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Social organisms which construct nests consisting of tunnels and chambers necessarily
navigate confined and crowded conditions. Unlike low density collectives like bird flocks
and insect swarms in which hydrodynamic and statistical phenomena dominate, the
physics of glasses and supercooled fluids is important to understand clogging behaviors in
high density collectives. Our previous work revealed that fire ants flowing in confined
tunnels utilize diverse behaviors like unequal workload distributions, spontaneous direction
reversals and limited interaction times to mitigate clogging and jamming and thus maintain
functional flow; implementation of similar rules in a small robophysical swarm led to high
performance through spontaneous dissolution of clogs and clusters. However, how the
insects learn such behaviors and how we can develop “task capable” active matter in such
regimes remains a challenge in part because interaction dynamics are dominated by local,
potentially time-consuming collisions and no single agent can survey and guide the entire
collective. Here, hypothesizing that effective flow and clog mitigation could be generated
purely by collisional learning dynamics, we challenged small groups of robots to transport
pellets through a narrow tunnel, and allowed them to modify their excavation probabilities
over time. Robots began excavation with equal probabilities to excavate and without
probability modification, clogs and clusters were common. Allowing the robots to perform
a “reversal” and exit the tunnel when they encountered another robot which prevented
forward progress improved performance. When robots were allowed to change their
reversal probabilities via both a collision and a self-measured (and noisy) estimate of tunnel
length, unequal workload distributions comparable to our previous work emerged and
excavation performance improved. Our robophysical study of an excavating swarm shows
that despite the seeming complexity and difficulty of the task, simple learning rules can
mitigate or leverage unavoidable features in task capable dense active matter, leading to
hypotheses for dense biological and robotic swarms.
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1 INTRODUCTION

Active matter systems, ensembles of driven “agents”, are of much
interest in physics for their rich phenomena, which often feature
formation of spatially extended structures such as those observed in
flocking [1, 2], motility-induced-phase-separation [3–5], giant
number fluctuations [6–8] and more [6, 9]. Active systems in
confined environments (like within narrow channels) are
interesting as structures that form due to collisions and
constrained maneuverability in this regime [10–13] decay slowly in
time, displaying glassy/supercooled features [11]. Such slow relaxation
can lead to deleterious performance of an active system which must
perform a “task” (like a group of ants, termites creating tunnels or
humans rushing through narrow doors). General physics principles
which could allow such active systems to become “task capable” are
less understood as the bulk active matter physics focuses on flow and
structures that emerge from relatively simple rules among individuals.

Mitigating structure formation in confined systems likely
necessitates agents change behavior (“rules”) in response to
conditions and via interactions with other agents. Studies of such
systems are typically the domain of swarm engineering where
researchers seek to understand the functional benefits of structure
formation. For example, engineers seek to have robot teams achieve
goals such as getting aerial swarms to create formations [14] or
planar collections of robots to arrange in different patterns [15].
Generically, swarm control schemes may modify a steady-state
property of the system such as cluster size [16], pattern
formation [17] and locomotion alignment [18]. Such schemes are
often represented as functional dependencies between variables, like
the orientation being the average of neighbor orientations [1] or the
speed decreasing with local particle density [5].

Unfortunately, most control schemes for swarms assume dilute
conditions and avoid collisions thus discovery of general principles for
task completion (like flow at high speed or low energetic cost) in
crowded confined conditions requires new insights in part because
real-time adjustment is particularly challenging without a central
controller, and with the limited sensing and computation we
imposed on the robots, all while dealing with physical noise from
their mechanics, jostling and collisions. As a result, conventional
planning and control methods that rely on precise or accurate
information of the surrounding may not be applicable to achieve
coordinated behavior and good traffic flow in such a setting. It is
instead useful to discover decentralized learning rules that rely on the
unavoidable features of these dense active systems–social and local
interactions–to reach effective traffic flow and task performance, under
evolving conditions. We wish to understand then broadly how such
structures formor dissolve in collectiveswhose agents possessmemory,
sensory feedback and even capability to learn over time.

Ants and termites are biological examples of dense and crowded
task oriented active systems, where various behaviors (i.e., control
schemes) have been naturally selected to aid task performance in such
regimes [19, 20] without central control. Ants, for example,
cooperatively create nests with complex subterranean networks
[21]. They employ no centralized controller or global information,
yet are able to excavate soil in dark, narrow and overpopulated
conditions [22, 23]. Their tasks usually involve manipulation of
soil particles or substrates, transport of bulk pellets through long

and narrow tunnels, as well as directed movement to and from their
nests [24]. Controlled lab experiments and numerical simulations
show that clustering and clogging are prevalent in these conditions
[11, 12], similar to “glassy arrests” in non-living active matter [25, 26].
This is due to individuals’ persistence in their goals, being unaware or
inconsiderate of others’, which may lead to clogs that are difficult to
resolve when working in narrow, quasi one-dimensional tunnels [12].

Previously we used robots as a robophysical model of the ant
tunneling system which facilitated testing of behavioral rules in a
controlled environment with noise and complexities of the real
physical world [12]. Using the robophysical model we
demonstrated how an active confined crowded robot collective
could mitigate structure formation (slowly dissolving clogs and
jams) via being “lazy” and “giving up”. That is, manipulations of
workload distribution in this robophysicalmodel collective rationalized
our observations of biological ants’ strategy unequal workload
distributions and probabilistic yielding to oncoming traffic (termed
“reversals”) demonstrating the importance and utilty of such rules for
maintaining optimal tunnel flow. However, we had to program the
behaviors in the robots; here we are interested to learn how robots can
adjust their behaviors to optimize their workload distributions and
retreat behaviors thus providing insight into biological collectives as
well as providing principles for robot swarms that must operate in
crowded, confined conditions.

Therefore to discover principles by which confined swarms can
learn to avoid clogging while performing a useful task (excavation),
purely via local information, social interactions and a noisy estimate of
their state, here we augment our robophysical swarm to investigate
hypotheses for how ant encounters can regulate [27–29] activity by
individually learning from collisions. We systematically study the
performance of the robots as we subject them to different protocols.
We show that clogging can indeed be mitigated, by some individuals
learning to “give up” and participate less in digging, where social
interactions such as inter-robot collisions and noisy estimates of tunnel
length serve as a means of reinforcement in our learning scheme. Our
learning scheme provides a robust response to changing conditions,
even when individuals acquire noisy or inaccurate information about
their environment (tunnel length). We expect that our robophysical
model and learning technique will provide guidance for biological
hypotheses, as well as inform the design of a robust coordination
technique for dense swarms in dynamic and evolving environments.
Our results provide an example of the richness of active matter
dynamics when the agents can use information to change state to
perform and learn to perform tasks.

2 METHODS

Our robots, modified from our previous study [12] are programmed
to execute autonomous behaviors independently such as navigation to
specific sections in the tunnel and excavation. They are equipped with
force sensitive grippers for pellet excavation, an outer shell with
capacitive sensing to detect and distinguish two types collisions -
robot-robot collisions and robot-wall collisions, as well as terminal
rods for charging and detecting the home area (Figure 1). The pellets
to be excavated are laid at the end of the tunnel are a cohesive granular
medium consisting of plastic shells housing loose rare-earth magnets.
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Since we are particularly interested in how coordinated group success
could be achieved only from physical interactions and local
observation of the environment, we do not allow direct robot-to-
robot communication or global information to the individuals in the
group; our robots rely purely on on-board sensors and make decision
based on local sensing and self-reinforcement.

2.1 Collective Task
Our task is a collective excavation scenario: a group of robots must
continuously excavate themodel granularmedia in a narrow (1.5 body
lengths) and confined tunnel, shown in Figure 1. As more pellets are
excavated, the tunnel “grows” or changes geometrically as the robots
perform their task. A robot starts by leaving the Home area and, using
vision, following the guiding trails to the digging area where the
cohesive pellets are located. During transit in the tunnel, the robot can
detect and distinguish collisions with other robots, as well as collisions
with the wall of the tunnel. By sensing a magnetic field, the robots can
also detect the pellets. After a successful attempt to excavate, a robot
heads home to drop the excavatedpellets into aDeposit bin placed on a
weighing scale.

Our goal is for the group to excavate as many pellets as possible
within a given time. An obvious solution is for the robots to remain
constantly active and try to excavate; however as we demonstrated in
[12] when all the robots are in such a mode and enter the tunnel
concurrently they spend much of their time resolving collisions as a

result of competition for space to maneuver and carryout their
activities. The resulting traffic jams have robots stuck or stalled due
to excessive stress from repeated collisions. This wasted time results in
degraded performance, to the extent that fewer robots in the tunnel
would excavate faster. The challenge is therefore to use the local
information available to individual robots to regulate the
congestion and improve group performance under such
physical constraints and hindrances. We derive our
inspiration from the social behavior of fire ants under
crowded and confined conditions [12], and our previous
robophysical-model excavation experiment [30], to develop
an adaptive learning rule that makes the robots decide when
to “give up” digging and when to “take a rest” in a way that
significantly improve the performance of the group.

2.2 Robot Controller
We adopt a finite state automaton model [31] which is a common
scheme used to control behavior-based robot activities with no
global knowledge. A state transition is triggered when a robot
senses some physical clues from the environment. Each sensor on
the robots has a specific trigger state that enables the robot to
transition into another state. Figure 2 shows the model of
individual robot’s controller. Each block contains a set of
states or sub-states that form a mode or behavior that the
robot exhibits. The states and sub-states are as described below:

FIGURE 1 | Experimental apparatus consisting of robots and a tunnel. (A)Components of an ant robot (two left images): Inertia Measurement Unit (IMU) sensor for
absolute orientation; Wheel encoders for localization via robot odometry/dead reckoning; Capacitive touch sensor shells for detecting collisions; Force sensitive resistors
for gripper tactile feedback, Magnetometer for detecting pellets and Digging Area; Pixy camera for tunnel navigation and localization; Terminal rod for charging and
detection of Home area. In the tunnel (rightmost image): Velostat sheets for lining the tunnel to distinguish robot-robot collision (copper-copper) from robot-wall
collision (copper-velostat); Granular media to simulate model cohesive soil excavated by ants (B) Schematic diagram of the confined tunnel: a robot starts from the Home
Area, decides whether to enter the tunnel and excavate some pellets, or decides to go to the Resting Bay to avoid interference at the tunnel entrance.
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1. Goto Dig: This state is triggered at the start of each trip when a
robot “decides” whether to dig based on their tunnel entrance
probabilities Pe(k).

2. Digging: This state is triggered when the robot is in proximity
to the granular media. The magnetometer at the base of the
robot detects the magnetic field of the granular media and
prompts the robot to start the excavation routine.

3. Exit Tunnel: The robot enters this state fromDigging when the
Force Sensitive Resistor (FSR) detects sufficient amount of
pellets in the gripper. The robot executes several turning
maneuvers to exit the digging area and head back home.

4. Goto Dump: This is the state that captures the robot heading
home after a successful pellet retrieval (Successful Trip) or
unsuccessful pellet retrieval (Unsuccessful Trip). The
controller drives the robot out of the tunnel and gets the
robot home to the deposit area.

5. Dumping: Robot releases the excavated pellets from its gripper
and dumps it in the “Deposit Bin” which is placed on a weighing
scale to measure the amount of pellets excavated over time.

6. Exit Home: Robot executes some turning maneuvers to exit
the deposit area and enters the tunnel to dig.

7. Collision: This state is triggered when a robot collides with
another robot or with the tunnel wall. The robot executes a set
of turning maneuvers in an attempt to resolve the collision.

8. Resting: Robot goes to this state at the beginning of a trip if the
entrance probability is sampled and the robot decides to rest. The
robot follows the guiding trail on the tunnel floor to navigate to the
resting area to take a rest and not participate in the tunnel traffic.

We developed a stochastic model with two parameters to
control the entrance rate and reversal rate (give-up rate) of the
robots so as to regulate tunnel traffic and improve group
performance. Let Pe(k) be the tunnel entrance probability and
Pr(k) be the reversal probability of each robot at trip attempt
number k. A trip begins when a robot samples from the entrance
probability, Pe(k) and decides whether to “go in and dig” or “stay

at home and rest”. This parameter controls the number of robots
in the tunnel which directly controls the tunnel density or
congestion rate. The reversal probability, Pr(k), on the other
hand controls how a robot responds to a collision when it occurs.
A robot samples from this parameter and decides if it should “give
up” or to continue its journey. With these two parameters, we
developed two protocols for studying the effects and performance
of fixed social behaviors [12] in multi-robot collective excavation.
We use these previously reported fixed behavior protocols [12] as
controls to test against the adaptive (learning) behaviors we
develop in the next section:

Active Protocol: In this protocol, we fix the tunnel entrance
probability Pe(k) to a value of one for each trip for each robot. The
reversal probability Pr(k) is set to zero, so the robots do not return
home until they are able to collect pellets. This ensures that all the
robots are active, trying to dig in the tunnel at all times.

Reversal Protocol: Here we set the reversal probability Pr(k)
for each robot to a value greater than zero but less than one, while
still keeping the entrance probability to one at all time. This
allows the robots to randomly “give up” trying to dig when they
collide with other robots in the tunnel.

2.3 Developing an Adaptive Protocol
To go beyond the above fixed behavior protocols and to gain insight
into useful social interactions of the confinedmulti-robot system, we
conducted a parameter sweep to find the optimal reversal
probabilities that yielded the highest excavation rate in a Cellular
Automata (CA) model developed in our previous work [12]; see
Supplementary Section for detailed description of the model.
Figure 3A shows the range of excavation rates for varying
reversal probability as the tunnel length increases. A closer look
at the region with highest excavation rates suggests a non-linear
inverse relationship between optimal reversal probabilities and
tunnel length. In particular, the optimal probability values drop
sharply for short tunnels (less than 5BL) and more gradually for
longer tunnels. This gives us inspiration to develop an Adaptive

FIGURE 2 | Block diagram for the individual robot controller. State transitions are event-based. Pe: probability of tunnel entry (or go to dig). Pe′: probability of resting
(or staying at home). Pr: probability of “giving up” after colliding with another robot in the tunnel. Pr′: probability of continuing to dig after colliding with anther robot.
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Reversal probability function, Pr(ΔL), that decreases sub-linearly as
the tunnel length grows (Figure 3B and Eq. 1 below).

Additionally, ant excavation studies and CA model analysis
reveal that an asymmetric or unequal workload distribution
improves excavation performance in confined conditions [12, 24].
To attempt to incorporate this principle/strategy in our robophysical
system, we develop a self-reinforcement protocol where we model
the digging desire of individual robots with a probability Pe, called
the “tunnel entrance probability”, and update its value based on if a
digging attempt performed by a robot was successful (increase Pe by
a constant), or unsuccessful (decrease Pe by a constant). Preliminary
results showed that this protocol consistently produced an unequal
workload distribution with better excavation performance than the
Reversal protocol in long tunnels (~10BL). However, this was not the
case for short tunnels. Unequal workload strategy did not perform
better when the tunnel was short (< 4BL). To account for this
phenomenon, we crafted an adaptive “update value” function, ΔPe,
(Figure 3C and Eq. 2 below, which has a small update value when
the tunnel is short. We call this the Adaptive Protocol. That is, our
adaptive protocol modifies the digging desire of individual robots by
using egocentric estimates of the change in tunnel length to update
individuals’ entrance probability values.

Intuitively, the Adaptive protocol (via Eqs 1, 2) suggest that the
cost of “giving up” due to collisions (high density) at longer tunnels is
substantial, and the strategy to minimize congestion is by deploying
fewer workers to dig, or equivalently, more workers to rest. That is,
long-duration clogging is more likely to occur in longer tunnels than
in short tunnels due to the cascaded effects of multi-body collisions

propagated as the robots or ants flow into the tunnel simultaneously.
Our adaptive protocol addresses this issue by having the robots
modify their entrance probabilities slowly first at the initial stage of
digging, then more rapidly at the later stage (Eq. 2). ξ is a parameter
added to ensure that a resting robot does not remain in restingmode
indefinitely (i.e. that Pe does not go to zero) allowing robots to
explore their environment, update their estimates of the change in
tunnel length, and modify their behaviors if necessary.

Pr ΔL( ) � α

�������
L0

L0 + ΔL

√
(1)

Pe k,ΔL( ) �
Pe k − 1( ) + ηΔPe ΔL( ) if successful trip
Pe k − 1( ) − ηΔPe ΔL( ) if unsuccessful trip
Pe k − 1( ) + ξ otherwise resting( )

⎧⎪⎨⎪⎩
(2)

where:

ΔPe(ΔL) � entrance probability update value
L0 � initial tunnel length (in robot body lengths)
ΔL � change in tunnel length
ξ � noise or exploration term
α � normalizing constant for reversal probability
η � normalizing constant for tunnel entrance update

and ΔPe(ΔL) � ( ΔL
L0+ΔL)2.

The power law expressions of Eqs 1, 2 are simple forms that yield
the desired behaviors, i.e. rapid change in the reversal andupdate values

FIGURE 3 | Probability sweep over tunnel length with selected equation models. (A) Reversal probability sweep vs. Tunnel length. Plot shows that high to medium
reversal probabilities give the highest excavation rate for short tunnels, while low reversal probabilities give the highest excavation rates for long tunnels (B) Selected
equation for modelling Reversal probabilities as a function of tunnel length for multi-robot experiments (C) Learning update value for Entrance probabilities as a function of
tunnel length for multi-robot experiments.
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at short tunnels and slow/gradual change at long tunnels (Figures
3B,C). Other power law exponents can also be used and will likely
result in various degrees of performance gains, as long as the exponent
is < 1 for the reversal probability and > 1 for entrance probability
update.Eq. 2 takes a positive sign if the robot is able to get pellets home
(successful trip), otherwise it takes a negative sign (unsuccessful trip).

Each time a robot reaches the digging area and excavate pellets, it
updates its estimate of the change in tunnel length, ΔL as follows:

L k( ) � L k − 1( ) + γ L k( )′ − L k − 1( )( ) (3)
ΔL � L k( ) − L0 (4)

where:

L(k)′ � newmeasurement of the tunnel length, derived from robot odometry(or dead − reckoning) using the wheel encoder readings.
L(k) � estimate of the tunnel length, averaged over old and newmeasurements.

L(k − 1) � updated value of the tunnel length during the last successful trip
γ � the weighting parameter or learning rate.

A new measurement of the tunnel length, L(k)′, is computed
when a robot successfully reaches the digging site and excavates
pellets. At this time, the tunnel length is derived from the
x-component of the robot’s location as computed by the robot
odometry [32]. The robots use the kinematic model of a differential
drive mobile robot based on wheel encoder counts to estimate their
absolute displacements in the tunnel. The derivation is provided in
the Supplemental Section. Eq. 3 above is an exponential moving
average formula that acts as a filter for the estimate of the tunnel
length which is used to compute Pr and Pe. It has an important
application of reducing noise in a robot’s estimate of the tunnel
length which might occur when the robots are in multiple collisions.
We chose our value of γ to be 0.9 which results in good performance
for our experiments. Each robot maintains a separate copy of the
equations and updates Pe(k), Pr(k) and ΔL asynchronously
according to Algorithm 1 described below.

Algorithm 1: Adaptive Learning Rule Pseudocode.

The complexity of Algorithm 1 is proportional to the total
number of states, S, that the robot visits during an excavation trip.
This is denoted as O(S) using the big-O notation. The best-case
scenario occurs when the robot does not encounter any collisions
but travels from the home area to the digging site and back with
pellets. This is likely to occur when there are a few robots in the
tunnel and the time to complete a trip (i.e., one pass of the
algorithm) is relatively short. On the other hand, the worst-case
scenario occurs when the robot encounters and handles collisions
in all the states, since collision handling is considered an
“intermediate” state (see Figure 2). In either case, the
amortized run time complexity of the algorithm is O(1) since
the number of possible states is bounded and does not depend on
any input. Similarly, the space complexity is O(1) since the
memory space is fixed and does not grow or depend on any input.

3 EXPERIMENT

We implemented the Adaptive protocol on our physical robots to
compare its performance with the Active and Reversal protocols.
Unlike in our previous robophysical experiments [12] in which
tunnel length and digging probabilities did not change during
excavation, here we conducted experiments in which the tunnel
increased in length as the robots excavated the granular media
(pellets). This both better models growth of tunnels in biological
collective excavation [12, 21, 24] and demonstrates how our
learning scheme can adapt to dynamic and non-stationary
environments. Figure 4 shows three snapshots of the robot
experiment setup.

Because of limitations in the robot’s excavation performance per
trip, we conducted experiments in the following scheme: initially, the
granularmedia was positioned at one body length in the tunnel (L0 =
1). To model a tunnel increasing in length, the pellets were moved
backwards incrementally by one body-length each time the robots
made a cumulative deposit increment of 300 g (a camera positioned
above a weighing scale recorded the weight of total pellets excavated
by the robots). The robots can estimate the tunnel length with a
calculation of distance traveled as reported by their wheel encoders
(Figure 1), and update their reversal and entrance probabilities
according to Eqs 1, 2 respectively.

At the start of each trial and for each protocol, the entrance
probability of the individual robot is set to 1. This ensures that all
robots are active and will thus interact with the environment. For the
Active and Reversal protocols, the entrance probability remains fixed
throughout the duration of the experiment, while for the Adaptive
protocol, the entrance probability changes approximately as the inverse
square of the tunnel length (Eq. 2). This update rule ensures that the
robots become less active as the tunnel length increases. Hence, the
workload should go from equal to unequal. The η parameter is chosen
to ensure that unsuccessful robots decide to rest more often when the
tunnel is long, so as to not hinder the performance of the robots that
can reach the digging area. If a robot samples from the entrance
probability and decides to rest, it navigates to the Resting area and rests
for 1minute.When the resting time is over, the robot samples from the
entrance probability again to determine if it should continue to rest or
to re-enter the tunnel to dig (Figure 2).
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For the Reversal protocol, a fixed reversal probability of 0.8 was
used for all the robots in all trials. Prior multi-robot experiments
demonstrated that such a high reversal probability regulated
congestion better than a lower value. For the Adaptive protocol,
however, it is desired that the reversal probability drops rapidly for

tunnels less than 5BL and saturates quickly for tunnels greater than
5BL. The value of the α parameter–which controls the maximum
and minimum values of the reversal probability for the robot
experiment–is set to 0.6 which is within the range of values
suggested by the parameter sweep plot of Figure 3A.

FIGURE 4 | Three snapshots of the top view of multi-robot excavation experiments. (A) Pellets at one body-length (1BL) of the tunnel which is the initial position of
the pellets at the beginning of each trial, (B) pellets at five body-length (5BL) of the tunnel after robots have excavated 1200 g of pellets, (C) pellets at ten body-length
(10BL) of the tunnel after robots have excavated 2700 g of pellets.

FIGURE 5 | Estimated tunnel length, L(k), Reversal probability, Pr, and Entrance probability, Pe over time for individual robots based on Adaptive rule. Dashed
colored lines represent robot A (red), robot B (blue), and robot C (yellow). Solid black line represents actual tunnel length measurement (A) Plot shows how individual
robots track the actual growing tunnel, based on dead-reckoningmethod and exponential moving average formula described inEq. 3. (B) Reversal probability values for
individual robots as a function of time. These curves closely match the curve described in Figure 3B (C) Plot of the entrance probability values over time. This shows
how robots initially started off with equal digging “desires” and gradually become unequal “desires” as the tunnel length grows.

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 7356677

Aina et al. Learning via Collisions

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 6 | Excavated Pellets vs. Time for three different protocols. Active protocol: all robots have an entrance probability of 1.0 but a reversal probability of 0;
Reversal protocol: all robots have an entrance probability of 1.0 and reversal probability of 0.8; Adaptive rule: entrance probability is a function of inverse square of tunnel
length, while reversal probability is a function of inverse square-root of tunnel length. (A) Individual trial comparison of excavation experiments (B)Mean excavated pellets,
shaded areas correspond to standard deviation from three experiments.

FIGURE 7 | Experimental space-time overlap heat maps of robot positions along the tunnel (x-axis) measured in body-lengths (BL). Y-axis is the time duration of the
experiment in minutes. White straight lines show how fast the tunnel grows which depends on the running protocol in the robots. Robots start from the Home area (right
side) and transit to the Digging area (left side) continuously while excavating the pellets.
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4 RESULTS

In our robot collectives, we implemented the three different
protocols and ran three trials for each protocol. Each trial was
conducted for 3 h; this duration is set by the capacity on the
power-pack of the robots and ensures sensors and actuators are
running effectively. The results of these trials are summarized in
Figures 6–9.

Figure 5 shows the estimated tunnel length, L(k), reversal
probabilities, Pr, and entrance probabilities, Pe, for individual
robots based on Algorithm 1. Figure 5A is the plot of L(k) vs. time
which the robots use to estimate the change in tunnel length, ΔL,
according to Eqs 3, 4. Since new estimates of tunnel length, L(k)′,
are derived from the x-component of an individual robot’s
odometry, it is important to note that wheel slippage can
occur when a robot is simultaneously turning and undergoing
a collision. This will likely introduce noise in the estimate of the
tunnel length, as shown by the fluctuations in the plots of
Figure 5A. However, the moving average formula of Eq. 3
will ensure its effect is minimized. In addition, the
propagation of noisy measurements is minimized by having
the robots reset their odometry measurements at the
beginning of each trip, i.e. just before a robot re-enters the
tunnel. Figure 5B shows that the reversal probability tracks
the desired power law expression of Eq. 1 and Figure 3B.
Figure 5C illustrates how the Pe or “digging desires” of each
robot changes from equal to unequal as a function of time, or
equivalently, change in tunnel length.

Figure 6 shows a comparison of the cumulative amount of
pellets deposited for the three protocols. Figure 6A illustrates that
the individual trials with the Adaptive rule yield the highest
number of pellet deposits for all trials. The graph shows that all
protocols produce similar excavation rates at the initial stages of
the experiment before they start to diverge as the tunnel length
increases. This confirms that the all protocols and trials started
with the same initial conditions, except for the reversal
probability values in the case of Adaptive and Reversal protocol.

Figure 7 shows space-time plots of the robot trajectories for
one of the three trials. The presence of robots in the tunnel is
tracked from video captured by a camera positioned above the
tunnel. At each time point, the presence of robots is summed over
the width of the tunnel and is represented by a single row in the
diagram. The adaptive rule produces the fastest tunnel growth,
and the map includes some stationary blocks near the Home area
which corresponds to resting robots.

Figure 8 explores the portion of time spent by the individual
robots either outside of the tunnel (Figure 8A)—in the resting or
deposition areas–or in contact with each other, while in the
tunnel (Figure 8B), for the three protocols. The times are
quantified based on the robots horizontal position as tracked
in the recorded experiments. In Figure 8B, robots are considered
in contact with others when the horizontal coordinates are less
than a body-length apart. We observe that the average time spent
outside of the tunnel is roughly the same for the Active and
Reversal protocols, at about 40%, but increases a bit for the
Adaptive rule (Figure 8A). Notably, the Adaptive rule generates a
wider variance, indicating some of the robots spend significantly
less time in the tunnel than others. Looking at the time spent in
contact (Figure 8B), we see a narrower distribution for the
Reversal than the Active protocol, demonstrating that the
Reversal protocol regulates contact time in most cases. More
importantly, there is a clear reduction in the average portion of
time spent in contact, using the Adaptive rule, from more than
15% using the other protocols, to about 5%.

Figure 9 compares inequality in workload distribution for the
Reversal and Adaptive rules, quantified using Lorenz curves. A
Lorenz curve presents the cumulative fraction of work done by a
cumulative fraction of the population. This curve is convex by
definition and an equal workload distribution appears as a
straight line between (0,0) and (1,1) A divergence from this
straight line indicates unequal workload distribution, where,
for example, half of the population is doing less than half of
the work. This measure of divergence is usually quantified by the
Gini coefficient, G, defined as the ratio of the area between the

FIGURE 8 | Time spent in various states by individual robots, for the three protocols: Active, Reversal and Adaptive. (A) Time spent at the resting and deposition
areas (B) Time spent in contact with other robots while in the tunnel. Boxes span 25th to 75th percentile, whiskers are between the minimal and maximal values, inner line
is the median, × for means, and circles (solid and empty) represent actual data points.
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Lorenz curve and the line of equality [33]. The curves in Figure 9
show that the Reversal protocol produces an equal workload
distribution with a Gini coefficient of approximately ~0.06. The
Adaptive protocol on the other hand produces a strategy that
leads to equal workload distribution at short tunnels and unequal
workload distribution at long tunnels with a Gini coefficient of
~0.3. This strategy produces the most effective excavation rate in
all the experiments. This is smaller than the inequality, in terms of
a Gini coefficient, previously reported for ants, of about 0.6 [12],
which is due to the larger number of individuals involved in the
ant study. Since a tunnel essentially imposes a limit on the
number of robots or ants that move through it concurrently
without clogging, a larger number of individuals requires a higher
degree of inequality to avoid clogging.

5 DISCUSSION

Our results demonstrate that an adaptive strategy, inspired by
observations on ant behavior, leads to significant improvements
in performance of excavation through a narrow tunnel, by a
group of robots.

It was noticed previously that ants are sometimes willing to
reverse or “give up”, when faced with oncoming traffic [12]. When
studied systematically, it was suggested that there is an optimal
probabilistic rate for these reversals, which reduces multi-body
collisions and jamming events [12]. Indeed, when we implemented
probabilistic reversals upon collisions in the robots, we saw
improved performance compared to an insistent, non-reversing
(“active”) behavior (Figure 6). Furthermore, our Cellular
Automata simulations of the robots suggest that the optimal
reversal rate decreases with increasing tunnel length (Figure 3),
which results from an increase in time wasted working without
achieving pellet excavation. When a jam occurs far into the tunnel,

a low reversal probability tells the robot not to give up quickly but
rather try to resolve congestion locally.

Despite an improvement in performance (Figure 6), the
willingness to “give up” and reverse did not significantly
reduce contacts between the robots in the system when
compared with the “active” protocol (Figure 8). Ants display
another salient collective feature–an unequal workload
distribution–which has been demonstrated to improve
performance of collective digging in simulation, when
compared to an equal workload distribution [12]. We
hypothesized that a reinforcement rule employed by the
individual robots, governing entrance probabilities Pe
(Figure 2), could spontaneously result in an unequal workload
distribution.

We implemented a reinforcement rule that increases (decreases)
the probability to attempt digging with every successful (unsuccessful)
digging trip. This reinforcement rule indeed results in the spontaneous
formation of unequal participation in digging (Figure 9). Our
preliminary experiments showed this unequal workload results in
reduced performance for short tunnels and increased performance for
long tunnels. Taken togetherwith the trendwe observed in simulations
for optimal reversal rates (Figure 3), we decided to implement adaptive
rules employed by individual robots, according to the tunnel length,
estimated by distance travelled. As a result, an unequal workload
distribution emerged that allows them to avoid costly contacts
(Figure 8) and collectively perform better in an excavation task
(Figure 6), using noisy estimates (Figure 5).

5.1 Relations to Social Insect Collective
Dynamics, Active Matter Physics and
Swarm Robotics
Given that our work touches on aspects of biological
collective behavior, active matter physics and swarm

FIGURE 9 | Lorenz curves of robot workload distribution for 1-h “epochs” of 3-h experiment. The curves represent: 1 h duration (red), 2 h duration (blue), and 3 h
duration (green). Black solid line represents the line of equality. Cumulative fraction of work is the number of trips the robots took into the tunnel in an attempt to excavate
pellets. In Reversal protocol, all robots are mostly inside the tunnel, either going in to excavate pellets or going out to dump or “give-up” and re-enter the tunnel. Adaptive
rule on the other hand leads some robots to rest and become less active over time.
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robotics, we briefly discuss our work in context of these well
developed disciplines.

In terms of relation to biology, several studies have revealed that
social insects (e.g. ants)modify their individual behaviors in response
to specific stimuli experienced in the environment [34–38]. This
tendency of individuals to make decisions based on their experience
or observation is necessary for organisms’ survival and reproduction,
and it is termed adaptation or learning [39, 40]. In ants removal of
highly active ants from the group results in increased activity by the
others [41], suggesting they too use some adaptive strategy. Other
studies have also observed adaptation in ant collectives. For example,
Buhl et al [42] suggested a feedback model that explains the
excavation behavior of ants in a laboratory setting, and Bruce
et al [27] suggested that ants use collision information to
maintain a desired proximity to others. Thus, we find it
reasonable that ants adapt their behaviors based on excavation
success which could have a strong relation to collisions (traffic
jams) and tunnel length.

Biological systems are known to possess compliant and flexible
capabilities which enable them to perform sophisticated
maneuvers that are otherwise difficult for their robotic
counterparts [43]. For example, Gravish et al [44] studied how
antenna deformations provide mechanical support to slipping
ants when climbing in confined spaces. Such morphological
adaptation of ants makes them excellent excavators in their
natural environments [45]. Ants typically generate tunnels that
fit about two ant widths and can easily pass each other within
them. However, an encounter with three or more ants will take
longer to resolve. Our robots also take much longer to resolve 3-
robot traffic jams than they do 2-robot collisions, and these
become the dominant time cost to be avoided. Thus, strategies
for congestion modulation in biological systems may prove
applicable in multi-robot real-world scenarios.

In terms of relation of our work to active matter physics, most
studies of active matter assume particles remain in a given state
(e.g., constant speed movement) and study the global dynamics
emerging from such rules. There is typically no “goal” for the
global dynamics in such studies. In contrast our system is
explicitly “task oriented”: from a broad perspective, the system
has a mixture of particles with different behaviors that
occasionally transition between the different populations
(control states) in pursuance of a goal. Thus from a physics
perspective it is interesting to ask how desired macroscopic
outcomes (e.g., flow of material) must be coupled to
microscopic rules which can change in response to
macroscopic state (e.g., particles “give up” which detect a
slowing of flow). This is particularly interesting in the
collisional and dense regimes in part because of challenges for
any one agent to know the state of others and active systems must
deal with the propensity of such systems to cluster [9, 46, 47], clog
and form glassy states [11].

Finally, from a swarm robotics/engineering point of view, while
tasks are a critical aspect of making swarms task capable, most
work has been conducted in either low density regimes and/or
focused on various techniques for collision avoidance [48–52]. This
is to ensure safe operation of the robots and to prevent possible
catastrophes that may occur in cases of collisions. However,

attempting to avoid collisions in crowded and confined
conditions could be impractical. This is due to the physical
constraint of the environment and/or the uncertainties present
in sensor measurements which make collisions inevitable. Even in
some cases where accurate measurements are available, the
challenges in such environments make robot to be overtly
cautious. This conservative behavior would make the robots
spend most of their time avoiding collisions rather than
advancing the mission of the group.

Recently, researchers have studied scenarios involving small
mass and low velocity robots where mild collisions and contacts
can be tolerated. In this case, collision can be used as a sensing
modality to estimate the state of the environment. For example,
[53, 54] developed a probabilistic filtering technique based on
inter-robot contacts to localize a team of robots in particular
environments. The robots were equipped with binary tactile
collision sensors, which provide information for computing
the likelihood of a robot to experience collisions in different
sections of the environment. In contrast to this, our work uses
collisions as a source of reinforcement rather than to estimate the
state of the environment. We assume the environment is
unknown and dynamic, so our approach can generalize to
various scenarios where little domain knowledge is available.
This requires our robots to learn to cooperate and adjust to the
changes in the environment, including the behavior of other
robots, to accomplish their tasks collectively and effectively.

6 CONCLUSION

Active particles performing persistentmotion often develop structures
consisting of aggregated formations [3–5], especially in confined
environments [10–12]. Active matter studies typically involve
particles lacking sensing and control that change direction only
stochastically. Our robotic system presents a kind of task-oriented
active matter, where control is injected to minimize otherwise
unavoidable aggregated states and improve collective performance.
In this work, collective performance is measured as the rate of pellet
collection from the tip of an ever-extending tunnel. This imposed task
compels our robots to traverse the entire length of the system (tunnel),
to and fro, while encountering any other robot already in it.

Unlike uncontrolled particles, the robots studied here do not
stochastically change direction. In fact, when impeded by another
robot, they first attempted tomaneuver around the robot to continue
on their way. This behavior facilitates a “greedy” attempt to
maximize individual performance, at the expense of the collective
one, and exacerbates formation of aggregates (Figure 7 and
Figure 8). On the other hand, we demonstrated that robots can
limit time wasted on this persistence through probabilistic reversal,
which generates some collective performance gains (Figure 6).
However, aggregates still form and are expected to increase in
frequency with collectives larger than those studied here.

Even in our relatively small groups of robots, to achieve high
collective performance that is robust to a changing environment
and possibly to group size, we developed a learning control
scheme that uses collisions as an information source, which
are a noisy proxy for number density in the system. In
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robotics, collisions are often viewed as problematic occurrences to
be avoided, whereas, they could be an important aspect in the
lives of social insects, given the constraints and challenges of their
environments. Collisions could serve as fundamentally important
information sources that can be harnessed to coordinate the
activities of individuals so as to achieve the common goal of
the group.

In our multi-robot scenario, we achieved coordination for
effective excavation performance by modifying individual robot’s
response to collision and task desires based on an independent
estimate of the tunnel length. We discovered that “giving up”,
while sacrificing the individual performance, often contributes to
the collective performance. We demonstrated that a learning rule
that modulates both “giving up” rate and “individual desires”
gives a significantly higher group performance than with
maladaptive behaviors (Figure 6). This technique could be
applied to real world scenarios where collisions or physical
interactions are unavoidable, or in decentralized task-oriented
physical systems where individuals in a group must interact via
contacts. We suspect social insects also make good use of
collisions to modulate their decision making, in service of a
collective goal.
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