with volume, mass will scale with body

length cubed (m ∝ l3). To obtain a scaling for stiffness, k, we assume animals

(particularly vertebrates) have elements contributing to an effective elastic mecha-

nism (i.e. tendons and muscles) with similar mechanical properties. We furthermore

describe these elastic members as a bundle of series and parallel spring-like elements.

In such a case, an isometric scaling would dictate that k scales proportionally with

body length (k ∝ l). Using human parameter estimates [222], we arrived at a scaling

relationship (Fig. 35 inset) for α vs l:

α =
mhg

khAh

l

lh
, (14)

where we used an average human height, lh = 1.8 m. Thus, as body size increases, so

does α.
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Figure 35: Comparison between spring-mass jumping model and biological jumps:

jump height relative to body length vs body length. Simulated single jumps (dashed)

and stutter jumps (solid) are calculated using values of α (inset) that scale from

simplified isometric scaling relationships [207] relative to experimental human val-

ues [222] of mass, length and stiffness. Biological jump height data was compiled

from numerous studies [84, 29, 70, 94, 44, 174, 175, 227, 52, 53, 179, 130, 206, 219,

91, 88, 60, 59, 197, 1, 97, 120, 56, 42, 208, 123, 100, 116, 68, 143].

For constant damping and relative rod mass, we simulated single jumps (Fig.

35 dashed line) and stutter jumps (Fig. 35 solid line) for the range of l in which
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biological jump heights have been measured. Most animals tend to perform bet-

ter than the simulated stutter jumps and worse than the simulated single jumps.

Variations in morphology (such as relatively longer legs) will affect α values for in-

dividual organisms. Additionally, the simulated single jump heights are at optimal

frequency, where motor power requirements quickly increase as α decreases. There

may be power limitations in achieving the optimal single jump. In fact, various or-

ganisms [84, 29, 70, 94, 44, 174, 175, 227, 52, 53, 179] such as frogs and insects utilize

a different strategy of jumping altogether: the catapult jump, which does not require

high power inertial loading of elastic energy. Elastic energy can be slowly stored and

then released all at once with a catch mechanism. The bush baby is also suspected of

producing some combination of a countermovement (capable of producing a stutter

jump), squat jump (akin to the single jump) and catapult [1]. Of those animals that

do not use the catapult mechanism, it is highly unlikely that they are utilizing perfect

sinusoidal actuations. Thus for maximal height jumps, we posit that organisms may

be independently optimizing different phases of their jump (such as the stutter jump’s

aerial and ground phases) up to the power limit of their muscles.

2.5.3 Asymmetric trajectories: the two-frequency stutter jump

Building on the physical intuitions of how the gravitational and spring-based time

scales that influence the optimization of the single jump and the stutter jump, we

also examined the optimality of a stutter jump that is composed of two half cycles

at distinct forcing frequencies. Such a jump would not be constrained to a single fre-

quency that can compromise on the individual optimization of the gravity influenced

pull-up phase and spring-mass dominated push-off phase.

Not surprisingly, the two-frequency stutter was always able to perform higher

jumps than either the stutter jump or the single jump (Fig 36(a)). This effect was

magnified at lower values of α due to the reduced relative strength of gravity, thus, a
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Figure 36: Two frequency stutter jump results (a) Relative jump heights vs alpha
(b) Relative peak power vs alpha (c) Efficiency vs alpha (d) Optimal frequencies vs
alpha.

larger percentage of the pull-up phase was spent in the air, which has an exclusively

gravity dominated time-scale. This produced a greater disparity between the pull-up

phase frequency and the push-off phase frequency (Fig 36(d)). As α approached 0.9,

relative air time approached zero until both phases of forcing were optimal at the same

frequency as the regular stutter jump due to the singular influence of the spring based

time-scale. The increased jump height of the two-frequency stutter was due to the

disparate frequencies - one lower than the stutter jump and the other higher than the

single jump - maximizing spring compression. This increased compression was coupled

with a high relative motor velocity during the high frequency push-off phase, which

invariably produced peak motor powers that were also greater than either the stutter

jump or single jump (Fig. 36(b)). These high peak powers significantly reduce the

efficiency of the two-frequency stutter jump when compared with the regular stutter
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jump until both jumps are identical for α > 0.9 (Fig. 36(c)), at which point relative

jump heights are already extremely low.
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CHAPTER III

THE DYNAMICS OF JUMPING ON GRANULAR MEDIA

3.1 Summary

The locomotion of terrestrial animals or robots is typically studied in scenarios

where either unyielding environments deform the locomotor or, conversely, where non-

compliant locomotors deform yielding substrates. Such scenarios include animals[13,

37] or robots[172, 167, 121, 170, 46, 49] with body compliance during running or jump-

ing on hard ground, as well as rigid robotic hexepedal locomotors that deform granu-

lar substrates[169, 129]. However, in many robotically[224] and biologically[127, 149]

relevant situations like impulsive interactions during running and hopping, the de-

formable substrate and locomotor simultaneously affect each other’s internal states.

Our group’s previous work[127, 169, 129, 135, 133] has demonstrated that dry

granular media forms an excellent substrate on which to study diverse locomotor

behaviors. However, even in this well-studied system, little is known about locomotor

dynamics during active impulsive interactions. Many studies of fixed-shape (non-

locomoting) objects impacting and penetrating dry granular media have revealed

reaction forces (FGM) that can be described by

FGM = Fp(z) + αv2, (15)

where v and z are the object’s velocity and depth, respectively [114, 199, 203]. The

hydrodynamic-like term, αv2, results from momentum transfer to the grains (signifi-

cant during high speed impact [69, 164, 180, 26, 15, 73]), where α is the inertial drag

coefficient. The hydrostatic-like force Fp(z) results from frictional forces and typically

scales as kz for submerged or flat intruders [199] for slow intrusions, where k charac-

terizes the medium’s penetration resistance. This hydrostatic-like term has recently
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been extended to a granular resistive force theory (RFT), whereby forces are predicted

on objects intruding relatively slowly (where inertial effects are negligible [166]) with

different directions and orientations [129]. Such work has helped explain the kinemat-

ics of slow moving locomotors [129, 135, 133]. During high speed locomotion, recent

studies of free impact in dense cornstarch solutions [211] and dry granular media [115]

as well as rapid lightweight robot running on granular media [224] have shown the im-

portance of hydrodynamic-like effects during high-speed interactions. One such effect

includes added mass, which effectively increases the inertia of an intruder displacing

material (see[45] for a review of added mass in fluids).

During such high speed movements, locomotors are often described by complex

models [157, 220]. Yet even simple active-passive self-deforming objects (such as

robots with both actuators and compliant springs) on hard ground can exhibit rich

dynamics and provide insight into more complex systems. For example, the jump-

ing performance of a 1D actuated spring-mass hopper is sensitive to its active self-

deformation strategy, which induces motion coupled to both aerial and passive spring-

mass dynamics [3]. We therefore posit that understanding the dynamics of rapidly

self-deforming objects in complex media will require new insights into both nonlinear

robot dynamics and soft matter physics when inertial effects are important. As such,

in this Chapter, we discuss our expanded robophysical study of jumping (originally

on hard ground publish in [3]) on dry granular media (published in [2]). However,

forced impulsive interactions in granular media were not well understood. To gain

new insights into the nonlinear dynamics governing jumping on sand, we systemat-

ically performed experiments that simultaneously probed the dynamics of both the

robot and the granular media during jumping. Insights into new granular physics

were gained from this study, such as an added mass effect induced by a granular cone

that solidified under an impulsively intruding foot. These insights were further ex-

panded and incorporated into a motion planning optimizer that was able accurately
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produce desired jumping tasks in granular media.

3.2 Comparison of experimental and simulated jumping

To examine how the characteristics of jumping change on granular media compared

to hard ground, we performed jumps on granular media using the strategies tested

on hard ground: the single jump (Fig. 37(a)) and stutter jump (Fig. 37(b)). We

additionally tested a delayed stutter jump (Fig. 37(c)), which includes a delay time

between the pull-up phase and push-off phase of the stutter jump. For the delayed

stutter jump, vibrational transients were eliminated by temporarily lowering the pro-

portional positional feedback gain in the linear motor, producing an amplified damp-

ing effect in the spring vibration.

88



Landing + 
Push-offPush-off

Landing + Delay + Push-off
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c

Figure 37: Simulated time series illustrations (of foot, rod and motor) show jumping

trajectories for a push-off intrusion, or single jump (a), landing and push-off, or stutter

jump (b), and landing, delay and push-off, or delayed stutter jump (c). Robot size

scaled by ∼ 1/4x for illustrative purposes.

The properties of jamming granular media depend on volume fraction, φ: dry

grains transition from consolidative to dilative shearing behavior within a narrow

range of volume fractions (φ = 0.57 to 0.62), and their drag [83] and penetration [195]

properties vary significantly. Thus, we expected that φ would play an important role

in jump height. To characterize the role of φ, we systematically varied φ for all jump

types.
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We additionally compared results with a simulated model that included a granular

force, FGM , on the robot foot. We initially tested the simulation using the traditional

relation from Equation 15. The static force, Fp(z), was empirically determined.

3.2.1 Methods: Automated Granular Jumping Apparatus

We performed systematic experiments on a robophysics style jumping robot in a bed of

poppy seeds (Fig. 38). The apparatus was fully automated, allowing for simultaneous

robot control and data acquisition while sequentially exploring a parameter space.
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Figure 38: Automated granular jumping apparatus. A 56 cm x 56 cm area granular

bed is filled with ∼1 mm diameter poppy seeds fill to a height of ∼ 25 cm. Volume

fraction is controlled with a compaction motor and air pulses from a blower that flu-

idizes the grains, and the robot is constrained via an air bearing to jump vertically. A

Firgelli linear motor lifts the jumping robot between experiments during the granular

fluidization process. A webcam captures the height of the bed to measure volume

fraction.

We used the same robot jumper as in hard ground experiments [3] (though oriented

vertically instead of an angle). The actuator-air bearing carriage has a mass of 1.125

kg and comprises the majority of the robot mass. The bottom of the motor’s thrust
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rod is connected to a spring with stiffness ks = 3300 N/m, which connects to a

7.6 cm diameter flat disc foot. To produce various jumping movements, the motor

followed a one-cycle sinusoidal positional trajectory with an amplitude A = 1.875 cm.

During jumping, a 9.5 mm white plastic ball fixed to the thrust rod was captured

by a 200 fps camera to track rod position, and the jump height was calculated as

the maximal rod position minus the initial rod position at rest. Due to the higher

forcing amplitude used and increased reliance on the video tracking as compared to

hard ground jumping studies (a contact sensor could not be used on granular media

to quantify jumping performance), we took measures to mitigate the potential to lose

tracking of the white tracker at high velocities. Aside from using a black background,

we additionally fixed a 3D printed black piece to the thrust rod to hide the reflective

metallic thrust rod surface from the high speed camera (Fig. 39).
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Figure 39: A black thrust rod adapter was used to block the reflective surface of the

thrust rod from view of the high speed camera.

The entire robot/air bearing assembly was placed inside the bed (Fig. 38). The

side walls were constructed from 1.9 cm clear acrylic plates. Grooves were cut at the

edges to properly fit within the aluminum 80/20 frame. The dimensions of the bed

and the amount of grains used were chosen to allow for a range of different size feet to

be attached to the jumping robot without inducing wall effects and boundary effects

in the granular media during jumping experiments. For example, in our experiments,

the largest flat foot used had a radius of 3.81 cm. To avoid potential changes in the

granular resistive force due to approaching the bottom of the granular bed, we chose a
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granular bed height of approximately 25 cm (i.e. many multiples of the foot’s radius).

Such a bed height is uncommonly high in comparison to other locomotive experiments

in poppy seeds from our group where no such boundary effects were observed during

systematic intrusion force measurements [129]. As such, we argued that such a height

was a safe overestimation of the required bed height.

However, such boundary effects have been probed in detail in a study [193] that

examined how local jamming influenced hydrostatic-like forces on a plate intruding

granular media within a vessel. Among the parameters varied in the intrusion ex-

periments, vessel diameter, intruder size, and the height of the granular substrate

were varied. As the intruder approached the bottom of the container, an exponential

increase in the granular force applied to the intruder was observed that followed the

functional form: ∆F (z) = A(1− exp[τ(ζ− z)])2−A, where the bed height, z = 0, in-

dicates the bottom of the container, A is intruder area, and the characteristic length,

ζ, is the height of minimum ∆F (z). This characteristic length occurs near the bottom

of the container where the bottom boundary would begin to influence the static pen-

etration force. It was determined that, independent of the type of granular substrate

(i.e. grain size) and assuming walls are sufficiently far away, ζ ∝
√
Fo/r, where r is

the intruder radius, and Fo is the force at the bottom depth of the container if there

was no constraining boundary at that depth.

To obtain an estimate of ζ given our intruder size in poppy seeds with a bed height

of 25 cm, we first calculated an approximate scaling factor, C, for ζ = C
√
Fo/r given

the data from figures in [193] (particularly Figures 12 and 14). Then, we estimated

Fo (for a bed height of 25 cm) by using empirical force relations obtained from our

experiments in poppy seeds [2] (Fig. 48). For the purpose of our simple calculations,

we approximated a linear depth relation following k2 resistance at high volume fraction

(φ ≈ 0.625, Fig. 48), yielding an approximate ζ ≈ 9 cm, which corresponds to an

intrusion depth of about 14 cm. Maximum intrusion depths in our experiments ranged
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from 2 to 3 cm in loose packed media and much less in close packed media.

Wall effects on granular forces were also studied in [193], which revealed that, for

an intruder with a radius of 12.7 mm, vessel diameters greater than approximately

130 mm did not significantly induce a change in the force. However, only one intruder

size was reported for the experiments varying vessel diameters. Another study [186]

measured the penetration depth, δ, of a sphere impacting granular media where the

relative sphere diameter, d, and cylindrical container diameter, D, were varied. For

values of D/d greater than about 5, there was no significant change to the scaling of

the power law that describes δ/d. The sides of our granular container were 56 cm in

length, or about 7.3 times the diameter of the largest foot tested.

(a) (b)

Figure 40: Fluidization fan. (a) Dayton 5 hp blower motor. (b) DURApulse AC

drive blower controller.

To reset the state of the granular media and control volume fraction, the granular

media was fluidized between jumping experiments by a Dayton 5 hp blower fan (Fig.

40(a)) with variable voltage flow control. To properly distribute the flow across the

surface of the bed, a small chamber was built between the inlet and the bottom of

the granular container. At the top of the chamber (opposite the inlet of the duct,
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i.e. bottom of the granular bed) was a 1 inch thick layer of aluminum honeycomb for

structural rigidity and flow distribution, on top of which was a Porex porous plastic

sheet. The blower was controlled with a DURApulse AC drive controller (Fig. 40(b)).

This controller was programmable and allowed for both manual control of fan RPM as

well as proportional voltage control of RPM. To automate the experiment, RPM was

controlled through Labview with a variable analog 0-5 V signal sent from a National

Instruments USB 6009 DAQ (which consequently was also used to control all other

automated components such as the shaker motor and lifting motor).
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Figure 41: Comparison of the theoretical pressure drop (using a model described

in [217]) through granular substrate vs superficial air speed (blue solid line) and

static pressure of Dayton blower fan for at different air speeds through granular bed

(black circles). Dashed line indicates the pressure of the granular media due to the

weight of the grains.

The blower was selected mainly by trial and error such that the rated horsepower

of the blower was sufficient to fluidize the granular media. The blower required

enough power to produce a pressure drop through the granular media to overcome

the weight of the grains. In fluidization applications, the pressure drop through a

granular substrate is related to the fluid flow rate through the media by a model that

describes the resistance to flow through a porous material. The most commonly used
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of these models is Ergun’s 1952 equation [67]:

∆P

L
=

150µ(1− ε)2ν

d2ε3
+ 1.75

1− ε
ε3

ρν2

d
, (16)

where ∆P is the pressure drop from the bottom to the top of the granular bed, L is

the bed height, µ is the dynamics viscosity of the fluid, ρ is the fluid density, ν is the

superficial airspeed (flow rate over the cross-sectional area of the bed), d is average

grain diameter, and ε is porosity (ε = 1− φ, where φ is volume fraction). The outer

scaling terms were empirically determined. This equation relates the pressure drop

due to both kinetic and viscous energy loss, such that it is predictive at both high

and low Reynolds numbers. Wu et al. [217] developed a similar model which had no

empirical scaling constants:

∆P

L
=

72µτ(1− ε)2ν

d2ε3
+

3τ(1− ε)ρν2(1.5 + β−4 − 2.5β−2)

4dε3
, (17)

where the tortuosity, τ , is approximated as a function of ε in [40] (and reproduced as

Eq. 4 in [217]). The pore to throat diameter ratio, β, is derived from a simplified

pore-throat model of granular media and is calculated as 1/(1−
√

1− ε). Plugging in

values from our setup produced similar values of pressure drop using both equations.

Equation 17 (Fig. 41) dictates that the required air speed to overcome the weight

of the granular substrate and produce fluidization is about 0.35 m/s, which was

verified with anemometer readings. Comparing this pressure drop equation to the

rated air speeds at which the blower operates for various static pressures (Fig. 41,

black circles) reveals that there is no reported data for the static pressure that would

produce 0.35 m/s air flow in the blower. Furthermore, the static pressure for the

blower includes more than just the pressure drop through the granular media; it also

includes the pressure drop at the turns in the duct as well as through the honeycomb

flow distributor and Porex porous material at the bottom of the bed. This increase in

static pressure would further reduce the flow rate output of the blower. The operating

airspeed would theoretically be the point in which the static pressure curve (Fig. 41,
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black circles) and the curve of pressure drop vs airspeed (which would also include

all other sources of pressure drop) intersect. If the pressure at this point is greater

than the gravitational granular pressure, then fluidization would occur. However,

though sealant was used to great effect, due to the design of the fluidized bed, we still

observed air leaks throughout the bed that were difficult to control and monitor. This

inevitably also reduced the flow rate going through the granular media. One challenge

in properly routing airflow from the blower to the granular bed was properly mating

the blower outlet (which was incomprehensibly rectangular) to standard circular duct

tubing (Fig. 42). A custom designed adapter had to be printed in five separate pieces

(the design was too big for the 3D printing chamber) and assembled, which was

difficult to fully seal. In the end, a 5 hp blower was required to operate at full power

to produce consistent and repeatable fluidized states and volume fractions.

Figure 42: A 3D printed adapter was designed to mate the blower with the duct.

The fluidization process reset the state of media from previous disturbances and

produced a loose-packed state with volume fraction, φ ≈ 0.57. Producing higher

99



compactions consisted of modulating air-flow rate below onset of fluidization to pro-

duce air pulses while simultaneously activating a shaker motor that vibrated the bed.

Volume fractions, measured with a camera that captures granular bed height, ranged

from 0.57 to 0.62. The webcam captured an image of the side of the granular bed

(Fig. 38) after the fluidization process. From within Labview, the image was auto-

matically processed through a routine of intensity thresholding, determining regions

of black and white, and performing several iterations of image dilation and erosion

to eliminate noisy pixels (Fig. 43). White paper and a fluorescent strip light were

placed on the opposite side of the bed to enhance contrast with poppy seeds. This

processed image was then used to detect that average height of the poppy seeds.

Volume fraction, φ, is the ratio of the collective volume of individual grains vs the

volume the grains occupy in bulk. Given a certain amount of grains, N , that fill the

bed and the known dimensions (length, l, and width, w) of the bed, the granular bed

height, h, was sufficient to calculate volume fraction (φ = Nπr2

lwh
, r is average grain

radius). We additionally explored the use of ultrasonic range finders to measure bed

height, but concluded that image capture was more reliable, since it took an average

value instead of bed height at a single location on the granular surface.
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Figure 43: A sample processed image from the camera that captured the level of the

poppy seeds.

Between jumping experiments, a linear motor lifted the jumping robot via a string

attached to the carriage of the air bearing (Fig. 38) to prevent the robot from

sinking during the fluidization/granular preparation process. The Firgelli motor had

a maximum extension length of 10.16 cm. The supplied extension length and the

length of the string were selected to allow for the jumping robot to be lifted with

sufficient clearance from the fluidizing granular media while also providing sufficient

slack while jumping such that jumping dynamics were not obstructed.
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Figure 44: Diagram of the theoretical model on granular media. (a) Overall granular

substrate model. Free body diagrams of the (b) actuated mass, (c) rod and (d) foot.

3.2.2 Methods: Simulated Jumping Model on Granular Media

To compare experimental jumps with simulation, we numerically integrated the robot’s

equations of motion based on a simple model (Fig. 44):

mmẍm = −mmg + Fm, (18)

mrẍr = −mrg − Fm + Fs, (19)

mf ẍf = −mfg − Fs + FGM , (20)

where the subscripts, m, r and f corresponding to motor, rod and foot quantities,

respectively. The rod and motor equations were combined as

Mẍr = −Mg + Fs +mm(Ẍm), (21)

where M = mm +mr, and the Ẍm = ẍr− ẍm. A granular force, FGM , was applied to

the foot. As in the hard ground simulations (Section 2.2.2), the numerical integration

scheme was performed using Simulink. To compare directly with experiment, we used

102



experimental encoder positions from each experimental jump performed to obtain

the Ẍm command for simulation. The granular force, FGM , followed the various

relations discussed in this Chapter, and the spring force, Fs, followed Hooke’s law

for the spring between the rod and foot. Another property of FGM was its hybrid

dynamic dependence on the discrete transition of the foot between the ground and air

phases (i.e. FGM = 0 during aerial phase). The ground position changed as the foot

intruded and was set to the foot’s position while the foot was grounded. During the

robot’s aerial phase, the ground maintained the last foot position before transition

to the aerial phase. For hard ground simulations (Section 2.2.2), it was sufficient to

utilize the variable time-step ODE45 integrator to avoid Zeno effects and accurately

detect hybrid transitions. However, on granular media, the changing ground position

can cause perpetual Zeno-like behavior unless proper conditions are established for

determining the transition from the ground to aerial phase.

A naive approach is to state that the foot becomes aerial when the total force on

the foot causes the foot to accelerate from a negative to positive velocity. However,

this caused constant Zeno-like switching between the ground and air phase and was

only accurate for extremely small integration time-steps. An understanding of the

nature of the different forces is required to obtain the proper transition conditions.

Ground reaction forces, or FGM in this case, are merely capable of resisting downward

motion, and not producing propulsive upward motion. Thus, even if ẋf = 0 and

ẍf > 0, the foot remains grounded and foot speed remains zero at the next time step

if the spring is still compressed and pushing down on the foot (−Fs −mfg < 0). To

become aerial, the foot must be pulled off the ground by the spring (−Fs−mfg > 0),

rather than pushed off by the ground. This condition eliminated Zeno effects while

achieving output results identical to the small time-step approach, yielding faster

simulation.
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3.2.3 Results and Discussion
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Figure 45: Jump heights for various self-deformations. Each jump type is produced

with a sine wave at optimal frequency determined from a larger sweep of forcing

frequencies. (a) Experimental (black circles) and simulated (color mesh grid) jump

heights of single jumps for different forcing frequencies and φ. (b) Experimental jump

heights at optimal forcing frequency (fopt determined according to highest jump at

high φ) (circles) vs. φ compared with 1D simulation (dashed lines) results using

the traditional granular force relation, Equation 15 (and the 2-resistance re-intrusion

relation for Fp(z)), for single jumps (blue), stutter jumps (maroon), and delayed

stutter jumps (black). Hard ground jump heights are indicated by horizontal dashed

lines.
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Similar to hard ground experiments, we tested the role of forcing frequency (where, as

in hard ground experiments, the relative motor position of each jump was prescribed

a single cycle sine wave trajectory at a specific frequency), and, for single jumps, we

observed a broad range of frequencies that produced jump heights near the height

of the optimal frequency (Fig. 45(a)), similar to single jumps on hard ground [3].

Experimental results of the single jump, which consisted of a single push-off phase

(Fig. 37(a)), revealed that jump height was sensitively dependent on φ (Fig. 45(b)).

For example, at optimal forcing frequency, a 5 percent reduction in φ reduced jump

performance to approximately one third of the hard ground jump height. There was a

particularly sharp dependence to changes in φ near φ ≈ 0.605. This volume fraction is

near the critical packing state in glass beads, φc ≈ 0.60 [83]. The critical packing state

is the volume fraction in which granular media transitions from consolidative behavior

under shear in loose packed granular media to dilative behavior at high compactions.

We performed tests to approximate this volume fraction in poppy seeds by dropping

a metal ball into poppy seeds at different φ (Fig. 46). Using a laser line, we captured

the cross-sectional shape of the resulting crater, and, assuming azimuthal symmetry,

we calculated the resulting volume change of the granular media. The transition from

negative to positive volume change determined φc ≈ 0.61. However, this experiment

was performed in a smaller granular bed before our larger experimental apparatus

was constructed; φ was calculated based on an assumed low volume fraction of 0.58

at a certain bed height, where bed height measurements were used to scale from this

initial measurement. Based on our most recent jumping and intrusion experiments,

it is likely that φc was closer to 0.605.
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Figure 46: Determining the critical packing state. A (a) metal ball was dropped into

a (b) bed of granular media. (c) The cross-sectional shape of the resulting crater was

capture with a laser line and camera. Assuming azimuthal symmetry of the crater,

(d) we used the crater’s cross-section to calculate the volume change of the granular

media.

Our previous study of jumping on hard ground demonstrated that the stutter

jump, consisting of a preliminary hop landing followed immediately by a push-off (Fig.

37(b)), outperformed the single jump while requiring lower peak actuation power[3].

We tested its efficacy on sand, hypothesizing that a preliminary hop would precompact

the ground, increasing granular reaction forces and improving jump heights at low

φ. Surprisingly, this jump yielded lower heights than the single jump at low φ (Fig.

45(b)).
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Figure 47: Delayed stutter jump heights for various delay times. Experimental

(circles) heights compared with 1D simulation (squares) results using the traditional

granular force relation, Equation 15 (and the 2-resistance re-intrusion relation for

Fp(z)) of delayed stutters in loose poppy (φ = 0.57) agree for delay times, τ ≥ τopt.

To eliminate potential transient dynamics preventing the media from relaxing

into a compacted state, we introduced a delay time of τ = 0.75 seconds between the

pull-up phase and push-off phase of the stutter jump (Fig. 37(c)). The delay not

only improved stutter jump heights (measured with respect to initial rod height),

but surpassed the single jump at low φ (Fig. 45(b)), suggesting that the best way

to jump on loose granular media is by enhancing the single jump with a properly

timed preliminary hop, locally compacting the substrate. Indeed, measuring jump

heights from after the preliminary hop revealed that low φ delayed stutter jumps

resembled single jumps compacted to φc and higher. Varying τ at low φ revealed an

optimal delay time, τopt, near 100 ms (Fig. 47). This time scale represents a 5 Hz
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half cycle oscillation, which is near the robot’s spring-mass resonance. The natural

frequency is near 8 Hz on hard ground, and, during foot intrusion, is reduced at low

φ to approximately 5 Hz, since the robot gains an effective one-way series spring -

the k1 penetration resistance of Fp(z). Thus, the timing of an optimal delayed stutter

jump is determined by a combination of the robot’s spring-mass dynamics and the

transient settling of the granular media during local compaction.

We compared experimental jumps with a numerical model of the robot jumper

in which the foot experiences granular forces, FGM . Since little was known about

the complex granular interactions of self-deforming passive/active intruders, we first

applied Equation 15 for FGM using a linear relation for Fp(z). Fitting simulation to

experimental jump heights with a constant α and constant k yielded parameter values

that were inconsistent between different jumping strategies. Also, previous experi-

ments for slow penetration revealed that, while Fp(z) was approximately linear with

depth[129, 195] away from boundaries[192, 193], the relationship between Fp(z) and

z was nonlinear near the surface. Thus, we chose to empirically determine Fp(z) by

systematically performing slow-intrusion force vs. depth measurements (Fig. 48(a))

at various values φ. To obtain these intrusion force measurements, we repurposed

the robot’s linear motor. With the motor clamped securely to the bed, the spring

was removed from the rod and foot, and the rod was connected directly to the foot

and slowly forced at constant speed into poppy seeds at various φ. Force and depth

measurements were attained from motor current and encoder position, respectively.

We used both 5.1 cm and 7.6 cm diameter flat feet and found that Fp scaled propor-

tionally with foot surface area.
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Figure 48: Empirical measurements of force vs. intrusion depth. A 5.1 cm diameter

(a, b solid circles) and 7.6 cm diameter (b open circles) flat foot were tested for

increasing φ (black to light blue in a). Transition depths, δ, between low and high

penetration resistance vs. φ are displayed in inset in (b). Empirical estimates of

k1/Afoot, RFT measurements for angled intrusions[129] and a model of granular cone

jamming were combined to predict force vs. depth at φ = 0.58 and φ = 0.62 (a, brown

dashed curves). Stress vs. depth for fully developed cones accurately predicted the

k2/Afoot penetration resistance at low and high φ (b, brown squares), where Afoot is

the foot surface area.

These slow-speed intrusion measurements revealed a nearly linear depth-dependence

at low φ that became increasingly nonlinear for higher φ. We modeled this as two

constant penetration resistance coefficients, k1 and k2, where k1 was the slope of a

linear fit of Fp(z) near the surface, and k2 was the slope at deeper intrusion (Fig.

48(b)). Near the granular critical packing state, φc, k1 transitioned to a greater sen-

sitivity to increasing φ. While the values for k2 showed no transition at φc, the k2

regime (z > δ) exhibited an onset of force oscillations at φc which steadily increased

with φ, consistent with shearing dynamics observed in drag[195, 83] experiments.
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Implementing the two-penetration resistance relation and a constant α in simulation

was essential for agreement with experiment; using a linear Fp(z) relation yielded

inaccurate simulation results.
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Figure 49: Fitting depth-independent inertial drag coefficient, α. Single jump sim-

ulation of increase values of α (circles, α increases from 0 N(m/s)−2 (black) to 300

N(m/s)−2 (light blue)) and experimental (squares) jump heights vs motor forcing

frequency at φ = 0.60.

To determine a constant (depth-independent) α at each φ, we systematically var-

ied α while simulating single jumps at each φ and compared simulation jump heights

at different forcing frequencies to experimental single jump heights at various forcing

frequencies (Fig. 49). Jump heights were most sensitive to α for high forcing frequen-

cies, as expected since higher frequencies induced higher intrusion speeds. Fits of α

vs. φ revealed a similar scaling with φ as k1: a higher dα/dφ was observed for φ > φc.

This fit of α with a two-resistance empirical Fp(z) yielded good agreement between
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simulation and experiment single jumps. These φ-dependent values of α were then

used when simulating the other jumping strategies.

However, a comparison of simulation and experiment of delayed stutter jumps and

stutter jumps revealed poor agreement for the α fits and the original empirical two-

penetration resistance form Fp(z). To determine if modification to Fp(z) was needed

due to reintrusions, we performed reintrusion measurements by intruding the thrust

rod at slow velocities to a certain depth, extracting, and then reintruding (Fig. 50).

Upon reintrusion, we observed a sharp rise in force to a peak that was higher than

the expected force according to the original two-resistance force relation. This led to

a new formulation of Fp(z) according to the observed reintrusion force behavior that

had a force overshoot proportional to the depth of reintrusion. To attain the correct

reintrusion parameters, we performed a fitting process similar to the fitting process

described to find α at different φ, leading to simulation agreement with both single

jumps as well as delayed stutter jumps with delay times τ ≥ τopt. However, this model

did not explain the poor performance of the regular stutter jump: the simulation

showed agreement at high φ, but over-estimated the stutter jump heights at low φ

(Fig. 45(b)). This deviation was particularly evident for delayed stutter jumps with

τ < τopt (Fig. 47), suggesting unaccounted for transient granular dynamics preventing

the media from relaxing into a compact state.
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Figure 50: Measuring slow-speed reintrusion forces. Force vs depth measurements

at φ = 0.57 during slow velocity reintrusions with a 6.4 cm diameter disk foot at 2

different reintrusion depths. Horizontal arrows indicate the reintrusion depth for the

force curve of the corresponding color. Likewise, vertical arrows indicate the force

overshoot from the original force vs depth curve with no reintrusion (black) for the

force curve of the corresponding color.

3.3 Evolution of jammed granular cone

Thus far, we have measured Fp(z) and made assumptions about the form of the

hydrodynamic-like force, αv2, based on models in previous literature. However, we
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posited that a joint analysis of the granular and robot dynamics would provide in-

sight into the mechanism that lowered the peak height of stutter jumps. We next

discuss how measuring granular flow kinematics during jumping provided insight into

these dynamics, which, when incorporated into our 1D jumping model, revealed the

mechanism for altered jumping performance.
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3.3.1 Methods: PIV analysis of granular flow

High speed 
camera

Lamp

Sample
PIV Data

Figure 51: Diagram of granular bed for experiment capturing granular flow kinemat-

ics during jumping. Jumping robot was moved to the side wall with a foot that mates

flush with the wall. A lamp illuminates the poppy seeds while a high speed camera

captures the flow of the poppy seeds during jumping. Particle image velocimetry

(sample vertical velocity colormap is displayed below robot foot) takes high speed

image data and measures granular flow kinematics.

We moved the robot from the center of the granular bed to the clear acrylic side wall

(Fig. 51), and, using a foot with a flat side, we had the robot perform all 3 jump

strategies for a sparse sweep of volume fractions and recorded high speed video (500
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fps AOS camera at 1280 x 1024 resolution) of the sidewall grain flow. Jump heights did

not deviate significantly from jump heights at the center of the bed (away from wall

effects). We performed a particle image velocimetry (PIV) analysis on these videos.

No tracer particles were necessary, since poppy seed images provided a sufficiently

large and well mixed distribution of grey-scale intensities among grains. The PIV

analysis compared divided each video frame into a grid of pixel windows. Each

window of each frame was compared with the following frame, where a correlation

analysis determined the local velocity vector of the grains within the window. Thus

a velocity vector field of the granular flow was produced for each frame.

3.3.2 Results and Discussion

In conjunction with the measured velocity field, we used the PIV measurements to

calculate the shear strain rate field, γ̇,

γ̇ =

√
1

2

(
∂u

∂x
− ∂v

∂y

)2

+
1

2

(
∂u

∂y
+
∂v

∂x

)2

, (22)

where u is horizontal velocity and v is vertical velocity (Fig. 52(b)). We observed

triangular shear bands (long boundaries of high localized shear) that were similar

to other granular compression experiments and simulations[124]. Combined with

vertical grain flow (Fig. 52(a)) and the PIV vector field (Fig. 52(b)), these shear

bands illustrate how, as the foot enters the media, a cone of effectively solidified

grains (outlined by the shear bands) rapidly develops underneath the foot. Moving

at similar downward speeds as the foot; this cone wedges surrounding material away.
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Figure 52: Particle Image Velocimetry (PIV) measurement of granular flow kine-

matics. (a) Frame sequence of the downward velocity field, normalized by foot speed,

taken during the landing and push-off phase of a stutter jump at φ = 0.57 (left inset,

diagram of setup). Right inset, Time sequence of granular momentum calculated

from PIV for single (blue), stutter (maroon) and delayed stutter (black) jumps at

φ = 0.57. (b) PIV vector field of same snapshots superimposed by shear bands de-

rived from the shear strain field according to Equation 8. Shears bands illustrate how

a cone of jammed grains rapidly emerge below the foot and wedge through surround-

ing material.

To illustrate the geometric evolution of the cone jamming phenomenon, we de-

veloped a simple discrete element model (DEM) of 2D disks interacting. Grain-grain

interactions consisted of a simple Hooke’s law spring repulsion, zero friction, and vis-

cous damper repulsion, which allowed for inelastic collisions. While we instituted a

simplification of zero grain-grain friction, we introduced individual grain friction (like

grains sliding on carpet) to prevent excessive inertial motion (which would resemble a
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billiards simulation), allowing for a more geometric analysis of cone evolution. A flat

object was approximated by “intruder grains” that move with a prescribed trajectory

and apply similar grain-grain interaction forces on other “free” grains. Accelerations

were integrated using an explicit forward Euler integration scheme.
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Figure 53: DEM Analysis of granular cone. (a) Visualization of sequential frames

(left to right) of 2D DEM simulation during foot (teal grains) intrusion. Grains are

colored according to downward speed relative to intruder, blue being 100 percent foot

speed. (b) Time sequence of granular momentum calculated from PIV (solid) and

a simple 2D discrete element method (DEM) granular simulation (dashed, scaled by

0.5) for single (blue), stutter (maroon) and delayed stutter (black) jumps. (c) Added

mass vs. depth calculation from PIV (solid) and DEM simulation (dashed) for a

stutter jump.

The simulation revealed a similar triangular jamming front as that found with PIV

experiment (Fig. 53(a)) and shear bands observed in other compression experiments[124].
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Use of monodisperse grains produced crystallizing (a feature of monodisperse spher-

ical particles [75, 57]) triangles resulting from 60◦ shear bands. Similarly forming

triangles emerged without crystallizing lattices using both bidisperse and polydis-

perse particles. A simple 2D DEM provided an intuitive illustration of how grains

jam with the foot through local crystallizations which shear sides as each layer of

grains is deceased in length by one grain (Fig. 53(a)).

Motivated by these flow field kinematics, we derived a geometric model of the

cone’s development as a flat circular intruder plows vertically into particulate media

(Fig. 54). In this model, the depth of a jammed front of grains moving with the foot

grows proportionally by µ with intrusion depth, z (where the depth, z, is the negative

of the foot position, xf relative to the undisturbed surface of the granular substrate).

In the 1D analogy of a line of grains that collide inelastically (as introduced in[211] to

describe the speed of a jamming front during rapid intrusion in a colloidal suspension),

the rate, µ, is inversely proportional to the separation distance between each grain

relative to grain size. In dry granular media, all grains are already in contact with

other grains before intrusion begins; there is no separation distance between grains.

Thus µ describes the rate of growth of the jamming front, or the rate at which grains

settle into a locally compacted solid-like state. As the foot descends and the granular

cone grows, the radius, r, of the flat portion of the cone decreases due to the angle,

θ, of the shear bands according to,

r =
R tan θ − µz

tan θ
, (23)

where R is the foot’s radius. Thus, the surface areas of the flat portion of the cone,

Aflat, and conical surface, Acone decrease according to,

Aflat = π

(
R2 +

(
µz

tan θ

)2

− 2Rµz

tan θ

)
. (24)

Acone =
πR2 − Aflat

cos θ
. (25)
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While the shear bands fluctuated in time (±4◦), as observed in a previous plowing

PIV experiment[83], θ at low φ was approximately 60◦.

Surrounding 
granular media

Developing 
granular cone

Foot

gF flatA
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Foot

θ Shear band
 angle

am∆

Surface

R

r

µ

∆
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(a) (b)

Figure 54: Diagram of developing granular cone. (a) 3D representation of the devel-

oping cone. As the foot intrudes, the total surface area of the developing compacted

granular structure is comprised with more of the conical surface area, Acone, and

less of the flat surface area, Aflat, as the cone fully saturates and shears through

and wedges away surrounding granular material. (b) A 2D geometric illustration of

granular cone evolution versus intrusion depth. For a given differential increase in

intrusion depth, ∆z, the cone fills in by a proportional depth of µ∆z, where µ is the

rate of growth of the jamming front. An added-mass model of this cone takes into

account a solidified conical core (yellow) as well as extra virtual mass, C, from slower

moving grains surrounding the cone. The conical angle, θ, is estimated from the angle

of shear bands from PIV shear strain (superimposed).

We hypothesized that this jammed cone extended the volume of the intruder

from a flat disc to a conical wedge. A resistive force theory model (RFT) proposed

by Li et al. [129] suggests that such a change in intruder shape affects the vertical

quasistatic reaction force, Fp(z). Quasistatic RFT forces are determined by taking an

intruder of arbitrary shape moving through granular media with a specific direction
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vector, and performing a linear superposition of the forces acting on small individual

surface elements of the intruder. To determine the RFT forces of a given substrate,

one develops an empirical map of stresses acting a small flat plate that is intruded at

different angles of orientation, θ1, and directions of motion, θ2. To test our hypothesis

of an evolving intruder geometry, we combined the empirical RFT model for poppy

seeds [129] with our geometric model of cone development and estimated Fp(z) as the

summation of the quasistatic forces acting on the flat surfaces and conical surfaces of

the extended intruder (illustrated in Fig. 55):

Fp(z) = Fp,flat(z) + Fp,cone(z). (26)

Li et al. [129] performed systematic intrusion measurements to develop RFT stress

maps for poppy seeds. As such, for the quasistatic force on conical surfaces, Fp,cone(z),

we utilized the vertical RFT stress from [129] for 60◦ conical surfaces (30◦ surface

normal) intruding vertically (σz(30◦, 90◦)):

Fp,cone(z) = σz(30◦, 90◦)

∫
Acone(z)dz. (27)

RFT requires an assumption that forces and granular flows acting at any given loca-

tion on an intruder are decoupled and do not affect the forces acting at any other point

on the intruder. As such, forces determined from RFT typically assume fully devel-

oped flow. For this reason, we did not use RFT stresses for flat surfaces (σz(90◦, 90◦));

instead, we used our own empirical measurements of the initial slope of Fp(z) (the

k1/Afoot penetration resistance, Fig. 48).

Fp,flat(z) =
k1

πR2

∫
Aflat(z)dz. (28)
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Figure 55: Description of RFT cone force model. Data shown is a sample of experi-

mentally measured quasistatic force, Fp, vs intrusion depth, z, for a foot with radius,

R = 3.81 cm at φ = 0.57 (similar to data shown in Figure 48(a)). The RFT cone

estimation of Fp(z) is determined by summing the contributions to the quasistatic

force from both flat and conical surfaces as the cone develops, where the slope is de-

fined empirically as the initial slope, k1, for Fp,flat(z) (Equation 28), and is based on

empirically determined RFT stresses for θ1 = 30◦ angled surfaces moving downward

(θ2 = 90◦) for Fp,cone(z) (Equation 27). Once the cone is fully developed, the slope of

the curve remains constant according to Fp,cone(z).

By selecting proper values for µ, calculating RFT forces on the evolving geometry

of this granular cone captured the nonlinearity in empirical measurements of Fp(z)
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(Fig. 48(a, brown dashed curves)). The effective stress per unit depth for a fully de-

veloped cone,
∫∫

cone
σz(30◦, 90◦)δA/Afoot, coincided with k2/Afoot values at low and

high φ (Fig. 48(b, brown squares)). Such insights helped explain the phenomenon

of rapidly diverging values of k1 and k2 for φ > φc. Flat intrusions displace grains

predominantly through normal stresses that increase at higher φ, where the substrate

is rapidly approaching a jammed state. Above φc, grains cannot consolidate as read-

ily due to reduced mobility. As a result, flat intrusions cause individual grains to

compress, and the material stiffness of the grains becomes a component of the k1

penetration resistance. Once the cone forms, the intruder produces lateral grain dis-

placements and shear stresses. As φ increases, more grain-grain frictional contacts

during shearing result in an increase in k2. However, for φ > φc, k2 is not as large as

k1, since shear stresses do induce as much material compression as normal stresses.

An additional consequence of the RFT cone model was that the cone is fully de-

veloped once µz = R tan θ, such that the saturation depth was dependent on the size

of the intruder. To test this size dependence on the saturation depth, we performed

force vs. depth measurements at φ = 0.57 for different size intruders (3 trials each

for R = 1, 2, 2.54 and 3.175 cm and 6 trials each for R = 0.5 and 3.81 cm) and

compared with theoretical force curves (Fig. 58). For a proper comparison, we cal-

culated an estimate for µ using simplified, principled assumptions about how grains

consolidate and jam. For a given intrusion distance, ∆z, the cone gains a jammed

layer of grains of thickness proportional to the intrusion distance, ∆zjammed = µ∆z.

Thus, µ can be thought of as the ratio ∆zjammed/∆z. Prior to the ∆z intrusion,

this layer of grains would be unjammed at some initial average volume fraction (we

tested intrusions in loose packed media, φ = 0.57). Once the layer jams, the volume

fraction of the layer will have increased. We argue that this volume fraction may be

near the critical packing state, φc ≈ 0.605, since any further shearing would require

dilation, and compressive forces rapidly rise. Thus, assuming minimal loss of grains,
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the relationship between the jammed and unjammed layer heights would be

∆zunjammed =
φc
φ

∆zjammed. (29)

β

Jammed Cone

bottomz

topz

Figure 56: Diagram of simplified jamming with spherical frictionless grains. The

jammed cone pushes the top of the initially unjammed layer, which has an initial

layer thickness of ∆zunjammed = zbottom− ztop. We define an average angle, β, relative

to the horizontal axis that each grain makes with its neighboring grain below.

To determine how fast the unjammed layer compresses to a jammed state, we

assumed a simplified model of frictionless spherical grains (Fig. 56) and investigated

how the bottom of an unjammed layer displaces as the top is displaced. If we consider

two grains in contact, the top grain displaces the bottom grain according to their rela-

tive angle of contact, β. For example, if both grains are positioned on the same vertical

axis (β = 90◦), the bottom grain displaces the same amount as the top grain when

the top grain is displaced vertically. However, if β = 60◦, then the bottom grain will

displace by sin 60◦ of the top grain’s displacement as the top grain slides past. Thus,

for the simplified case of an uncompressed bilayer of grains, ∆zbottom = sin(β)∆ztop,

where β is the average angle of contact, and ∆ztop = ∆z. A study [22] that experimen-

tally examined the angle distribution between common neighbor particles in granular
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packs of acrylic spheres revealed that grains tended to produce regular tetrahedral

configurations with their neighbors. For a jammed layer at φc, we argue that grains

will tend to produce these tetrahedral configurations, and that such configurations

will likely be orientated in the preferential jamming direction (vertically). Thus, ac-

cording to the geometry of regular tetrahedra, βjammed ≈ 54.72◦. However, as grains

slide past one another, β will be changing, and, in the more disordered unjammed

state, we argue that β will be larger according to the relative change in layer thickness,

βunjammed = sin−1(φc
φ

sin(βjammed)) = 60.08◦. For simplicity, we assumed an average

constant angle during the jamming process, β = (βjammed + βunjammed)/2 = 57.41◦.

This description of granular compaction suggests that, during an intrusion event,

all unjammed layers will be sequentially compressed at a fractional rate relative to the

adjacent layer above, such that downward grain speed follows an exponential function

with respect to its layer depth: żgrain ∝ sin(β)zgrain , where zgrain is in units of layers

(assuming each layer has a thickness ∆zunjammed). To verify this relationship, we

analyzed the central column (center of the developing cone) of the PIV velocity field

for a loose-packed stutter jump upon re-intrusion (Fig. 57). At each frame of PIV

data, we fit an exponential curve according to żgrain = azgrain+b where constants, a

and b were determined for each frame (Fig. 57(b)). We calculated the relative speed

decrease between layers based on a specific layer thickness: a∆zunjammed (Fig. 57(c)),

after which we calculated an average angle as β = sin−1(a∆zunjammed) (Fig. 57(d)).

Choosing a layer thickness of 8 mm yielded an initial value similar to our theoretically

determined β. We suspect that the need for such a large layer thickness (poppy seed

grains have approximately a 1 mm diameter) is due to grain-grain friction and the

irregular non-spherical shapes of the grains. The decrease in angle with intrusion

depth is qualitatively consistent with our simple model, since increasingly compacted

layers will yield smaller values of β.
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Figure 57: Analysis of central PIV grain speeds for a stutter jump at φ = 0.57.

(a) Vertical PIV speeds of central column relative to max speed vs. granular depth

and PIV frame number. (b) Sample frame of relative grain speed vs. depth. Foot

intrusion depth, z, was determined from sharp increase in PIV speed. Depth of the

jammed front, zjammed, was determined from grain speeds that are at least 0.9 of

max speed. Exponential curve fit (dashed line) follows form, żgrain = azgrain+b where

constants, a and b were determined for each frame. (c) Relative per layer decrease

in speed vs intrusion depth for ∆zunjammed = 8 mm. (d) β vs intrusion depth for

∆zunjammed = 8 mm. (e) zjammed vs z, linear fit (dashed) approximates µ = 2.2.

We also measured the intrusion depth and depth of the jammed front, zjammed by

measuring the width of PIV velocities that were greater than a threshold percentage

(we chose 90%) of a given frame’s max speed (intrusion speed). A linear fit of the

data yielded an estimated µ = 2.2 (Fig. 57(e)). To compare this result with a
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theoretical calculation of µ, we express the jammed layer thickness in terms of the

relative displacements of the top and bottom of the layer: ∆zjammed = ∆zunjammed +

(sin(β) − 1)∆ztop. Substituting in
∆zjammed

µ
= ∆ztop = ∆z as well as the relation in

Equation 29, we arrive at a relationship for µ:

µ =
1− sin β
φc
φ
− 1

. (30)

Using our theoretical β = 57.41 yields a µ of 2.56. Using this value for µ in calcu-

lating theoretical Fp(z) curves for different size intruders yields good agreement with

experiment (Fig. 58). As the radius of the intruder increases, both experiment and

theory verify that the quasistatic force Fp(z) saturates to its final slope at deeper pen-

etration depths, causing the initial nonlinearity to have a larger influence on granular

dynamics. Thus, for large flat surfaces, RFT cannot be considered a superposition

of individual surface elements; these elements cooporate to generate a jammed front

that alters the effective geometry of the intruder until a cone is fully formed.

126



0

10

20

30

40

0 10 20 30
(mm)zIntrusion Depth,

)
(N

)
z(

p
F

Q
u
as
is
ta
ti
c
In
tr
u
si
on

F
or
ce
,

R

Intruder

5 cm.= 0R
0 cm.= 1R

0 cm.= 2R

54 cm.= 2R

175 cm.= 3R

81 cm.= 3R

Figure 58: Quasistatic forces for different size intruders. Experimental curves (blue)

are average over multiple trials; curve corresponds to forces for a flat disk intruder

of specific radius, R (labeled in green). Shaded regions are standard deviations.

Theoretical curves (black) were calculated with Equation 26 with a theoretical µ =

2.56.

3.4 Emergence of added mass and inertial drag from a
growing granular cone

While the characteristics of Fp(z) are insufficient to explain the transient dynamics

that decrease the stutter jump height, such insights into the development of the

extended intruder volume suggest that the additional mass of the granular cone, or

added mass, ma, must be considered in the momentum of the foot. Added mass

can contribute to a shear-thickening response in dense suspensions[211]. In the realm

of actively forced impacts, added mass effects contribute to the impulse developed

during the slap phase of a basilisk lizard running on water[80].
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Added mass for an intruder impacting a fluid has been approximated by the

hemispherical volume of liquid accelerated forward in front of the intruder, consistent

with the velocity change imparted by an inelastic collision with a mass equal to

the added mass[177, 210]. Similarly, by dividing the granular momentum, Pgrains,

by the velocity of the foot, we considered added mass in the granular media to be

comprised of the grains moving with flow kinematics most similar to the downward

motion of the foot. Previous studies have utilized PIV to estimate the momentum

of added mass in fluids [181] and qualitatively characterize momentum transfer in

dense suspensions[211]. We estimated Pgrains by spatially integrating the PIV velocity

field according to Pgrains ≈ ρφ
∫ H

0

∫ 2π

0

∫ R
0
v(r, h)r dr dψ dh where h and r are the 2D

velocity field coordinates, and ρ ≈ 1000 kg/m3 is the density of poppy seeds. ψ was

approximated by assuming azimuthal symmetry of the flow field. The foot imparted

a significant amount of momentum onto the grains proportional to the foot speed,

most notably during the stutter jump (Fig. 52(a) right inset, maroon). The added

mass, comprised primarily by the granular cone, reached values over four times the

foot mass (Fig. 59(a)).
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Figure 59: Inertial properties of a jamming granular cone. (a) Added mass vs. depth

calculation from PIV (black, solid) and a saturating cone equation (Equation 33) for a

stutter jump at φ = 0.57. Added mass was calculate by dividing granular momentum

by the speed of the foot. As a result, singularities in the added mass measurement

appeared when the foot speed approached zero. (b) A simulation (dashed line) of

stutter jump heights vs. φ using Equation 34 for FGM improves agreement with

experiment (circles) at low φ.

To compare with experiment, we simulated all three jump types (single, stutter

and delayed stutter) with our 2D DEM scheme by prescribing the intruder trajectory

as the trajectories of the foot tracked during the PIV experiments. For momentum

and added mass calculations, bidisperse particles were used to avoid crystallization.

Using a 2D grid of interpolated grain velocities, we were able to calculate momentum

(Fig. 53(b)) and added mass (Fig. 53(c)) identically to PIV measurements. Simu-

lation values for momentum and added mass were about twice those of PIV. While

properties such as grain size, density and foot size were chosen to resemble exper-

imental values, there were numerous differences between the DEM simulation and
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PIV experiments that are likely contributing to the numerical discrepancies, from the

difference in shape to the lack of gravity, boundaries or shearing grain-grain friction

in simulation to the fact that the simulation only considered 2D dynamics. However,

regardless of these differences, even this simple 2D simulation was able to capture

many of the qualitative observations in experiment, from the relative scaling of grain

momentum between different jump types to the saturating added mass.

Recently, Katsuragi et al. posited that added mass forces could play a role in the

dynamics of non-forced impact into dry granular media [115] but no experimental tests

were conducted. To test the role of added mass during jumping, we incorporated these

dynamics into the 1D jumping simulation by modifying FGM . The term in Equation

15 defining inertial drag during granular impact, αv2, originates from the momentum

change associated with colliding inelastically with a virtual mass [164], which accu-

mulates when the impactor accelerates surrounding material, d(mav)
dt

= dma

dt
v + maa.

However, this derivation was mainly used to analyze non-forced impacts in which

there would be no forward acceleration upon impact. Furthermore, depending on

the shape of the intruder, such as spheres or bullets, the added mass itself may have

been minimal relative to the mass of the intruder, thus allowing for exclusion of the

added mass term, maa. To consider these dynamics in our experiment, our granular

reaction force becomes

FGM = Fp(z)− dma

dt
v −maa, (31)

where a is the foot’s acceleration. We then formulated a description of added mass

accumulation based on our geometric cone model (Fig. 54(b)), where a differential

increase in intrusion depth corresponded to a differential increase in added mass

according to the following relation,

∆ma = CφρAflatµ∆z, (32)
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where φ and ρ are the volume fraction and grain density, respectively, and µ∆z is

the differential depth of the jamming front. The constant, C, scales the growth of

added mass due to extra added mass from slower moving grains surrounding the cone.

Taking the infinitesimal change in z, we integrated Equation 32 and found the added

mass to be

ma(z) = Cφρµzπ

(
R2 +

1

3

(µz)2

tan2 θ
− Rµz

tan θ

)
. (33)

We used this equation until µz = R tan θ. Both µ and C were tuned to match

PIV added mass measurements (Fig. 59(a)) for all depths except when the foot

speed approached zero, which caused a singularity in the added mass measurement.

However, since this rapid increase in added mass only occurred during slow velocities,

its effect on jumping dynamics was negligible; this was confirmed by simulations

incorporating the singularity. The values of µ found were similar to those found in

Section 3.3.2, which suggests that both quasistatic and inertial forces are coupled by

the dynamics of the evolving cone. While estimating added mass in fluids can be

challenging for all but simple intruder shapes[177], we expect that the geometry and

dynamics of granular jamming fronts in other intrusion scenarios will be determined

by predictable shearing behavior that forms granular cones.

Similar to sphere impact in fluids [177], an added mass model which is dependent

on depth instead of time allows us to express the conservation of momentum force,

dma

dt
v, as dma

dz
v2, resulting in a depth dependent inertial drag term, α(z)v2, where

α(z) = bdma

dz
. Inertial drag was also observed to be sensitive to depth in granular

sphere [203] and disk impact [55]. Our granular force model becomes

FGM = Fp(z) + α(z)v2 −ma(z)a, (34)

where Fp(z) is still defined by an empirical two-resistance relation with reintrusion

dynamics. The constant, b, is a scaling coefficient required to obtain agreement
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between simulation and experiment. We set b at each φ such that there was agreement

between experiment and simulation for all jumps. We posit that this scaling (where

b > 1 for all φ) is the result of the system experiencing more inelastic granular

collisions than is evident from the increasing added mass, with the cone constantly

gaining and shedding grains at the shearing boundaries. Nevertheless, our added mass

equation dictates that α(z), which is proportional to the slope of ma(z), is greatest

near the surface. Introducing this reactive force into the jumping model with a

correctly scaled b preserved the accuracy of the single and delayed stutter jumps and

appropriately decreased the stutter jump heights at low φ (Fig. 59(b)). While added

mass effects were negligible at high φ, jump heights were sensitive to the scaling, b, of

inertial drag, especially during high frequency motor forcing. Interestingly, b tended

to increase with φ in a similar qualitative trend to k1. We expect such inertial effects

will also help explain other high-speed movements such as running [170].
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3.4.1 Coupling of robotic spring-mass and added mass dynamics

a

b c d e

Figure 60: Simulation of coupled added mass and robot jumping dynamics. (a), Time

trajectories of the motor, rod and foot positions using 1-D simulations at φ = 0.57. (b-

e), Snapshots of robot during landing and push-off illustrate the interplay of granular

forces on stutter jump dynamics, from (b) initial foot landing, to (c) rapid added mass

recruitment, to (d) spring decompression (white arrows) and a fully developed cone,

to (e) granular jamming. Relative positions of robot elements were taken from 1-D

simulation. Arrows on rod and motor indicate the rod being pushed down relative to

the motor. Yellow added mass regions are illustrated based on the experimental PIV

observations; such observations inspired the model of added mass included in the 1-D

simulation. Robot scaled by ∼ 1/4x for illustrative purposes.

We now discuss the mechanism by which the above granular physics affected the

locomotor’s internal state to reduce jumping performance. Added mass lowers stutter

jump heights by altering the phasing of the robot’s spring-mass vibration (Fig. 60),

in which grain momentum causes the peak spring forces to occur at a non-ideal

phase of the motor’s oscillation. After the preliminary hop, the foot lands and stops

due to granular reaction forces (Fig. 60(b)). The robot’s actuator continues falling

while it pushes the rod down, causing spring compression as the foot encounters
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high inertial drag due to a rapidly developing cone of added mass (Fig. 60(c)). The

spring reaches peak compression (Fig. 60(d)), slowing the thrust rod, and pushing

the foot down further, assisted inertially by a fully formed added mass cone. The

foot descends further due to slower decelerations from added mass (Fig. 60(e)), and a

less compressed spring now produces smaller upward propulsion forces as the robot’s

center of mass takes off. A direct comparison of simulations using the various models

of FGM reveals how the reduction in spring compression during the upward swing

phase of the motor only occurs when added mass forces are considered (Fig. 61).
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Figure 61: Comparison of stutter jump simulation using various force models for

FGM . (a) Jumping performance is largely determined by the spring forces during the

upward swing phase of the motor, τu, (light blue highlight). Adding αv2 to the static

force model (black) slightly improves jump heights over the static model (teal) by

reducing foot sinking. Introducing added mass (maroon) phase shifts spring mass

vibration, reducing spring compression during τu, which reduces jump heights. (b)

Simulated trajectories of the motor, rod and foot compare stutter jump kinematics

using different granular force models. Relevant quantities are summarized in (c).

Prescribing a delay improves the jump height in two ways. A sufficiently long

delay time separates both methods of granular intrusion: passive intrusion from the

robot’s falling inertia during landing and active intrusion during push-off. Separating
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these two mechanisms reduces the overall intrusion speeds of the foot, reducing the

compounding effect of the added mass decreasing the deceleration rate. As such,

the robot sinks less and is able to provide more upward spring forces to the robot.

Selecting the optimal delay time ensures that the phasing transfers maximal spring

energy during the upward take-off movement of the motor.

3.5 Terrain-aware Motion Planning for Jumping on Gran-
ular Media

3.5.1 Summary

In pursuit of dynamic walking and running robots, significant progress has been made

toward motion planning with the nonlinear, hybrid dynamics of legged machines [137,

214]. However, while dirt, sand, mud, and other deformable terrain are ubiquitous

in nature, by and large, underlying physical models employed in motion planning

typically assume rigid contact. Given the insights into granular interactions previously

discussed in this Chapter, we now discuss a tractable method for motion planning

subject to rapid interactions in loose-packed granular media (e.g. sand, a ubiquitous

medium which has proven useful in the study of complex locomotion [129, 135]), and

experimentally validate planning trajectories on the granular jumping test bed used in

our previous experiments of jumping on granular media [2]. This work was performed

in conjunction with Dr. Christian Hubicki of Prof. Aaron Ames’ group and is found

in [103].

3.5.2 Motion Planning and System Modeling

Optimal motion planning techniques can quickly and precisely design controlled

robotic trajectories to near-arbitrary specifications. Our study utilizes the direct

collocation approach [209] for motion planning, which has been used previously by

Hubicki to optimize jumping plans over the course of 20 steps [102], and has been
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streamlined further to optimize 3D walking for a humanoid robot [95]. Direct colloca-

tion methods simultaneously perform the integration of the robot’s dynamical model

(which includes interactions with the environment) and solve for optimized control

trajectories that produce desired output kinematics. The optimizer integrates the

dynamics by solving a series of algebraic equality constraints at a series colloca-

tion points. Such methods are optimal when dynamical equations can be written in

closed-form [112, 95]. Furthermore, the success and predictive ability of the optimizer

is dependent upon the accuracy of the supplied model. For the experiments of this

study, we used the granular jumping testbed from our other granular jumping exper-

iments described in this Dissertation. Thus, the dynamical equation for the robot

model used by the optimizer was the same model used in previous simulations.
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Figure 62: (a) A diagram of the jumping robot math model with feedback dynamics.

(b) The motor control feedback loop used to track the open-loop desired actuator

position trajectory, zd, such that zm − zr → zd. This feedback loop is modeled ex-

plicitly in the optimization as a passive-dynamic element, so the open-loop command

trajectory zd can be designed with awareness of tracking dynamics.

However, unlike previous simulations, we additionally considered the feedback dy-

namics of the robot’s actuator. In the sand jumping experiments of [2], the feedback

dynamics could be ignored, because the direct encoder position trajectory of exper-

imental jumps were fed into the command motor position of the simulation, thus

already accounting for trajectory deviations due to feedback tracking error. Since

the optimizer determines a command trajectory to perform specific objectives, simu-

lation of the feedback dynamics was essential. The motor-position feedback control

loop (Fig. 62(b)) impacted the robot’s dynamics, even when well-tuned control gains

resulted in small deviations in the relative motor trajectory (Fig. 63).
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Figure 63: Motor command trajectory tracking as predicted by the optimization

and measured on the robot. The gap between the measured motor trajectory and the

command is small, but has a significant impact on the resulting jumping dynamics.

This motivated our inclusion of the feedback-loop dynamics (Fig. 62(b)), in the

overall math model.

The insights into impulsive granular dynamics discussed in the previous Sections

of this Chapter allowed for the formulation of a closed form dynamical equation

describing the granular forces on the foot. We employed the granular cone-based

added mass model derived from the above experiments in jumping on sand [2]. Unlike

the model used for previous simulations [2], we defined the quasistatic force, Fp(z),

by the cone-based Equation 26 rather than the two-resistance relation. As such, all
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granular forces were determined by the evolution of the granular cone. To simplify

our protocol, we only considered single take-off trajectories (i.e. no stutter jumps), so

as to not consider reintrusion dynamics. This principled reduced-order formulation

could also be represented with closed-form equations, making it amenable to fast

motion planning techniques. The dynamical equations, constraints and the direct

collocation formulation specific to our experiments are described in detail in [103].

3.5.3 Experiment and Results

As an aggressive benchmark for the accuracy of our motion plans, we tested open-loop

impulsive jumping on loose-packed grains. Open-loop impulsive jumping presents a

number of challenges. By sending only open-loop motor-position commands to the

jumper, there is no opportunity to correct errors online. We measured jump height

accuracy by apex height error, which is sensitive to the error in takeoff velocity.

The ballistic dynamics of the airborne model dictate that errors in hop height scale

with the square of the takeoff error. By demanding high jumps which require quick

impulsive motions, we insured that the robot induced complex inertial reaction forces

from the granular media.
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Figure 64: A plot of actual jumping apex heights vs. commanded apex heights for

all three experimental groups. Granular media (GM) command trajectories jumped

nearly as accurately on granular media (3.9 ± 2.1 mm) (red squares) as rigid strategies

jumped on hard ground (HG) (3.4 ± 1.5 mm) (green squares). In contrast, rigid

ground strategies not only underperformed on granular media (blue squares), but the

trajectory optimized for the highest jump performed the most poorly of all tested

scenarios. Black circles indicate optimizer jumping predictions.

In total, this work [103] comprised of three experimental groups of impulsive

robotic jumping (Fig. 64). We tested 1) a trajectory optimized with a rigid ground

model, executed on rigid ground, 2) a trajectory optimized with the added-mass
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model and executed on loosely packed poppy seeds, and 3) a trajectory optimized

with a rigid ground model, but executed on loosely packed poppy seeds. Optimizing

with the added mass model allowed the jumper to accurately hit its target apex height

within 6.6% error. Further, not only did rigid-ground strategies come nowhere close to

target heights (40.6% error), some higher-jumping strategies performed significantly

worse on granular media than lower-jumping strategies.
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Figure 65: Side-by-side plots of the executed motor trajectories (zm − zr) optimized

for (a) rigid ground and (b) loosely-packed granular media. Across terrain types,

the amplitude and shape of the motor trajectories are clearly distinct. Within terrain

types, we observe a smooth shift in strategy with increasing jump height.

A comparison of the motion plans optimized for hard ground and granular media

revealed that the optimizer produced qualitatively different strategies between the two

surfaces (Fig. 65). Unsurprisingly, granular media strategies required more thrust,

nearly twice the amplitude compared to the counterpart rigid strategies. However,

the shape of the motor trajectories was also markedly different. Rigid strategies took
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advantage of “pull-then-push” strategy, while granular media trajectories favored a

single, quick thrust. Thus, successful control on granular media isn’t just a matter

of amplifying rigid-ground strategies, but thoughtfully considering the complex dy-

namics of the terrain. Overall, these results serve as a proof of concept that optimal

motion planning, a powerful tool in legged locomotion control, can be made accurate

and tractable through highly complex substrates.
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CHAPTER IV

CONCLUSION

4.1 Accomplishments

We have demonstrated that a simple spring-mass hopper on both hard ground and

granular media exhibits rich dynamics. We performed a systematic and automated

study of experimental hard ground jumping, where we commanded sinusoidal wave

actuation strategies and varied the parameters of actuation, such as amplitude, forc-

ing frequency and initial phase. This variation of parameters revealed two main types

of jumps, the stutter jump and single jump. The stutter was induced by a counter-

movement where the motor starts near the top of the thrust rod and pulls the rod

up for a preliminary hop, followed by a push-off during landing. The single jump

consisted only of a push-off phase. The optimal forcing frequencies for both jumps

were found to be off-resonant: given the parameters of the mass, stiffness, gravity

and forcing amplitude used (which can be non-dimensionalized to a single parameter,

mg/kA), the stutter jump was optimal below the natural frequency, and the single

jump was optimal above the natural frequency. The lower optimal frequency of the

stutter jump caused the required peak motor power to be lower than that needed for

the single jump.

A simulation analysis that varied mg/kA revealed how relative jump height, motor

power and optimal frequency varied with mg/kA for both jump types. Within a range

of values for mg/kA (about 0.1 to 0.9), the stutter jump was doubly ideal due to its

jump height being higher and peak power requirement being lower. An analysis of the

stutter jump’s kinematics yielded estimates of the stutter jump’s optimal frequency

vs mg/kA, which provided insight into the influence of the relative time scales of the
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aerial phase and the grounded phase.

We additionally discussed how our model compared to animal jump heights at

different size scales. Based on simplistic assumptions about the scaling of mg/kA

with body size, reported values of animal jump heights were always much lower than

simulated single jumps and typically higher than simulated stutter jumps. We at-

tributed this to the fact that the relative power requirements and optimal frequencies

of single jumps are exceedingly high for single jumps and increase with decreasing

values of mg/kA.

We also constructed a fully automated bed of granular media that could perform

and collect data on jumping experiments using the spring mass hopper, fluidize the

bed, reset the granular state and control the volume fraction between experiments.

These experiments revealed that unmodified stutter jumps performed more poorly

than single jumps in loose packed granular media (whereby, given the parameters of

the robot, the stutter would perform better than the single jump on hard ground).

Incorporating a delay time between the pull-up phase and push-off phase of the stutter

improved jumps relative to the single jumps. Further experiments attributed the

need for this delay time to an added mass effect in granular media (which had not

been considered before in dry granular media) due to a jammed cone of grains that

developed beneath the foot and moved with the foot. The added mass produced an

inertial phase shift in the stutter jump where the foot sank deeper and was not able

to maximally compress the spring during the upward swing of the robot’s center of

mass. This cone effectively extended the geometry of the foot beneath the granular

surface, and an analysis of the growth of the jamming front revealed that this cone

also affected quasistatic forces and coupled the dynamics of all the quastistatic and

hydrodynamic-like granular forces. Development of this principled model allowed

for a motion planning optimizer to produce accurately predicted optimal open loop

controlled jumps on granular media.
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4.2 Future Investigations

4.2.1 Optimizing for diverse performance goals

A significant utility of optimal motion planning (such as the direct collocation formu-

lation supplied by Dr. Christian Hubicki in Section 3.5 [103]) is the ability to plan

for more diverse performance goals with creative constraints. A future goal will be

to leverage such a tool to exploit the locomotor’s physics and environmental inter-

actions and achieve objectives beyond typical goals such as take-off speeds or jump

heights, such as obstacle avoidance or turning maneuvers (perhaps not in our 1D

hopper). To this end, the optimizer has already succeeded in producing an open-loop

trajectory the enables the robot to jump to a specific height within a specified time

and then effectively “stick” the landing (a gymnastics inspired maneuver, Fig. 66)

on hard ground. Previous experiments have shown how such a maneuver is possi-

ble by simply reducing feedback gains to dampen the robot, however, the optimizer

achieved identical dynamics with open loop trajectory control. One can imagine how

such controlled landings can be crucial in sensitive missions such as that of a comet

lander.
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Figure 66: Experimental trajectory comparison of regular single jump vs. jump with

stick landing. (a) Rod positions vs time. (b) Relative motor actuation trajectories vs

time.
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4.2.2 Motion planning optimization as a robophysical tool to uncover and
leverage new granular physics

While tuning the feedback gains of the optimizer’s model to match the experimental

robot’s hard ground kinematics, the gains were at one point set to values that in-

advertently produced an output trajectory that can be best described as a ’stop-go’

motion. The trajectory was not a single downward stroke, but rather consisted of

an intermediate pausing phase in the forcing (Fig. 67). When implemented and per-

formed by the robot, the optimizer under-predicted the actual jump height by about

30 mm, where the expected jump height was 60 mm, and the experimental jump

height was 90 mm (Fig. 67(a)).
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Figure 67: Experimental vs optimizer prediction of ’stop-go’ jumping trajectory.

(a) Rod position vs. time for experiment (black) vs prediction (blue). Optimizer’s

command max height was 60 mm. (b) Relative motor forcing trajectory vs. time

comparison of both commanded (dashed) vs. actual (solid) for both experiment

(black) and prediction (blue).

While there was some variance in the actual command trajectory between experi-

ment and optimizer (Fig. 67(b)), the variance during the motor’s downward intrusion
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stroke was minimal, and similar differences in trajectory were observed in well pre-

dicted jumps. However, the primary granular modeling component excluded from the

optimization routine was the empirical reintrusion model observed in [2] (Fig. 50).

While no reintrusions occurred before take-off in the optimizer, the optimizer did

yield foot kinematics whereby, midway into the intrusion, the foot reached a velocity

of nearly zero before intruding further (Fig. 68). We hypothesized that this behavior

could be inducing reintrusion-type forces.
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Figure 68: Optimizer prediction of foot speed during stop-go maneuver. Foot in-

trudes, slows to nearly zero speed, then continues intruding before lift-off.

To test this hypothesis, we have begun to perform systematic stop-go intrusion

measurements on a Denso robot arm fitted with a force sensor. The primary motion

protocol was to slowly intrude (10 mm/s) a flat intruder with about 4 cm sides to

a specific intrusion depth, pause for a specific time, and then continue intrusion.

Preliminary results indicate similar overshoots to those in reintrusions which are

proportional to the depth at which the stop-go motion was performed (Fig. 69(a)).
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Figure 69: Force vs. depth measurements of stop-go intrusions. (a) Sample stop-go

measurement in loose-packed poppy seeds for a pause time of 3 seconds. The force

overshoot, O, was found to be proportional to the intrusion depth of the stop-go

motion, S (inset). (b) Force vs. depth for for compounded stop-go motions with 0.2

second pause time for step lengths of 10 mm (black), 3 mm (purple) and 1 mm (blue).

We additionally performed multiple stop-go movements within one intrusion, wher-

eby the robot arm intruded by some step length and paused in between steps for some

pause time. We sought to examine the effect of pausing an intrusion while it was still

exhibiting a force overshoot. Consequently, the smallest step length tested (1 mm)

yielded higher overshoot forces (Fig. 69(b)) than the longer step lengths (3 mm and

10 mm), suggesting a potential compounding force. We suspect that the dynamics

of both stop-go forces and reintrusion forces are coupled to mechanics of local com-

paction. A laser speckle analysis beneath the intruder during these events (similar

to those performed during drag experiments [83]) may provide insight into the local

compaction properties.

Developing a principled description of these intrusion mechanics will potentially

allow an optimized motion planning routine to intentionally exploit such mechanics
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in concert with cone-based static and inertial forces and produce more optimal jumps.

4.2.3 Expanded understanding of jamming granular structures

While estimating added mass in fluids can be challenging for all but simple intruder

shapes [177], we expect that the geometry and dynamics of granular jamming fronts

in other intrusion scenarios will be determined by shearing behavior that forms pre-

dictably shaped jamming fronts. A systematic investigation of how these jamming

fronts form will allow for a more complete model of granular reaction forces to both

predict locomotion kinematics on and within granular media, as well as have an intu-

itive understanding of their dynamics. This is particularly important for fast modes

of locomotion like jumping, hopping and running, which induce inertial forces from

the substrate due to the formation of these fronts. In particular, a systematic investi-

gation of the how nonlinearities in the frictional resistive forces change with changing

foot size (and if these changes in force have a correspondence with how the gran-

ular cones are forming) will provide insight into how the scaling of feet affects the

importance of force nonlinearities at the onset of intrusion into the substrate or in

general the relative contributions of the different types of forces. For, example, for a

flat circular disc foot, the quasistatic and inertial drag forces will scale proportionally

with R2 (where R is the foot’s radius), whereas the added mass will scale with R3.

More broadly, understanding the shape and evolution of jamming granular fronts from

other orientations (aside from just vertical intrusions), movement trajectories (such

as rotations in the media), and foot properties (foot shape and surface friction, mass),

will facilitate the understanding of more complex movements in granular media.
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[110] Jerkins, M., Schröter, M., Swinney, H. L., Senden, T. J., Saadat-
far, M., and Aste, T., “Onset of mechanical stability in random packings of
frictional spheres,” Physical review letters, vol. 101, no. 1, p. 018301, 2008.

[111] Johansson, K. H., Sastry, S., Zhang, J., and Lygeros, J., “Zeno hybrid
systems,” International Journal of Robust & Nonlinear Control, vol. 11, no. 435-
451, p. 6, 2001.

[112] Jones, M. S., Optimal Control of an Underactuated Bipedal Robot. PhD thesis,
2014.

[113] Kamrin, K. and Koval, G., “Nonlocal constitutive relation for steady gran-
ular flow,” Physical Review Letters, vol. 108, no. 17, p. 178301, 2012.

[114] Katsuragi, H. and Durian, D. J., “Unified force law for granular impact
cratering,” Nature Physics, vol. 3, pp. 420–423, Apr. 2007.

[115] Katsuragi, H. and Durian, D. J., “Drag force scaling for penetration into
granular media,” Physical Review E, vol. 87, p. 052208, May 2013.

[116] Keith, M., Scheibe, J., and Hendershott, A., “Launch dynamics in Glau-
comys volans,” Biology of gliding mammals, 2000.

[117] Ker, R., Dimery, N., and Alexander, R., “The role of tendon elasticity in
hopping in a wallaby (Macropus rufogriseus),” Journal of Zoology, 1986.

[118] Kikuchi, F., Ota, Y., and Hirose, S., “Basic performance experiments for
jumping quadruped,” in Intelligent Robots and Systems, 2003.(IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on, 2003.

[119] Koditschek, D. and Bühler, M., “Analysis of a simplified hopping robot,”
The International Journal of Robotics Research, vol. 10, no. 6, pp. 587–605,
1991.

160



[120] Komi, P. and Bosco, C., “Utilization of stored elastic energy in leg extensor
muscles by men and women.,” Medicine and Science in Sports, 1978.

[121] Komsuoglu, H., Majumdar, A., Aydin, Y. O., and Koditschek, D. E.,
“Characterization of dynamic behaviors in a hexapod robot,” in Experimental
Robotics, pp. 667–684, Springer, 2014.

[122] Kovac, M., Fuchs, M., Guignard, A., Zufferey, J., and Floreano, D.,
“A miniature 7g jumping robot,” in ICRA 2008. IEEE International Conference
on Robotics and Automation, no. figure 3, pp. 373–378, IEEE, 2008.

[123] Kubo, K., Kawakami, Y., Fukunaga, T., James, R. S., Navas, C. A.,
and Herrel, A., “Influence of elastic properties of tendon structures on jump
performance in humans,” Journal of Applied Physiology, no. 87, pp. 2090–2096,
1999.

[124] Le Bouil, A., Amon, A., McNamara, S., and Crassous, J., “Emergence
of cooperativity in plasticity of soft glassy materials,” Physical review letters,
vol. 112, no. 24, p. 246001, 2014.

[125] Leavitt, J., Bobrow, J., and Sideris, A., “Robust balance control of a one-
legged, pneumatically-actuated, acrobot-like hopping robot,” in Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference
on, 2004.

[126] Lee, W. and Raibert, M., “Control of hoof rolling in an articulated leg,” in
Proceedings. 1991 IEEE International Conference on Robotics and Automation,
pp. 1386–1391, IEEE Comput. Soc. Press, 1991.

[127] Li, C., Hsieh, S. T., and Goldman, D. I., “Multi-functional foot use during
running in the zebra-tailed lizard (callisaurus draconoides),” The Journal of
experimental biology, vol. 215, no. 18, pp. 3293–3308, 2012.

[128] Li, C. and Umbanhowar, P., “Sensitive dependence of the motion of a legged
robot on granular media,” Proceedings of the, vol. 106, no. 9, pp. 3029–3034,
2009.

[129] Li, C., Zhang, T., and Goldman, D. I., “A terradynamics of legged loco-
motion on granular media,” Science, vol. 339, no. 6126, pp. 1408–1412, 2013.

[130] Losos, J., “The evolution of form and function: morphology and locomotor
performance in West Indian Anolis lizards,” Evolution, 1990.

[131] Lötstedt, P., “Mechanical systems of rigid bodies subject to unilateral con-
straints,” SIAM Journal on Applied Mathematics, vol. 42, no. 2, pp. 281–296,
1982.

[132] Lutz, G. J. and Rome, L. C., “Built for jumping: the design of the frog
muscular system.,” Science (New York, N.Y.), vol. 263, pp. 370–2, Jan. 1994.

161



[133] Maladen, R. D., Ding, Y., Li, C., and Goldman, D. I., “Undulatory
swimming in sand: subsurface locomotion of the sandfish lizard,” science,
vol. 325, no. 5938, pp. 314–318, 2009.

[134] Maladen, R. D., Ding, Y., Umbanhowar, P. B., and Goldman, D. I.,
“Undulatory swimming in sand: experimental and simulation studies of a
robotic sandfish,” The International Journal of Robotics Research, vol. 30, no. 7,
pp. 793–805, 2011.

[135] Maladen, R. D., Ding, Y., Umbanhowar, P. B., Kamor, A., and Gold-
man, D. I., “Mechanical models of sandfish locomotion reveal principles of high
performance subsurface sand-swimming,” Journal of The Royal Society Inter-
face, vol. 8, no. 62, pp. 1332–1345, 2011.

[136] Man, H. D., Lefeber, D., and Vermeulen, J., “Control on irregular ter-
rain of a hopping robot with one articulated leg,” ICAR Workshop II: New
Approaches on Dynamic . . . , 1997.

[137] Manchester, I. R., Mettin, U., Iida, F., and Tedrake, R., “Stable
dynamic walking over uneven terrain,” The International Journal of Robotics
Research, vol. 30, no. 3, pp. 265–279, 2011.

[138] Marques, M. D. P. M., Differential inclusions in nonsmooth mechanical
problems: Shocks and dry friction, vol. 9. Birkhauser, 1993.

[139] Marsh, R., “Jumping ability of anuran amphibians,” Advances in veterinary
science and comparative medicine, vol. 38, pp. 51–111, 1994.

[140] Marsh, R., “Jumping ability of anurans.,” pp. 51 – 111, 1994.

[141] Matsuoka, K., “A mechanical model of repetitive hopping movements,”
Biomechanisms, vol. 5, no. 2, pp. 251–258, 1980.

[142] McGeer, T., “Passive dynamic walking,” The International Journal of
Robotics Research, 1990.

[143] McGowan, C., “The mechanics of jumping versus steady hopping in yellow-
footed rock wallabies,” Journal of experimental biology, vol. 208, no. 14,
pp. 2741–2751, 2005.

[144] McMahon, T. a. and Cheng, G. C., “The mechanics of running: how does
stiffness couple with speed?,” Journal of biomechanics, vol. 23 Suppl 1, pp. 65–
78, Jan. 1990.

[145] McMahon, T. A. and Cheng, G. C., “The mechanics of running: how does
stiffness couple with speed?,” Journal of biomechanics, vol. 23, pp. 65–78, 1990.

[146] McNeill Alexander, R., Elastic mechanisms in animal movement. Cam-
bridge [etc.]: Cambridge University Press, 1988.

162



[147] Mehrandezh, M., “Jumping height control of an electrically actuated, one-
legged hopping robot: modelling and simulation,” Decision and Control, 1995.,
Proceedings of the 34th IEEE Conference on, 1995.

[148] Moreau, J. J., “Standard inelastic shocks and the dynamics of unilateral con-
straints,” in Unilateral problems in structural analysis, pp. 173–221, Springer,
1985.

[149] Moritz, C. T. and Farley, C. T., “Human hopping on very soft elastic
surfaces: implications for muscle pre-stretch and elastic energy storage in loco-
motion,” Journal of Experimental Biology, vol. 208, no. 5, pp. 939–949, 2005.

[150] Morrey, J. and Lambrecht, B., “Highly mobile and robust small quadruped
robots,” in Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings.
2003 IEEE/RSJ International Conference on, 2003.

[151] Muramatsu, S., Fukudome, A., Miyama, M., Arimoto, M., and Kijima,
A., “Energy expenditure in maximal jumps on sand,” Journal of physiological
anthropology, vol. 25, no. 1, pp. 59–61, 2006.

[152] Newhall, K. and Durian, D., “Projectile-shape dependence of impact
craters in loose granular media,” Physical Review E, vol. 68, no. 6, p. 060301,
2003.

[153] Niiyama, R. and Kuniyoshi, Y., “A Pneumatic Biped with an Artificial
Musculoskeletal System,” in 4th Int. Symposium on Adaptive Motion of Animals
and Machines, pp. 80–81, 2008.

[154] Niiyama, R., Nagakubo, A., and Kuniyoshi, Y., “Mowgli: A bipedal
jumping and landing robot with an artificial musculoskeletal system,” in
Robotics and Automation, 2007 IEEE International Conference on, no. April,
pp. 2546–2551, IEEE, 2007.

[155] Ohashi, E. and Ohnishi, K., “Hopping height control for hopping robots,”
Electrical Engineering in Japan, vol. 155, pp. 64–71, Apr. 2006.

[156] Okubo, O., Nakano, E., and Handa, M., “Design of a jumping machine
using self-energizing spring,” Intelligent Robots and Systems’ 96, IROS 96, Pro-
ceedings of the 1996 IEEE/RSJ International Conference on, 1996.

[157] Pandy, M. G., Zajac, F. E., Sim, E., and Levine, W. S., “An optimal
control model for maximum-height human jumping.,” Journal of biomechanics,
vol. 23, pp. 1185–98, Jan. 1990.

[158] Pandy, M. and Zajac, F., “Optimal muscular coordination strategies for
jumping,” Journal of biomechanics, vol. 24, no. 1, pp. 1–10, 1991.

163



[159] Pang, J.-S. and Trinkle, J. C., “Complementarity formulations and exis-
tence of solutions of dynamic multi-rigid-body contact problems with coulomb
friction,” Mathematical programming, vol. 73, no. 2, pp. 199–226, 1996.

[160] Papantoniou, K., “Electromechanical design for an electrically powered, ac-
tively balanced one leg planar robot,” Intelligent Robots and Systems’ 91.’Intel-
ligence for Mechanical Systems, Proceedings IROS’91. IEEE/RSJ International
Workshop on, 1991.

[161] Peck, M., “Dynamics of a gyroscopic hopping rover,” in Proceeding of the 11
th Annual AAS/AIAA Space Flight Mechanics Meeting, Santa Barbara, CA,
2001.

[162] Pfeifer, R., Lungarella, M., and Iida, F., “Self-organization, embodi-
ment, and biologically inspired robotics.,” Science (New York, N.Y.), vol. 318,
pp. 1088–93, Nov. 2007.

[163] Playter, R., Buehler, M., and Raibert, M., “Bigdog, unmanned systems
technology viii,” in Proc. SPIE, vol. 6230, 2006.

[164] Poncelet, J. V., “Cours de mecanique industrielle,” Paris (1829/1835), 1829.
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Jumping is an important behavior for many animals and robots. Unlike periodic

gaits such as hopping or running, whereby energy generated in previous cycles can

be leveraged to efficiently sustain motion, jumping relies almost purely on a transient

burst of activity to produce take-off from rest. While bioinspired robots have utilized

some jumping mechanisms revealed from numerous biological studies, there have been

few systematic studies of the dynamics of these transient behaviors, particularly on

complex media like sand. This dissertation presents a robophysics approach (the

pursuit of principles of self generated motion) to systematically study the dynam-

ics of jumping on both hard and deformable ground. For jumping on hard ground,

the present work expands on the results from Aguilar et al. [3], which characterized

the dependence of jumping performance on the robot’s hybrid air/ground dynamics,

and analyses how relative jumping performance and power requirements of different

actuation strategies change at different scales of mass, gravity, stiffness and forcing

amplitude. To contrast with the dynamics of jumps on hard ground (in which the

unyielding ground supplies the necessary normal force to counteract downward mo-

tion), we study a relatively simple deformable medium: dry granular media, which

can exhibit both solid and fluid-like dynamics. Through the simultaneous analysis

of both the robot and granular dynamics during jumping, our study reveals not only

actuation principles crucial to jumping on complex media, but also new granular

physics [2], like an added mass effect induced by a jammed granular cone beneath the

robot’s foot. Additionally, in collaboration with the Professor Aaron Ames’ group

at Georgia Tech, we incorporate these granular dynamics into a motion planning



optimizer to produce optimal open loop controlled jumps.
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