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SUMMARY

This dissertation investigates the emergence of collective behaviors in active, shape-

changing robotic particles that interact via collisional impacts on a Coulomb friction sub-

strate. These robots, inspired by the granular materials (GM) paradigm, belong to a broader

class of systems characterized by macroscopic, discrete, athermal, and dissipative particles.

While granular materials have traditionally been composed of passive convex particles, in-

corporating internal actuation and concave geometries—such as in staple-inspired three-

link robots—opens new avenues for exploring how shape and gait coordination enable

dynamic self-organization and emergent material properties.

An initial study demonstrated the selection of low-rattling states in a pinned collec-

tive of three planar shape-changing robots. Synchronized and repeatable motion patterns

were observed, resulting from the coupled influence of internal actuation and environ-

mental constraints. This interplay between drive and environment was crucial in guiding

the system toward dynamically stable configurations—a feature common to many high-

dimensional dynamical systems with effectively random components, where some regions

in the huge parameter space causally give rise to self-organized, low-rattling behavior on

the macroscale, while surrounding regimes remain chaotic and unpredictable. This study

laid the groundwork for the investigations that form the core of this dissertation.

The next project explores the binding mechanism of the minimal interaction unit: a

pair of shape-changing robots. Through experiments and simulations, we demonstrate a

nontrivial binding mechanism in which dynamically coordinated, yet locally repulsive,

collisions produce long-lived, mobile gliders. These gliders spontaneously emerge from

unconfined ensembles, exhibit two distinct asymmetric configurations, and persist for hun-

dreds of actuation cycles. We identify a novel dynamical attraction mechanism resulting

from appropriately timed and oriented repulsive contacts. Notably, shape-induced concav-

ity plays a critical role in stabilizing these bound structures, with tactile feedback enabling

xx



real-time modulation of inter-robot coordination.

Building upon this, the subsequent project investigates the transport properties and

symmetry-breaking dynamics of these gliding dyads. We analyze how shape oscillations

and internal gait symmetries control collective motion. In particular, we show that non-

reciprocal square gaits, which break time-reversal symmetry, generate robust translation

through non-commutative displacements in configuration space. By systematically increas-

ing gait area, we map transitions between bound states, showing how locomotion onset and

mode stability depend on the symmetry of internal dynamics. Remarkably, dyad trajecto-

ries acquire chirality under time-irreversible actuation, enabling steerable motion with min-

imal feedback via gait inversion. These results shed light on the design of self-organizing

robotic collectives capable of persistent and programmable locomotion.

The final part of this thesis expands to the many-body regime, where dense robot ensem-

bles self-organize into spatially extended structures such as chains and loops. Simulations

reveal that the same principles of concavity-mediated entanglement observed in dyads un-

derpin the formation of these structures with long-range order. The diversity of emergent

patterns—from aligned filaments to dynamic, loopy assemblies—is governed by the gait

templates executed by individual robots. Further, experiments with a variant of the robot

design, limited to asymmetric reciprocal actuation, demonstrate similar clustering behav-

ior. In this case, a passive adhesion mechanism, akin to a velcro strip, reinforces contact

and promotes long-range order through mechanically stabilized chains.

These studies demonstrate how active shape change, collisional interactions, and min-

imal feedback enable self-assembly and transport in robotic granular systems, advancing

the design of programmable collectives with emergent, decentralized behavior.

xxi



CHAPTER 1

INTRODUCTION

Overview

Granular materials (GM), composed of athermal, dissipative, and macroscopic particles,

have long served as a model system for studying emergent behavior in non-equilibrium

physics. Through contact interactions alone, passive grains can exhibit clustering, jam-

ming, and transitions between fluid- and solid-like states [1, 2, 3]. Active granular systems

extend this landscape by incorporating internal drive, giving rise to richer dynamical phases

including motility-induced clustering and spontaneous collective motion—even in the ab-

sence of attractive forces [4, 5, 6, 7, 8].

This dissertation advances a third frontier: shape-changing active granular matter,

where individual agents deform cyclically using internal actuation. Unlike traditional ac-

tive systems, these particles possess additional internal degrees of freedom, enabling novel

interaction modes—particularly when shape and motion are coupled through frictional and

collisional dynamics [9, 10, 11]. A key advantage of this framework is that complex emer-

gent behavior can arise even with small numbers of agents, due to the richness of their

internal state space and their non-linear, geometry-mediated interactions [12, 13, 14].

Central to this work is the role of non-reciprocity in the deformation patterns. Non-

reciprocal gaits that trace closed loops in shape space break time-reversal symmetry due

to the fixed direction of gait traversal, resulting in non-commutative displacements and en-

abling directed transport over each cycle [15, 16, 17, 18]. When agents actuated via such

templates [19] collide, they exchange time-ordered impulses that can lead to effective at-

traction and stable, mobile bound states. These collisional and friction mediated dynamics,

offer a new route to self-organization via local, antagonistic interactions [20, 21].
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Through experiments and simulations of three-link robots on frictional substrates, this

thesis explores how shape-changing templates & collisions together produce coordinated

behaviors: from low-rattling states and glider formation, to symmetry-controlled transport

and large-scale chaining. The results illuminate how programmable collective dynamics

can emerge from minimal feedback and local rules, with implications for both active matter

and robotic material design [22, 23, 24, 25].

Granular Media and Emergent Phenomena

Collisional dynamics form a unifying principle across physics—governing emergent be-

havior in systems ranging from macroscopic granular assemblies [1, 2] and ultracold quan-

tum gases [26, 27] to particle interactions in the early universe [28]. In classical sys-

tems, collisions underlie inelastic collapse, clustering, and jamming transitions [29, 30, 3];

in quantum systems, they dictate scattering cross sections, decoherence, and thermaliza-

tion [31, 32, 33]; and at cosmological scales, collisional processes in the early universe

shape structure formation and relic particle abundances [28]. Across these regimes, col-

lisions not only mediate interactions but also serve as mechanisms for the emergence of

collective order in far-from-equilibrium systems.

Granular media (GM) refer to collections of discrete, macroscopic particles interacting

primarily via contact forces. These systems are inherently athermal: thermal fluctuations

are negligible compared to gravitational or inertial effects, and energy is lost through in-

elastic collisions and friction. Despite this dissipative character, granular systems exhibit

a striking range of collective phenomena: clustering in vibrated layers [1, 2], spontaneous

crystallization and compaction [34], convection and segregation under shear [35, 36, 37],

and inelastic collapse in driven gases [29, 38, 30].

A hallmark of granular systems is their ability to transition between fluid-like and solid-

like states depending on density, forcing, and boundary conditions [39, 3]. These tran-

sitions—jamming, shear-thickening, dilatancy—are inherently non-equilibrium and often
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Figure 1.1: Emergent phenomena in granular materials captured from experiments and
simulations: (a) Inelastic collapse in a simulation of 100,000 colliding particles [Video].
(b) Jamming of granular flow through a hopper, resulting in intermittent clogging [Video].
(c) Coexistence of solid-like and fluid-like phases in vibrated granular disks [Video]. (d)
Large-scale granular mixing of 200,000 rigid bodies in a rotating drum [Video]. (e) Emer-
gence of force chains as grains are slowly poured into a pile [Video]. (f) Directed rotation
of a granular ratchet driven by thermal fluctuations [Video].

hysteretic [40, 41]. The jamming transition, in particular, exemplifies how local constraints

and dissipation can lead to emergent rigidity in the absence of thermal equilibration [42,

43]. Unlike in molecular fluids, granular flow is governed not by equilibrium statistical

ensembles but by the interplay of geometric constraints, contact mechanics, and driving

protocols. The force distributions supporting granular solids have been elegantly visual-

ized via photo-elastic force chains [44].

In vibrated granular layers, particles gain mobility from an external energy source (such

as a shaking table or vertical tapping), which induces momentum transfer via interparti-

cle collisions. However, a new class of systems—active granular media—emerges when

particles possess their own source of energy for propulsion or deformation. These active
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agents include motorized grains, colloidal particles, self-deforming particles, and internally

driven robotic elements. The transition from passively agitated to internally actuated parti-

cles mirrors developments in colloidal systems, where externally driven particles—such as

those manipulated via optical or magnetic fields—contrast with truly self-propelled ones

like Janus colloids, which exhibit autonomous motility due to built-in chemical or physical

asymmetries [45].

Biological active matter spans a wide range of systems across length scales. At the

microscopic level, examples include motile bacteria, sperm cells, and cytoskeletal fila-

ments propelled by molecular motors [46]. At mesoscopic to macroscopic scales, flocking

birds [47, 48], swarming insects, and herds of cattle [49] exhibit emergent collective mo-

tion governed by local interactions and alignment rules. These organisms often combine

self-propulsion with sensing, memory, and adaptive feedback, allowing them to respond

dynamically to their environments.

In contrast to synthetic active matter, which often relies on programmed or physical

actuation without intrinsic feedback, biological systems operate with distributed control

architectures and energy conversion mechanisms evolved for robustness and adaptability.

This distinction not only highlights differences in complexity but also inspires the devel-

opment of robotic collectives that aim to replicate the rich, lifelike behaviors observed in

natural systems [50].

In colloidal active matter, self-organization into non-equilibrium structures such as liv-

ing crystals [51], active molecules [52, 53], and self-assembly via chemical signaling [54]

illustrates how local activity can be harnessed for emergent order. Similar behaviors are

observed in macroscopic robotic systems, from Bobbots inspired by living crystals, where

magnetic attraction competes with Brownian-driven repulsion [55], and the membrane en-

closed robotic swarms comprised of bristlebots [56, 57].

These systems, often described under the umbrella of active matter [46, 6, 58], break

time-reversal symmetry at the single-particle level and violate momentum conservation due
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Figure 1.2: Emergent collective phenomena across different scales and systems of active
matter, illustrated through experiments and simulations: (a) Large-scale biological flows:
flocking in a murmuration of starlings (Top) alongside a simulation of hard inelastic disks
to mimic flocking with granular matter (inset) [Starlings Video], and herding dynamics in
a group of sheep (Bottom), [Sheep Video]. (b) Synchronized swimming in a school of
fish exhibiting coordinated turning and spacing [Fish Video]. (c) Emergence of turbulent
swirling and defect dynamics in an active nematic formed by microtubules and motor pro-
teins [Turbulence Video]. (d) Milling behavior in vibrated polar rods interacting via a dis-
sipative granular medium [Milling Video]. (e) Motility-induced phase separation (MIPS)
observed in a simulation of self-propelled particles [MIPS Video]. (f) Light-activated col-
loidal aggregation into dynamic clusters [Living Crystals Video], with a robotic analog in
the form of BobBots [BobBots Video].

to substrate interactions and frictional forces. As a result, they exhibit behaviors far from

the reach of classical thermodynamics.

One striking consequence of activity is the emergence of collective motion from purely

repulsive interactions. Systems of vibrated rods [59], self-propelled disks [4], and syn-

thetic swimmers [60, 61] all exhibit pattern formation, swarming, and spontaneous align-

ment. These systems do not require cohesive forces; alignment and clustering arise from

geometry and steric interactions, often mediated by dissipative collisions. A particularly
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dramatic example is motility-induced phase separation (MIPS), where self-propelled parti-

cles spontaneously separate into dense and dilute phases purely due to their activity [8].

Granular analogs of these phenomena have been observed in shaken layers of polar

rods [5], where local actuation leads to the formation of dynamic clusters and persistent cur-

rents. In these systems, boundaries and substrates play a central role in shaping collective

behavior. For example, bacteria and granular robots tend to accumulate near walls [62, 63],

a behavior that emerges from persistent motion and frequent reorientation upon contact.

Similarly, “flocking at a distance” has been observed in vibrated granular monolayers [7],

where alignment emerges even when particles are not in direct contact—mediated instead

by the medium or substrate. These observations underscore the crucial role that boundary

enclosures and environmental interactions play in determining emergent dynamics.

Most passive granular materials studied to date consist of convex particles—spheres,

rods, and disks—that interact through well-defined contact forces. However, systems com-

posed of concave or topologically complex particles offer a rich, underexplored plethora of

emergent mechanics. Examples include biological aggregates such as worm blobs [14, 64,

65], bird nests composed of branched twigs [66], bent-staple particles that entangle [67]

and entangled cellular or multicellular assemblies [68, 69], where mechanical entangle-

ment, interlocking, and steric frustration generate collective rigidity and support nontriv-

ial phase transitions. These systems possess many internal degrees of freedom and allow

for the formation of dynamically stable configurations through geometry-mediated interac-

tions. Their behavior challenges conventional force-chain models and opens new directions

for understanding self-assembly and robustness in disordered matter.

Taken together, these studies highlight the versatility of granular systems as a platform

for exploring emergence, whether in passive, driven, or active regimes. Their minimal in-

gredients—contact, dissipation, and geometry—give rise to high-dimensional behavior that

often defies intuition. As such, granular media serve not only as a physical playground for

non-equilibrium statistical mechanics but also as a design framework for robotic collectives
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Figure 1.3: Examples of collective structures formed by granular matter or organisms with
varying shapes and modes of entanglement: (a) A weaver bird constructs its nest by stitch-
ing together grass blades, forming a mechanically interlocked structure [Video]. (b) Fire
ants link their bodies to form a floating raft that dynamically adapts to perturbations such
as water waves [Video]. (c) A disordered packing of rods demonstrates topological entan-
glement dependent on aspect ratio, supporting an entanglement transition [SI Video]. (d)
Staple-shaped particles form an entangled granular solid with high resistance to deforma-
tion under perturbation [SI Video]. (e) California blackworms exhibit active cohesion by
self-organizing into highly motile and task-capable blobs [Video]. (f) Engineered multicel-
lular yeast exhibit morphological entanglement via branched growth, enabling the forma-
tion of space-filling cohesive structures [SI Video].

and programmable materials.

Emergent Phenomena in Shape-Changing Active Matter

While passive granular systems reveal the power of geometry, contact, and dissipation in

driving emergence, active matter systems composed of shape-changing or internally de-

formable agents bring forth a distinct layer of complexity. These systems not only convert

internal energy into motion but also dynamically reconfigure their body shape to interact

with the environment in adaptive ways [70, 71, 9, 10, 72, 73, 74, 75]. Such capability places
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them apart from conventional self-propelled particles, enabling access to high-dimensional

control strategies even at low population numbers.

A defining feature of shape-changing active agents is their intrinsic coupling between

internal dynamics and external locomotion, which gives rise to emergent behaviors even in

small collectives. For example, studies on mechanical diffraction in soft robotic metama-

terials have shown how geometric constraints and time-asymmetric gaits can produce spa-

tial propagation of motion resembling optical diffraction patterns [12, 76, 13]. Similarly,

agents capable of lattice traversal can harness their shape-change cycles to overcome envi-

ronmental barriers in programmable ways [77], offering pathways for adaptive navigation

in obstacle rich terrains [78] leveraging gait design techniques from geometric mechanics.

Beyond locomotion, collective dynamics among such agents can lead to spontaneous

synchronization, a hallmark of many biological systems. Metachronal wave formation in

arrays of cilia and flagella, for instance, exemplifies how internal oscillatory dynamics

become phase-locked through hydrodynamic and mechanical coupling [79, 80, 81, 82].

Analogous behavior has been observed in clusters of undulatory robots [83, 84], where the

interplay of local sensing and timing control leads to globally coordinated movement. In

dense systems of nematodes and synthetic analogs, gait synchronization further manifests

as group-level transport and alignment [85, 84, 86, 87].

Shape-changing agents also contribute to the self-assembly of functional structures.

Biological examples include the formation of worm blobs that act as adaptive materials [14,

64] and ant bridges that solve physical routing problems through distributed coordination

[88]. These aggregations exhibit not just robustness, but also responsiveness, adapting their

topology and internal state in real time to external stimuli.

To better understand the principles underlying such behavior, researchers have turned

to model systems like Purcell-inspired three-link swimmers and their robotic counterparts,

such as smarticles (smart active particles) [15, 11, 22, 89]. While isolated smarticles pos-

sess limited motility, their interactions—mediated through collisions, boundaries, and col-
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Figure 1.4: Representative examples of emergent phenomena in shape-changing active
matter, observed in both biological systems and their robotic analogs: (a) Collision-
mediated gait synchronization in dense clusters of nematode worms, leading to the emer-
gence of metachronal waves [SI Video]. (b) A quadri-flagellated alga displaying a coordi-
nated ciliary deformation pattern [SI Video]. (c) Lattice traversal enabled by mechanical
intelligence in nematode worms and directionally compliant robotic designs [SI Video]. (d)
3 link swimmers as robotic analogs of nematodes exhibiting contact-mediated longitudinal
cohesion via lateral interactions [SI Video]. (e) A minimal robophysical model for inves-
tigating principles of quadri-flagellated swimming [SI Video]. (f) Mechanical diffraction
patterns produced by snakes and snake robots traversing periodic lattices [Snake SI Video],
[Snake Robot SI Video].

lective confinement—yield emergent bound states that exhibit persistent translation, a form

of mechanical ratcheting enhanced by noise and shape-change cycles. These systems exem-

plify how minimal actuation and shape deformation, when embedded in the right context,

can produce rich emergent dynamics.

Critically, when such systems are augmented with feedback mechanisms—whether

through embedded sensors, light-sensitive actuation, or real-time computation—they tran-

sition from passive responders to adaptive, task-oriented entities. Recent theoretical and
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Figure 1.5: Robophysical investigations using smart-active-particles (”smarticles”) to study
emergent collective behaviors: (a) Directed transport and phototaxis in a swarm of five
immotile smarticles confined within a rigid ring, enabling force transmission and structural
cohesion [SI Video]. (b) Self-organized, low-rattling “dances” exhibited by a collective
of three pinned smarticles [SI Video]. (c) Robotic mimicry of worm-blob entanglement
and phototaxis by augmenting smarticle arms with meshy fabric and staple-shaped pins,
with heterogeneous roles in the swarm enabling collective navigation [SI Video]. (d) Shape
sculpting with dense ensembles of staple-shaped robots, demonstrating programmable self-
assembly in 3D. [SI Video].

experimental efforts have begun to frame this capability in terms of informational active

matter and programmable collectives, where control loops are embedded in the material

body itself [90, 50, 25, 24]. These studies point toward a future where shape-changing

active agents not only reveal fundamental insights into non-equilibrium physics but also

inspire new paradigms in soft robotics, swarm intelligence, and adaptive materials.

Non-Reciprocity mediated Emergent phenomena

Non-reciprocal interactions—those that violate Newton’s third law of motion by breaking

action-reaction symmetry—play a foundational role in the emergence of collective behav-

ior across biological, physical, and engineered systems. Unlike conservative forces that
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derive from a potential, non-reciprocal interactions are inherently non-Hamiltonian and

often arise in systems maintained far from equilibrium. As such, they provide a fertile

playground for studying pattern formation, self-organization, and emergent dynamics [21,

20, 91].

In biological contexts, non-reciprocal interactions frequently govern developmental,

ecological, and social dynamics. For example, in microbial communities, chemically

mediated antagonism between competing species drives spontaneous spatial segregation,

lane formation, and the emergence of interfacial instabilities [92, 93, 94].Similarly, cross-

regulatory gene networks with promoter-inhibitor feedback loops guide cell differentiation

processes, such as in zebrafish pigmentation patterns [95].

Beyond the microscale, human crowds also display signatures of non-reciprocity, where

social forces and directional preferences can lead to non-reciprocal effective interactions

among individuals. Models incorporating such interactions successfully reproduce dy-

namic features observed in pedestrian flows and evacuation scenarios [100, 101, 102, 103].

In animal behavior, leader-follower dynamics in flocking birds reveal asymmetries in influ-

ence that can be effectively modeled through non-reciprocal couplings [104, 105, 106].

At the mesoscopic scale, non-reciprocity often emerges when particles interact via a

non-equilibrium medium. For instance, in dusty plasmas or colloidal suspensions, asym-

metric hydrodynamic or phoretic interactions can yield direction-dependent forces [107,

108]. Catalytically active colloids provide a model system where non-reciprocity can

be tuned via surface reactivity, enabling complex behaviors such as persistent pairing,

waltzing, and formation of chiral or polar “active molecules” [52, 53, 109, 97]. A re-

cent study demonstrates how non-reciprocal interactions between living cells can drive

the self-assembly of a starfish-like chiral crystal, with non-reciprocity emerging as a key

mechanism that breaks time-reversal symmetry and endows the structure with persistent

rotational motion and chirality [96].

Recent developments in non-Hermitian physics have provided powerful mathematical
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Figure 1.6: Some examples of emergent phenomena mediated by non-reciprocity in their
interactions: (a) Emergence of chiral living crystals in starfish embryo undergoing devel-
opment due to non-reciprocal interactions between autonomous multi-cellular components,
adapted from [96]. (b) Scalar mixtures of the Non-reciprocal cahn hilliard model (NRCH)
produce dynamic patterns such as lamellae and moving droplets as a function of the non-
reciprocity parameter, taken from [97]. (c) Non-reciprocal phase transitions are a unifying
theme across active collectives with antagonistic interactions among agents adapted from,
[21]. (d) Different systems undergo a transition wrt the non-reciprocity parameter to pro-
duce symmetry broken time ordered states with mobility, taken from [21, 98, 99].

tools to describe and classify non-reciprocal systems. The breakdown of reciprocity leads

to non-symmetric interaction matrices, whose spectral properties determine stability and

pattern selection. In particular, exceptional points and the non-Hermitian skin effect have

been linked to unidirectional wave propagation and localization phenomena [110, 21]. A

follow up study shows that non-reciprocal interactions can give rise to time crystalline order

and a spin-glass-like state through geometrical frustration, revealing new organizing princi-

ples in non-equilibrium many-body systems [98]. Studies have also showed that engineered
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nonreciprocal interactions in acoustic and elastic media enable directional wave control and

signal isolation through symmetry breaking and time-variant modulations [111].

These ideas have found experimental realization in mechanical and robotic metamate-

rials. For instance, lattices of coupled robotic units with programmed phase delays exhibit

unidirectional soliton and anti-soliton propagation, mimicking topological insulators but

in a dynamic, out-of-equilibrium setting [112, 113]. Similar principles have been used to

engineer mechanical diodes and circulators, enabling novel forms of energy transport and

signal routing.

Non-reciprocal interactions thus offer a unifying perspective on the origin of complex

dynamics in diverse systems. As experimental techniques and synthetic platforms advance,

the ability to engineer and tune such interactions will pave the way for new modes of

control and functionality in active matter. From living tissues and swarming robots to self-

organizing colloids and programmable metamaterials, non-reciprocity provides a fertile

ground for exploring the rich physics of far-from-equilibrium systems.

Organization of this Thesis

This dissertation explores how shape-changing robots interact via collisions to exhibit

emergent behaviors ranging from self-organized dances to pairwise binding and transport

to many-body organization. The thesis is organized as follows:

• Chapter 2: Demonstration of Low-Rattling States in Pinned Smarticle Collec-

tives

Demonstrates how environmental constraints and synchronized actuation guide a

confined three-robot collective into low-rattling, dynamically stable states, adapted

from sections of a publication [23],

• Chapter 3: Emergent Binding in Shape-Changing Dyads

Reveals how pairs of robots form mobile gliders via repulsive, yet coordinated, colli-
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sions enabled by concavity and tactile feedback, adapted from a manuscript in prep.

[114].

• Chapter 4: Symmetry Breaking and Transport in Gliding Dyads

Shows how breakdown of exchange symmetry due to non-reciprocal gaits induce ro-

bust, chiral locomotion in dyads through non-commutative shape changes, adapated

from a manuscript in prep. [115].

• Chapter 5: Many-Body Dynamics and Long-Range Order

Phenomenology of dense robot ensembles self-assembling into chains and loops

through gait mediated collisional binding and Velcro based adhesion, extending dyad-

scale principles.

• Chapter 6: Future Directions

Outlines how these results inform future work in robotic swarms and active matter

studies with programmable collectives of these robots.
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CHAPTER 2

DEMONSTRATION OF LOW-RATTLING STATES IN PINNED SMARTICLE

COLLECTIVES

2.1 Introduction

Smarticle swarms offer a rich experimental platform to study emergent collective behavior

in active matter systems with many degrees of freedom. Each smarticle is a simple robot

composed of a central body and two rotating arms, yet when placed in dense environments,

their motion becomes highly complex. This complexity arises from frequent collisional

interactions and Coulomb friction damping between smarticles and with their environ-

ment, leading to strongly nonlinear, disordered, and noisy dynamics. Despite this appar-

ent randomness, specific drive protocols can guide the system into ordered, low-rattling

states—configurations where the force fluctuations are minimized despite ongoing actua-

tion. To ensure consistency across trials, these drive protocols were carefully entrained to

a fixed frequency using an external speaker, which phase-locked the actuation of all robots

and minimized noise due to phase-slipping between the motors of individual smarticles.

In this chapter, we demonstrate how tailored driving patterns and energy dissipation can

reduce rattling and induce robust spatio-temporal self-organization in a system of three

smarticles confined within a rigid ring.

2.1.1 Emergence of Self-Organized States in 3-Smarticle Systems

Rattling in smarticle collectives arises from the interplay between internal actuation and

external constraints. Each drive protocol can thus be interpreted as imposing a distinct “rat-

tling landscape” over the configuration space. Analogous to energy landscapes in equilib-

0This chapter is adapted from sections of the manuscript Low rattling: A predictive principle for self-
organization in active collectives. DOI: https://doi.org/10.1126/science.abc6182
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Figure 2.1: Different self-organized dances exhibited by the three robot collective: (a) Time
snaps of the different robot postures exhibited by the rotationally symmetric configuration
during it’s actuation cycle. (b) Four distinct low rattling states, visited most frequently by
the robot collective.

rium statistical mechanics, low-rattling configurations are favored similarly to low-energy

states in a Boltzmann distribution. For example, under the drive protocol 3 depicted in

Figure 2.3—where all three smarticles execute the same time-periodic motion—the result-

ing rattling landscape is visualized. The corresponding steady-state spatial distribution

exhibits localization in regions of minimal rattling, highlighting a strong correlation be-

tween rattling and configurational occupancy. This relationship is quantitatively validated

by plotting steady-state density as a function of the local rattling amplitude.

2.1.2 Drive-Specific Emergence of Low-Rattling States

To systematically investigate how different drive protocols shape the rattling landscape and

guide the emergence of organized states, we implemented four distinct actuation patterns

Fig. Figure 2.3.

• Drive 1: Each smarticle actuates both arms independently and randomly between
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Figure 2.2: Rattling landscape predicts steady-state configurations: (A) The rattling land-
scape corresponding to the drive 3 of Figure 2.3 is shown, with two representative config-
urations—one low-rattling (pink cross) and one high-rattling (purple cross)—highlighted.
The short-time responses of five nearby configurations are shown to contrast stability un-
der drive. (B) The steady-state distribution concentrates in low-rattling regions, shown
both in configuration space and by plotting steady-state density as a function of rattling.
Red points represent uniformly sampled configurations, while blue and black show data
drawn from the steady-state—black indicating experimental data. Together, these reveal
how low-rattling regions dominate the long-time dynamics.

±π/2. This protocol is memoryless and shown in Fig. Figure 2.3, left most column.

• Drive 2: The same random arm motions are synchronized across all three smarticles,

introducing coordination without temporal determinism.

• Drive 3: The synchronized motion is now temporally deterministic and periodic.

This protocol, used in the third column of Fig. Figure 2.3 and represents a fully

coherent collective drive.

• Drive A: Each smarticle follows a distinct, deterministic motion sequence. Although

17



all motions are periodic for each robot, they differ across smarticles, as shown in the

right-most column of Fig. Figure 2.3.

Figure 2.3: Role of drive in shaping emergent self-organization: (A )Four distinct smarticle
arm-drive patterns are shown, ordered by increasing temporal and spatial structure—from
random and uncoordinated to deterministic and individual-specific. (B) Each drive yields a
unique steady-state spatial distribution in configuration space, with more structured drives
resulting in increasingly localized states. (C) The temporal evolution of spatial entropy
reveals how structured drives progressively constrain the system into lower-rattling regions,
with entropy decreasing more steeply for drives with higher predictive content. (D) A t-
SNE projection of the distributions over time illustrates how each drive sculpts the system’s
trajectory from an initially uniform state toward a characteristic steady-state shape, with
divergence increasing in accordance with drive specificity.

These drives can be ordered by their predictive information—the extent to which past

knowledge of the drive aids in predicting future motion. Drive 1 contains no temporal cor-

relations, making future predictions impossible beyond the constraint of angular bounds.

Drive 2 introduces permutation symmetry, revealing that all smarticles perform identi-

cal actions at each moment. Drive 3 adds temporal structure through periodicity. Drive
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A, being both temporally structured and spatially nonuniform, requires encoding the full

identity-specific motion sequence of each smarticle to anticipate future behavior.

2.1.3 Destroying self-organization with friction

The emergence of self-organized states in smarticle collectives depends critically on the

system operating in a sufficiently overdamped regime. In this regime, collisions between

smarticles and with the boundary do not lead to persistent ballistic motion or scattering,

but instead result in rapid momentum loss and confinement to a bounded region of config-

uration space. This overdamped behavior is governed by the velocity decay time τ , which

characterizes how quickly kinetic energy dissipates after actuation. A small τ ensures

that collisions are effectively inelastic and that the drive-induced motion remains local-

ized, enabling the formation of low-rattling steady states.Figure 2.4 explores how varying

τ influences the steady-state distribution in simulations under Drive 3.

To experimentally modulate the friction between the smarticles and the stage, we re-

duced contact friction by spreading a loose monolayer of small plastic beads across the

surface. This layer effectively allowed the smarticles to move with significantly lower

resistance, as they were able to roll over the beads rather than slide directly against the

stage. Importantly, the beads were chosen to be light and non-reactive, ensuring they did

not exert significant back-forces on the smarticles and served purely to reduce friction.

This setup enabled us to access a low-friction regime and explore how reduced damping

influenced the collective dynamics. For comparison, we also conducted simulations that

interpolated between high- and low-friction regimes by continuously tuning the damping

coefficient Figure 2.4.

It has also been shown that diverse classes of dynamical systems tend to exhibit inter-

mittent transitions between metastable macroscopic behaviors, with long-lived dynamical

patterns often corresponding to low-fluctuation—or low-rattling—states where the sys-

tem’s long-term dynamics tend to reside [116]. Examples studied include a simulated
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Figure 2.4: Rattling landscape can be melted by increasing inertia in the system, via friction
reduction: Panel (A) shows the steady-state probabilities logPss across 200 system config-
urations subjected to drive A, with friction progressively reduced via increasing values of
the velocity decay timescale τ (inversely proportional to friction). Each line corresponds to
a configuration, colored by its probability in the strongly overdamped limit (τ → 0). The
solid black line represents the theoretical decay for low-rattling configurations, while the
dotted lines denote model fits using a decay constant γ = 3.1. Panel (B) confirms that the
relationship between probability and rattling R, given by logPss ∼ −R, holds consistently
across values of τ . Together, the panels demonstrate that behaviors in the high-friction limit
are predictive of dynamics at lower friction levels.

metronome array on an oscillating platform, the Lorenz attractor, and the motion of a par-

ticle in a bistable potential landscape influenced by noise. In each case, varying a control

parameter—such as the distribution of oscillator detunings in the metronome system, the

parameter ρ in the Lorenz system, or the noise distribution in the particle model—induces a

transition from a relatively disordered regime to an ordered one, often mediated by a regime

rich in oscillatory dynamics. Notably, all these systems exhibit a “sweet spot” in parameter

space characterized by persistent, coherent oscillations and intermittent switching, suggest-

ing a unifying theme: systems with sufficiently many degrees of freedom, and whose dy-

namics are approximately stochastic, can generically self-organize into low-rattling states

under appropriate conditions.

Building on these studies that use rattling to characterize the stability of configurations

in driven systems, recently it was cast as a general local-to-global principle for nonequi-
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Figure 2.5: Deterministic and stochastic dynamical systems exhibit low rattling behaviors,
adapted from [116]: (a) A simulated array of metronomes interacting via an oscillatory
platform, with varying distributions of detuning exhibits a regime of intermittent oscillatory
dynamics, where clusters of metronomes locally exhibit synchronized activity and drift in
and out of phase. The time series for the order parameter reveals this. (b) Modified lorenz
attractor with the parameter ρ allowed to vary with x. (c) 1D motion in a bistable potential
well with varying intensities of noise indicating hopping and localization between wells.

librium steady states, showing that rattling—a local property—can predict the global orga-

nization of a wide range of nonequilibrium systems even in the absence of an energy-like

potential [117].
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CHAPTER 3

COLLISIONAL BINDING AND TRANSPORT OF SHAPE-CHANGING ROBOT

PAIRS

3.1 Summary

We report in experiment and simulation the spontaneous formation of dynamically bound

pairs of shape changing robots undergoing locally repulsive collisions. Borrowing termi-

nology from Conway’s simulated Game of Life, these physical ‘gliders’ robustly emerge

from an ensemble of individually undulating three-link two-motor robots and can remain

bound for hundreds of undulations and travel for multiple robot dimensions. Gliders occur

in two distinct binding symmetries and form over a wide range of angular oscillation ex-

tent. This parameter sets the maximal concavity which influences formation probability and

translation characteristics. Analysis of dynamics in simulation reveals the mechanism of

effective dynamical attraction – a result of the emergent interplay of appropriately oriented

and timed repulsive interactions. Tactile sensing stabilizes the short-lived conformation via

concavity modulation.

3.2 Introduction

Collisional dynamics, a cornerstone of physics, govern interactions across scales, from

particle collisions revealing fundamental forces to the scattering of electrons in crystals.

While classical inelastic collisions, which do not conserve energy, can lead to emergent

phenomena like clustering [1, 2], inelastic collapse [29, 30, 38, 118], jamming, and tran-

sitions between fluid- and solid-like states [39, 3], active systems — comprising agents

driven by internal energy and dissipative interactions — display even richer dynamics [58].

0This chapter is adapted from sections of a manuscript in preparation.
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These systems challenge traditional conservation laws as momentum and energy can be

redistributed through environmental interactions [119, 6], leading to non-trivial behaviors

such as wall-accumulation in bacteria [120] and spontaneous reorientation in cockroaches

[63]. Other remarkable phenomena include the emergence of patterns and collective order

driven by repulsive interactions, observed in systems such as molecular motors [60, 121,

122], and shaken grains [4, 5, 7]

Figure 3.1: Emergence of a glider from an unconfined collective of 7 smarticles synchro-
nized to start at the same initial phase: (a) Configuration of a smart active particle (smarti-
cle), parametrized by arm angles α1 and α2 relative to the body. The smarticle rests on its
central body, with arms having slight ground clearance. (b) Square gait configurations of a
smarticle in the shape space defined by α1, α2 with amplitude αmax. Red arrows indicate
the direction of gait traversal. (c) The emergence of a locomoting glider from a collective
of seven smarticles, visualized through body center trajectories, with the final path traced
at t = 480 seconds. Top: compressed collective at t = 0.

Active extended objects capable of self-deformation using internal energy exhibit dis-
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tinctive locomotion and mechanical properties [70, 9, 10, 71, 72, 73, 74, 75], distinguishing

them from regular active agents. While traditional active agents reveal compelling behav-

iors in large numbers, shape-changing objects demonstrate unique emergent phenomena

such as mechanical diffraction [12, 76, 13], emergent locomotion [112], and lattice traver-

sal [77], even with fewer agents due to their high degrees of freedom. Collectively they

exhibit phenomena like gait synchronization in nematode clusters and coordinated move-

ment in undulatory robots [83, 84, 85, 86, 87], and form complex structures such as worm

blobs and ant bridges [14, 64, 88]. Purcell-inspired three-link robots, including smarticles

(smart active particles) [15, 11, 22, 89], serve as a versatile platform for studying these

systems. Though isolated smarticles exhibit limited motility, they demonstrate nontrivial

dynamics through collisions, forming dynamically stable bound states that translate persis-

tently despite noise and complex internal dynamics. By coupling shape-deformation with

feedback mechanisms, these systems offer insights into emergent task-oriented behaviors

[24, 50, 25, 90].

Here, we study unconfined smarticle collections, where we observe that the individally

immotile robots can emergently and dynamically bind to form physical “gliders.” These

gliders ballistically travel several body lengths through repulsive collisional interactions.

Experimentally validated simulations provide insights into glider formation and stability;

these principles are applied to stabilize an otherwise unstable gliding mode through a con-

tact sensor-based feedback strategy.

3.3 Experimental Apparatus.

The smarticles, each with a mass of m = 34.8 ± 0.6g, are studied under open-loop control.

They consist of three links: two side arms, each having a length of L = 5.0 cm and a

thickness of 0.3 cm, and a central link (body) with a width of W = 5.4 cm and a depth

of D = 2.2 cm Figure 3.1(a). 7 robots were placed on a 60 × 60 cm2 aluminum plate,

leveled to ≤ 0.1◦. The gait – the sequence of shape-changing motions – of each smarticle
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(depicted in Figure 3.1(b)) was inspired by the dynamics of Purcell’s three-link swimmer

[15, 123, 75]. The periodic shape-changing motions are achieved by actuating the revolute

joints connecting the central link to the side arms using a programmable servo motor, with

a gait period of 1.6 seconds. The side arms were rotated at the maximal motor speed

until reaching the target arm rotation amplitude angle. The ground clearance of the arms

prevents the inertial impulse of the actuated arms from being transmitted to the central body,

which results in negligible motion of the central link. In addition, any motion induced by

arm actuation is limited by the fiction between the central link and the underlying surface,

contributing 0.0015 W ( 75 µm) per cycle.

The friction between the smarticle and the underlying surface limited the motion in-

duced by the arm rotations to approximately 0.0015 W (body lengths), equivalent to 0.0075

cm per cycle. Therefore, individual smarticles do not move significant distances on their

own. To enable contact feedback sensing, we designed a scaled-up version with a total

mass of m = 175 ± 0.5g, arm width and thickness of 6.0 cm and 0.7 cm, respectively, and

body width and depth of 6.5 cm and 3.5 cm, respectively. We mounted force resistive sen-

sors on all four arm faces to detect contacts based on impact thresholds ( Figure 3.8(a), Fig.

S6).

Observation of Gliders. A collection of seven smarticles was initialized in a densely

packed configuration, with all robots beginning their shape-changing motions simultane-

ously and in phase, triggered by an audio frequency of 1000 Hz, as shown in Figure 3.1(c).

We expected the smarticles to push each other away through collisions, causing them to

expand into a relaxed state, where no robots were in contact with each other. However, in

64% of trials (97 out of 151), we observed that a pair of robots moved together for ≥ 100

gait periods, traveling an average distance of 2.9 ± 0.2 W , as shown in Figure 3.1(c).

The formation, stability, and locomotion of these gliders were remarkable, given that the

robots interacted locally repulsive collisions. The discrete and highly nonlinear collisions

made theoretical analysis challenging. To systematically study the gliders, we developed
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a simulation based on the open-source physics engine Chrono and calibrated it against

experiments (see Fig. A1). In the following sections, we discuss the anatomy, binding

mechanism, and stability of the gliding dyads. To test our understanding of the stabilized

binding and gliding, we conclude by demonstration how a simple control strategy extends

the lifetime of the short-lived glider.

Figure 3.2: Strobed snapshots of the asymmetric emergent dyad configurations (C1 - al-
most anti-aligned, C2 - almost aligned), gliding as a bound entity over time. Arrows rep-
resent the body normal vectors.
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Figure 3.3: Distributions of relative coordinates reveal two peaks highlighting the two
emergent modes: (a) A gliding dyad is defined by a pair of smarticles with relative po-
sition (r⃗, θ) in polar coordinates and relative body orientation (ϕ) as the difference between
their normal vectors. (b) Temporal evolution of r in body lengths and the angular coordi-
nates θ, ϕ over six periods for a gliding dyad. (c) Distributions of r and ϕ for all emergent
dyads in simulations and experiments, showing two peaks corresponding to modes C1 and
C2.

3.4 Glider Configurations.

Experiments and simulations (N = 151 trials) revealed that the gliders adopted two distinct

configurations. These configurations exhibit a slight deviation from perfect anti-alignment

and alignment, similar to chiral phases observed during non-reciprocal phase transitions

[21] in various non-equilibrium systems. We refer to them as: (i) “C1,” where the two

smarticles are nearly anti-aligned, with their absolute orientations differing by approxi-

mately 180 degrees, and (ii) “C2,” where the two smarticles are oriented in approximately
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the same direction. Snapshots of the glider configurations are shown in Figure 3.2. To

characterize these distinct configurations, we measured their inter-smarticle distance r, the

polar angle θ and their relative orientation ϕ, as defined in Figure 3.3(a). The time evolution

of the relative coordinates r, θ, and ϕ over 6 periods for a glider trajectory ( Figure 3.3(b))

demonstrates consistent behavior across many periods, characteristic of a limit cycle [124].

The distribution of the relative coordinates of the gliders observed in experiments and sim-

ulation shows distinct peaks in their histograms ( Figure 3.3(c)(i-ii)), corresponding to the

glider configurations C1 and C2. Furthermore, the two glider configurations exhibited dis-

tinct lifetimes ( Figure 3.4), with C1 gliders persisting longer than C2 gliders, as shown

by the long tail in the C1 lifetime distribution. For trials lasting 300 gait periods, some C1

gliders remained bound and locomoting until stopped. The phase drift in the gaits of glider-

forming smarticle pairs during experiments caused slight variations in the distribution of r

& ϕ, compared to simulations ( Figure 3.3(c)(i-ii)).

3.5 Glider Lifetimes.

The C1 glider, or nearly antisymmetric mode, remained sterically stable due to sustained

periodic attraction from the hooking interaction between its arms ( Figure 3.7(a)(i)). In con-

trast, the C2 glider disintegrated under cyclic compression interactions ( Figure 3.7(a)(ii)).

Lifetimes of emergent gliders exceeding 30 periods -— the time for the expanding cloud

to reach steady state -— plotted against relative orientation ϕ show that C1 gliders, clus-

tered around ϕ = 180◦, persist throughout the trial ( Figure 3.4(a)). In contrast, C2 gliders,

characterized by symmetric clusters at ϕ = 0, 360◦, break apart faster, lasting only 70–100

cycles. To highlight these effects, we plotted lifetimes on a semi-log scale ( Figure 3.4(b)),

where the sharp peak at 300 indicates that the surviving gliders at the end of the trial re-

mained in the C1 configuration.
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Figure 3.4: Distributions of glider lifetimes with ϕ: (a) Lifetime of emergent dyads vs.
relative angle ϕ, showing the lifetimes of the two configurations. The scatter plot shows
that the C1 configuration is more stable dynamically bound mode, with lifetimes spanning
the entire trial. Histograms display the individual distributions for lifetime and relative
orientation ϕ. (b) Lifetimes of the two configurations on a semi-log scale, illustrating the
presence of long-lived C1 gliders, denoted by the peak around 300 flaps.

3.6 Glider Robustness and Transport.

To test the robustness of bound-pair states and their subsequent locomotion, we systemati-

cally varied the arm amplitude (maximum rotation angle αmax) while keeping the rotational

speed constant. We then studied the persistence of bound pairs for shapes with different

concavities [125] We performed experiments by fixing one smarticle and initializing the
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other at 21 points on a polar grid of radius 1 BL, across a range of αmax. We observed dif-

ferent types of bound states: some in which the smarticles maintained periodic contact over

multiple cycles, and others where they disengaged for a few cycles before re-establishing

contact.

Figure 3.5: Transport properties of gliders with gaits of different concavities: (a) MSD
⟨σ2(t)⟩ vs. time delay for five arm amplitudes, with snapshots of the corresponding bound
pairs. (b) Binding probability Pb vs. arm amplitude for random initial conditions; blue:
pairs active at trial end, red: pairs active throughout the trial. (c) MSD exponent β vs. αmax

for bound pairs; blue (experiment) and orange (simulation) curves with standard deviation
bars. Black: exponent for time-symmetric gait in simulations. (d) Bound pair center-of-
mass speed Vcom vs. αmax. (e) Steady-state separation r vs. αmax > 45◦ from simulations
of initially bound smarticles.

The mean-square displacement (MSD) vs. time for glider trajectories surviving more

than 30 cycles is shown in Figure 3.5(a) for five different arm amplitudes. The bound

pairs for 90◦ and 10◦ move nearly ballistically, with ⟨σ2(t)⟩ ∝ tβ (where MSD ⟨σ2(t)⟩ =

⟨x⃗2(t)⟩ − ⟨x⃗(t)⟩2 and exponent β ≈ 1.8), For intermediate arm amplitudes, the motion is
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almost diffusive. We observed that gliders in experiments exhibit a higher β and center-

of-mass speed Vcom than those in simulations, as shown in Figure 3.5. We posit that

experimental noise from the motors, collisions, and friction with the floor enhances the

transport of bound pairs with intermediate arm amplitudes (40◦−60◦), but the pairs bind and

unbind frequently. The lack of stability for intermediate αmax correlates with a decrease in

binding probability ( Figure 3.5(b)).

Bound pair speed and transport decreased sharply as αmax decreased from 90◦, but

surprisingly increased again in the low-amplitude regime (see 10◦ − 20◦ range in Fig-

ure 3.5(c-d)). We attribute this anomaly to inertial effects, which enhance the drift of a

single smarticle, as shown in Fig. A2. Since the smarticle arms were driven at a con-

stant motor speed, at low rotation angles, the arm rotation time matched the overlap time

between the motions of two arms, as shown in Fig. A3. This significantly increased the

motility of individual smarticles. As a result, dyad pairs that remained bound at low αmax

also showed improved gliding speed, as shown in Figure 3.5(c-d). To probe how arm

amplitude affects glider locomotion, we simulated smarticles pairs in a bound formation,

performing gaits with varying αmax values greater than 45◦. A clear trend appears, where r

monotonically decreases as αmax increases (. Figure 3.5(e)), with a rapid drop in r around

85◦. Coincidentally, this is also roughly the amplitude at which the β and Vcom increase

sharply ( Figure 3.5(c-d)). Simulations revealed that for αmax ≤ 85◦, the smarticles inter-

act with only one arm, while above this threshold, they experience an additional collision

with the other arm. The additional collision brings the smarticles closer together, leading

to a third collision between an arm and the central link. Since super-diffusive transport

becomes effective for αmax ≥ 85◦, we attribute most of the locomotion to these additional

collisions.
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3.7 Binding Mechanism.

Repulsive collisions between two convex-shaped bodies typically cause them to repel.

However, smarticle pairs can remain bound as they develop concave shapes during their

shape-changing motions. This enables the net contact impulse during a collision between

the two robots to produce an attractive effect, causing them to move together at least once

during the gait. Friction between the smarticle’s base and the underlying surface prevents

coasting, while periodic attractive contact forces during collisions keep them bound over

multiple gait periods. However, under certain conditions —- dependent on the smarticle

pairs’ relative positions, orientations, and gait phase -— the pairs can harness attractive

collisions that keep them bound. To identify the binding conditions, we simulated col-

lisions by fixing one robot (gray) and varying the absolute heading of the second robot

across a constant-radius polar grid (r = 1.3 BL, θ, ϕ) for two gait phases, p = 0, 0.25,

as shown in Figure 3.6(a). Once initialized at the same phase, we tracked the lifetimes

of bound pairs over 75 gait periods and partitioned the relative configuration space into

regions of attraction (pink) and repulsion (blue), based on the outcome of each robot pair.

The attracted configurations correspond to initial conditions that formed stable glider and

survived the entire trial. These configurations converge to the periodic deformation pattern

characteristic of the attractor ( Figure 3.3(b)) within a few periods. Moreover, robot pairs’

binding status can be determined from their configuration after the first gait period, where

their relative orientations dictate whether the subsequent collision results in attraction or

repulsion.

The results indicate that the formation of a bound pair between two smarticles is gov-

erned by a non-reciprocal binding affinity, which depends on their polar angle θ and relative

headings ϕ. Robot pairs with initial configurations in the first and fourth quadrants (with

respect to θ) of the interaction range are likely to form bound pairs (pink sectors) when

their normal vectors are antiparallel. Conversely, robot pairs with parallel normal vectors
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Figure 3.6: Constant radius polar grid scan reveals the sterically allowable regions for
glider formation:(a) (i) Polar grid scan around a reference smarticle (gray) at a constant
radius (r = 1.3 BL) for initial phase 0, showing an attracted (pink) and repelled (blue)
initial configuration. The heading of the second smarticle is varied at a fixed polar angle,
θ. (ii) The corresponding scan for phase 0.25 shows the change in the basin of attraction
across different initial robot shape spaces. (b) (i-ii) The scanned space is divided into
regions of attraction (pink), repulsion (blue), and invalid configurations (black) for the two
phase values.

are likely to repel (blue sectors) or be physically inadmissible (black sectors). In contrast,

configurations in the second and third quadrants are generally repelled or physically inad-

missible, as shown in Figure 3.6(b)(i-ii) and Figs. A4 and A5. Once on the attractor, we

analyzed a single gait period for the two glider configurations to identify collisions driving

attraction and transport during the cycle. Plotting the instantaneous change in robot separa-
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tion, ∆r = ri−ri−1, over time reveals that for the C1 dyad, attraction arises when the arms

briefly hook onto each other during the cycle ( Figure 3.7(a)(i), collision 2). In contrast,

Figure 3.7(a)(ii) reveals that for the C2 dyad, attraction results from the robots’ alternating

arms bracing each other’s bodies (collisions 1 and 3). Both events are marked by a sharp

decrease in ∆r, as seen in Figure 3.7(b)(i-ii).

Figure 3.7: Collisions leading to attraction and transport within a gait cycle: (a) Collision
events for a C1 dyad (i), where attraction arises from arm hooking and repulsion from
arm-body collisions, and for a C2 dyad (ii), where attraction results from alternate arms
colliding with each other’s bodies and repulsion from steric interactions when one robot’s
body is fully enveloped by the arms of the other. The change in robot separation, ∆r, over
time shows sharp spikes that correlate with attraction events for both dyads. (b) Projections
of the robots’ instantaneous velocities onto the effective stepping vector reveal individual
displacements along the transport direction, highlighting a leader-follower dynamic where
one robot leads and the other is carried along. This links transport to repulsive collisions in
both dyad types (i-ii).

The net displacement of the paired robots in the heading direction during a single cycle

is calculated by taking the area under the curve of the dot product of their instantaneous
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velocity v⃗ and the glider’s effective stepping vector of the center of mass t̂ for the cycle.

For the C1 dyad, transport occurs primarily when the arm of the robot maintaining the

orientational asymmetry (Leader) briefly collides with the body of the other robot (Fol-

lower) before hooking onto its arm to create attraction. This collision 1, shown in panel

Figure 3.7(a)(i), causes the robots to move in opposite directions, with the leading robot

driving the net transport ( Figure 3.7(c)(i)). In contrast, the C2 dyad exhibits transport

driven by collisions, where one robot’s arms alternatively envelope the body of the other

every half-cycle, as shown in collision 2 of Figure 3.7(a)(ii). These collisions cause both

robots to move in opposite directions ( Figure 3.7(c)(ii)). However, the displacement mag-

nitudes for both robots are almost similar, and the effect accumulates over multiple cycles,

eventually causing the dyad to break

3.8 Feedback Stabilization of Sterically Unstable Configuration with Tactile Sensing

The slightly asymmetric C2 glider typically unbound permanently (and thus stopped trans-

lating) within 60-70 cycles as the smarticles compressed each other into a non-colliding

state. This glider conformation involved the two robots fully enclosing each other in the

space between their arms every half cycle, as shown in collision 2 of Figure 3.7(a)(ii),

causing them to move further apart due to compression. These steric effects, accumulated

over multiple cycles, caused the bound pair to eventually disengage and remain barely in

contact. To mitigate this repulsion, we employed a simple contact-sensing feedback strat-

egy. We constructed slightly larger robots and mounted resistance-based force sensors on

all four faces of the arms, as shown in Figure 3.8(a). We calibrated these force sensors

based on the forces generated during the compression collision in the typical C2 conforma-

tion (Fig. A6). Using this impact threshold, we implemented a feedback strategy where the

robots stopped moving their arms upon detecting an impact within that range and resumed

movement from that position in their next gait cycle, as shown in Figure 3.8(b). This

impact-based amplitude modulation stabilized the C2 glider. Figure 3.8(c) shows a plot
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Figure 3.8: Stabilizing the sterically unstable mode via tactile sensing: (a) Smarticles
equipped with force sensing resistors on the four arm faces stabilize the sterically unstable
C2 configuration (details in SI). (b) Mechanism illustrating the destabilization of open-loop
and stabilization of feedback-enabled C2 gliders. (c) Time evolution of r for a representa-
tive open-loop and feedback-glider trial. Open-loop dyads push apart to stable fixed points,
while feedback-enabled dyads remain in a transient mode for longer periods due to con-
cavity modulation. Solid lines mark glider break-down. (d) Glider lifetime distributions
for open-loop and feedback-enabled trials.

of r vs. time (in gait periods) for a representative open-loop and feedback-controlled C2

glider, illustrating how the closed-loop strategy keeps the value of r fluctuating transiently.

The distribution of lifetimes for C2 gliders with different open-loop arm amplitudes (with

70◦ as the cutoff, beyond which no C2 gliders form) compares to the feedback-stabilized

glider in Figure 3.8(d). The control strategy significantly improved the lifetime of this

unstable open-loop excitation, keeping it dynamically evolving, as shown in the relative

configuration space in Fig. A7. The transport properties of the various C2 gliders with dif-

ferent arm amplitudes are shown in Fig. A8. The open-loop C2 glider with an amplitude of

85◦ and the feedback-controlled C2 glider move almost ballistically, but the longer lifetime

of the feedback-stabilized glider ensures it to transport over longer distances.

36



3.9 Conclusion.

We studied ensembles of shape-changing robots (smarticles) in experiments and simula-

tions, revealing the novel phenomenon of gliders– dynamically bound pairs that travel to-

gether with almost ballistic locomotion, over many body lengths and enduring hundreds of

rigid-body collisions between them. We characterize gliders by their relative spacing and

orientation, demonstrating that their formation emerges from a delicate interplay between

the robot’s geometric positioning and arm phasing. The stability and lifetime of these glid-

ers depends on how the robots collide and envelop each other within the space between

their arms during a gait cycle. Using an impact-sensing feedback strategy to modulate the

concavity, we significantly enhanced the binding of the unstable mode. Surprisingly, these

physical gliders can assemble into long structures upon colliding with other robots, giving

rise to long-range order in the collective, similar to non-reciprocally interacting spin mod-

els [126, 127]. We also observed a transition from static bound states to locomoting gliders,

depending on the amount of non-reciprocity programmed into the gaits. A detailed analysis

of how glider transport can be understood and modulated by enumerating the symmetries

of glider configurations and the gaits executed by the robots is in preparation[115]. We

suggest that gliders may emerge in diverse active matter systems, where interacting shape-

changing objects adopt concave shapes during non-reciprocal deformations in a sufficiently

damped environments, highlighting the rich dynamics of highly deformable active bodies.

These findings highlight principles for dynamically entangling collectives, paving the way

for directed self-assembly and transport in active shape-changing systems.
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CHAPTER 4

SYMMETRY BREAKING TRANSPORT IN GLIDING DYADS FORMED BY

COLLISIONS

4.1 Summary

The asymmetry between the two bound modes of the dyad suggests a deeper connection

between broken symmetries and the mechanism of transport. In this chapter, we investi-

gate how transport in “gliding dyads” emerges from the interplay between dynamical and

configurational symmetries. We show that initial collisions between robots break exchange

symmetry, establishing a leader-follower relationship that underlies persistent gliding mo-

tion in the dyad’s center-of-mass frame. By systematically biasing robot shapes, we en-

hance and rectify transport by amplifying non-commutative displacements generated by

non-reciprocal square gaits. Using simulations, we explore how increasing the gait area

drives transitions from time-reversible straight-line gaits to time-irreversible square gaits.

Along one transition pathway, the anti-parallel conformation forms the only stable

bound state, which remains stationary until a critical gait area is exceeded, beyond which

it begins to glide. In contrast, the parallel conformation remains unstable and transient.

Along a different transition path, increased configurational freedom during shape oscilla-

tions leads to stable coexistence of both gliding modes. The time-irreversibility of the gaits

is reflected in the chirality of dyad trajectories, allowing directional control by simply time-

reversing the gait with minimal feedback. These results provide new design principles for

self-assembling robotic collectives that harness symmetry breaking and time-asymmetric

dynamics for robust coordination and locomotion.

0This chapter is adapted from sections of a manuscript in preparation.
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4.2 Introduction

Symmetry and its breaking are central to physics, governing conservation laws, phase tran-

sitions, and emergent phenomena across classical, quantum, and cosmological systems

[128, 129]. In phase transitions, ferromagnetism arises when randomly oriented spins

align below the Curie temperature, breaking rotational symmetry and inducing spontaneous

magnetization [130]. Similarly, crystallization transforms a liquid into a solid by breaking

continuous translational symmetry, giving rise to periodic atomic structures and phonon

excitations [131]. In superconductivity, the spontaneous breaking of U(1) gauge symme-

try—linked to the conservation of the electromagnetic four-current—leads to Cooper pair

condensation [132, 133], manifesting in the Meissner effect as magnetic fields are expelled

and the photon acquires an effective mass [134]. This, in turn, gives rise to the Higgs mode

as a collective excitation [135, 136]. More generally, in many-body systems, increasing

levels of broken symmetry correlate with greater complexity and functional specialization

[137]. In active matter, where nonequilibrium dynamics inherently break time-reversal

symmetry, symmetry breaking acquires an even richer dimension. Sustained energy injec-

tion and dissipation drive emergent behaviors beyond equilibrium constraints, producing

novel collective dynamics and multi-scale symmetry-breaking patterns [138, 58, 139].

Non-reciprocal interactions, which break action-reaction symmetry, drive self-organization

across diverse collective systems and scales [20, 91]. Antagonistic forces underlie emergent

dynamics in a wide range of systems, from strain competition in epidemics and promoter-

inhibitor interactions in cell differentiation [95] to microbial suspensions of competing

species [92, 93, 94], social interactions in human crowds [100, 101, 102, 103], and leader-

follower dynamics in hierarchical pigeon flocks [104]. At the mesoscopic scale, non-

reciprocity naturally emerges when interactions are mediated by a non-equilibrium medium

[108, 107]. Catalytically active colloids with tunable non-reciprocity exhibit rich emergent

behaviors, including transport, waltzing, and self-assembly into active molecules [52, 53,
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109, 140] . Most studies of emergent spatiotemporal dynamics under non-reciprocity em-

ploy models of conserved fields [97, 141], excitable media [142], spins [126, 127], motile

rods [143] , and coupled oscillators [144] . Non-reciprocity manifests through antagonis-

tic cross-diffusivities in concentration fields, asymmetric coupling in oscillator phases, and

alignment torques in spins and rods. As non-reciprocity increases, these systems undergo

phase transitions, giving rise to distinct self-organized states, with traveling states emerging

at high non-reciprocity levels [99, 21]. Insights from non-Hermitian physics have guided

the design of non-reciprocal robotic metamaterials [145] and enabled unidirectional soliton

and anti-soliton propagation in active metamaterials [113].

Figure 4.1: Breaking exchange symmetry. (a) An ensemble of perfectly anti-parallel dyad
configurations was generated by translating and rotating the configuration in space. Two
overlaid trials of the initial condition, with COM trajectories shown in the frame of robot
2’s (purple/green) initial heading. Angular coordinates, ϕ1 and ϕ2, capture exchange sym-
metry between the robots. (b) Post-collision positions reveal stochastic exchange symmetry
breaking, designating one robot as the leader and the other as the follower. When robot 2
(green) becomes the leader, the dyad moves right; when robot 1 (dark gray) leads, it moves
left (shown in purple to indicate it’s in the initial frame of robot 2). A schematic illustrating
symmetry breaking, where the non-reciprocal square gait coupled with the collisional inter-
actions determines the potential landscape. Transport direction is set by the first collision.

The asymmetry of the two emergent glider modes in [114]—one nearly antiparallel,

the other nearly parallel—suggests a deeper link between broken symmetries and their

transport [146, 124]. Since large-scale asymmetry often arises from asymmetry at smaller
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scales [147], this motivates a systematic study of their emergence and transport in rela-

tion to the symmetries of their dynamics and prescribed deformation patterns. The square

gait executed by the three-link robots is inherently non-reciprocal due to the time asymme-

try introduced by one arm moving independently of the other [148, 123]. This sequential

asymmetry breaks time-reversal symmetry, causing net locomotion over a full gait cycle

[19, 149, 150]. This deformation pattern breaks action-reaction symmetry, akin to non-

reciprocal interactions driving self-organization in biological and active systems. Formu-

lated as a gauge field theory, the swimmer’s arm motion traces a closed loop in shape space

with a finite enclosed area, making non-reciprocity an intrinsic geometric property of its

shape deformations [16, 151, 152, 17, 153]. Such geometric non-reciprocity underlies

transport mechanisms in microswimmers and robotic locomotion in various overdamped

environments. For dynamically bound dyads, Coulomb friction at the robot bases is strong

enough to suppress internal motion from arm movements in isolated robots. However,

it allows differential sliding between the robots due to time-ordered impulses exchanged

between them—a signature of the commanded gait. As a result, the dyad undergoes di-

rected transport maintaining a fixed asymmetry in the bound configuration, showing how

non-reciprocal collisions drive coordinated transport of a robotic dimer.

We analyze the perfectly anti-parallel glider configuration; the sterically stable mode

in an overdamped geometric regime, to show that transport directly correlates with dyad

asymmetry. The first collision stochastically breaks exchange symmetry, causing one robot

to deviate slightly from perfect anti-alignment. Nonlinear forces underlying the active

collisions where the drive creates persistent contact between the bodies, brings about this

indeterminism, designating the deviating robot as the leader [76, 154, 155]. Minute varia-

tions in the arms’ contact points across different trials from the ensemble determine which

body yields upon collision. This ensemble is generated by translating and rotating the anti-

symmetric initial configuration in space, as shown in Fig. Figure 4.1(a). These variations

arise from the nonlinear forces imparted during active collisions, breaking the exchange
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symmetry between the robots for the trajectory. It then directs transport by striking the fol-

lower’s body with its arm each cycle maintaining that asymmetry, as shown in (fig:Binding

and Transport Mechanism)(a)(i) of [114]. The perfectly antisymmetric configuration ex-

hibits no net transport due to its invariance under inversion or R(π) rotation in the plane,

making both left and right directions equally likely. The transport direction is determined

by which robot stochastically breaks exchange symmetry to become the leader, serving as

a clear demonstration of exchange symmetry breakdown, as shown in Fig. Figure 4.1(b).

The commanded non-reciprocal square gait coupled with the underlying collisional interac-

tion between the robots governs the effective potential between the robots during an active

dyad.

We show that the direction and magnitude of transport is directly correlated with the

transient oscillations in the exchange symmetry factored angular coordinates ϕ1 and ϕ2.

Left and right heading trajectories, shown in robot 1’s initial heading frame, have angular

coordinates that are mirrored reflections of each other. Equipped with the understanding of

how the dyad’s spontaneous choice of heading stems from the stochastic breaking of ex-

change symmetry, we demonstrate that explicitly breaking this symmetry allows us to tune

its transport direction and magnitude. By positively and negatively biasing the gaits of the

two robots with fixed offsets from the standard square template, we impose a deterministic

preference, rectifying the dyad’s movement. We further show that dyad transport can be

understood in terms of emergent noncommutativity, arising from the interplay between the

commanded gait and collisions between the robots. We varied the non-reciprocity in the

gaits parametrized by the gait area along two distinct paths in configuration space. One

path led to the emergence of only the bound state deviating from anti-alignment, while the

other produced both types of bound states. The configurations adopted by the robots along

these paths explain the stability of the emergent modes. We also show that beyond a critical

gait area (non-reciprocity), the transport of the anti-symmetric dyad undergoes a transition

reminiscent of non-reciprocal excitations in other systems, shifting from static bound states

42



to gliders[21]. This transition underscores the fundamental role of non-reciprocity in sus-

taining locomotion [99], distinguishing the discrete hybrid-event nature of this system from

the continuous systems where such transitions are typically observed. Lastly, we explore

the subtle connection between non-reciprocity and chirality in these robots [58]. The di-

rection of loop traversal determines which arm moves first, assigning each robot a chirality

that manifests as curvature in the dyad’s trajectory. By time-reversing the gaits via audio

feedback, we can steer the glider, reinforcing the role of chirality in harnessing emergent

transport.

4.3 Dyad Transport from broken Exchange Symmetry

4.3.1 Perfectly anti-symmetric initial configuration.

To demonstrate the breakdown of exchange symmetry between the robots, we define two

angular coordinates, ϕ1 and ϕ2. These angles are evaluated by measuring the orientation

of the relative position vector between the two robots with respect to each robot’s body

normal. Specifically, ϕ1 is the angle between the unit vector r̂12, which points from robot 1

to robot 2, and robot 1’s body normal unit vector n̂1. Similarly, ϕ2 is the angle between the

unit vector r̂21, which points from robot 2 to robot 1, and robot 2’s body normal unit vector

n̂2 as shown in Fig. Figure 4.1(a). We define the dyad (glider) configuration as

S = (r̂12, r̂21, ϕ1, ϕ2). (4.1)

The exchange transformation is

E(r̂12, r̂21, ϕ1, ϕ2) = (r̂21, r̂12, ϕ2, ϕ1). (4.2)

Since the smarticles are identical, E is a symmetry of the evolution map f , which takes the

dyad configuration at the beginning of a period and advances it to the configuration at the
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start of the next period, i.e.,

E
(
f(S)

)
= f

(
E(S)

)
. (4.3)

If

f(S) = (r̂′12, r̂
′
21, ϕ

′
1, ϕ

′
2), (4.4)

then symmetry requires

f(r̂21, r̂12, ϕ2, ϕ1) = (r̂′21, r̂
′
12, ϕ

′
2, ϕ

′
1). (4.5)

For an anti-parallel configuration with ϕ1 = ϕ2 = ϕ0, we have

f(r̂12, r̂21, ϕ0, ϕ0) = (r̂′12, r̂
′
21, ϕ

′
1, ϕ

′
2), (4.6)

and by symmetry,

(r̂′12, r̂
′
21, ϕ

′
1, ϕ

′
2) = (r̂′21, r̂

′
12, ϕ

′
2, ϕ

′
1). (4.7)

Thus, ϕ′
1 = ϕ′

2, ensuring the anti-parallel configuration remains unchanged under the dy-

namics. This invariant angle equality, combined with inversion symmetry, makes the con-

figuration ideal for illustrating the breakdown of exchange symmetry after the first colli-

sion. Moreover, inversion symmetry guarantees zero net transport, as confirmed by simu-

lations in the highly over-damped regime. We introduce the transformation

Rπ(r̂12, r̂21, ϕ1, ϕ2) = (−r̂12,−r̂21, ϕ1 + π, ϕ2 + π). (4.8)
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to demonstrate the effect of rotation by π on the dyad configuration. Since both E and Rπ

are symmetries, the evolution map f(S) satisfies

E
(
f(S)

)
= f

(
E(S)

)
, Rπ

(
f(S)

)
= f

(
Rπ(S)

)
. (4.9)

For a perfectly anti-symmetric configuration we set

ϕ2 = ϕ1 + π. (4.10)

By shifting the origin to

r̂ =
r̂12 + r̂21

2
, (4.11)

the state becomes

S = (r̂,−r̂, ϕ, ϕ+ π), (4.12)

which satisfies

E Rπ S = S. (4.13)

Assume that after one cycle the configuration rotates by an angle ψ and translates by

∆r. Then

f(S) =
(
Rψ(r̂) + ∆r, Rψ(−r̂) + ∆r, ϕ+ ψ, ϕ+ ψ + π

)
. (4.14)
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Applying Rπ gives

Rπ

(
f(S)

)
=

(
−Rψ(r̂)−∆r,

−Rψ(−r̂)−∆r,

ϕ+ ψ + π,

ϕ+ ψ
)
.

(4.15)

By symmetry,

f
(
RπS

)
= E

(
f
(
E RπS

))
=

(
Rψ(−r̂) + ∆r,

Rψ(r̂) + ∆r,

ϕ+ ψ + π,

ϕ+ ψ
)
.

(4.16)

Equating the corresponding components yields

−Rψ(r̂)−∆r = Rψ(−r̂) + ∆r. (4.17)

Since Rψ(−r̂) = −Rψ(r̂), we conclude that

∆r = 0. (4.18)

Thus, with ∆r = 0, the perfectly anti-symmetric dyad configuration shows no net

transport.

Figure 4.2(a) confirms this by displaying an ensemble of simulated trajectories (see SM

of [114] for simulation details) that spread equally and oppositely. These trajectories were

obtained by rotations and translations of the perfectly anti-symmetric initial configuration

and are represented in a common frame attached to the initial heading of the second (col-
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Figure 4.2: Symmetry breaking data. (a) Resultant trajectories from the ensemble are plot-
ted in the frame of the initial condition attached to robot 2 (colored) in Figure 4.1. The
black diamond denotes the common starting point for all trajectories and the circles in-
dicating the end points for the trials, depicting the spread in the ball of initial conditions
sampled. (b) Zoomed in representation of the com trajectory for a left and right heading
trial color coded with the gait period. (c) The exchange symmetry is broken by the first
collision, making one robot the leader. The leader exhibits a larger deviation from equilib-
rium, reflected in transient oscillations before relaxing back to a fixed point. (i) The time
evolution of ϕ1 and ϕ2 (in terms of gait period τ ) for a left-heading trial. Similarly (ii),
represents the corresponding values for a right-heading trial.

ored) robot in Figure 4.1. Individual trajectories from the ensemble transiently break the

exchange symmetry, causing one robot to become asymmetrical in it’s relative orientation

w.r.t. the other and drive transport. This robot becomes the leader for the trajectory and

determines the direction of transport. Two individual trajectories from the ensemble which

went left and right respectively are shown in Figure 4.2(b). The spontaneous selection of a

leader is clearly evident in the time evolution of ϕ1 and ϕ2 shown in Figure 4.2(c). Notably,

the angular coordinates are swapped between the left and right heading trials, providing a

clear marker of how the leader stochastically selects the direction of transport. Further, the

magnitude of transport is correlated with the transient oscillations in these coordinates and

transport ceases, when the values of ϕ1 & ϕ2 relax back to the fixed point, which is the

perfectly anti-parallel configuration. The initial anti-parallel configuration is inert, while
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the relaxed configuration is active—sustained by continuous energy injection and dissipa-

tion. This distinction is marked by the dotted curve in Figure 4.1(b), which denotes the

equilibrium energy landscape. This stable equilibrium spontaneously bifurcates into two

unstable periodic orbits which drive transport transiently along two different directions,

before relaxing back to the active fixed point.

4.3.2 Generalized scan depicting steady state attractor topology and transport.

To characterize the basin of attraction of generic emergent gliders, we performed a gener-

alized scan by fixing one robot (gray) and randomly initializing the second robot in various

positions and orientations within a 6.5 BL radius. Figure 4.3 visualizes this scan, where

the robots are represented as spins aligned with their body normal. Grey arrows denote

repelled configurations, while black arrows indicate those that are attracted.

To visualize the steady-state attractor, we represent the dynamics using exchange symmetry-

factored relative coordinates, as shown in Fig. Figure 4.4. The C1 glider dominates as the

primary attractor, forming a saddle-like structure in the full 3D representation (panel a). Its

two wings correspond to unstable periodic orbits where symmetry was transiently broken

for the perfectly anti-symmetric initial configuration. In generic asymmetric configura-

tions, these orbits tend to stabilize and persist as long-lived transients. A smaller cluster of

red points represents the transient C2 glider, a sterically unstable mode described in [114].

Fig. Figure 4.4(b) projects this structure onto the ϕ1-ϕ2 plane, revealing near-perfect re-

flection symmetry across ϕ2 = ϕ1 with a slight imbalance in state occupancy between the

symmetry-broken wings. Unstable periodic orbits define the wings of the saddle-shaped C1

attractor, where spontaneous symmetry breaking guides the system onto one branch. Since

the attractor emerges from collisional interactions modulated by the commanded gait, the

effective potential is dynamically generated and non-conservative. The C2 transient, an

unstable mode, represents a high-energy saddle point in this potential, ultimately relaxing

into the stable equilibrium of two separated robots, highlighting the decisive influence of
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Figure 4.3: Representation of a generalized scan wrt the reference (grey) robot upto r =
6.5BL at a constant initial phase. The scanned robots are depicted with their normal vectors
attached to their body centers. Grey arrows represent repelled configurations, while black
arrows represent attracted configurations.

steric constraints in shaping the potential. The attractor topology is fundamentally deter-

mined by the prescribed gait, emphasizing that different commanded templates will sculpt

distinct dynamical landscapes.

Figure 4.5 shows a scatter plot of the center-of-mass (CoM) displacement per cycle for

steady-state gliders in the lab frame. The nearly isotropic distribution suggests an almost

equal likelihood of movement in all directions. Figure 4.6 presents the distributions of
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Figure 4.4: Topology of steady state attractors. (a) Steady state attractors formed by the
dyads surviving the entire duration of the trial. (b) Attractor projection in the ϕ1 & ϕ2

plane highlighting the broken symmetry about the fixed point.

Figure 4.5: Scatter plot of the center-of-mass coordinates for steady-state gliders, strobed
per cycle, expressed in the lab frame.

the dyad com displacement components and angular displacement. The translational and

angular displacement of the com are computed by transforming the robot coordinates into a

co-moving frame centered at the com and aligned with the average heading of both robots.

This transformation ensures that displacements are measured relative to the dyad’s intrinsic

motion rather than in the lab frame.

We transform the robot coordinates into a co-moving frame centered at the com and

aligned with the vector pointing from robot1 to robot 2. At each timestep, the center of

mass (CoM) of the dyad is computed as the mean position of the two robots Ci:
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Its displacement is then given by:

∆Ci = Ci+1 − Ci.

The intrinsic reference frame is defined using the unit vector from S⃗1 to S⃗2 and is given

by:

r̂i =
S⃗2 − S⃗1∥∥∥S⃗2 − S⃗1

∥∥∥
To express the CoM displacement in this reference frame, we apply the rotation matrix:

R =

0 −1

1 0

 ,
which rotates a vector by 90◦. The CoM displacement components in this intrinsic frame

are then:

sr̂x = ∆Ci · r̂i, sr̂y = ∆Ci · (Rr̂i).

These quantities characterize the dyad’s movement along its principal directions.

The resulting distributions illustrate the dyad com displacement is predominantly along

the principal direction sr̂y , while the other main direction sr̂x has slightly smaller dis-

placements. Both translational and angular displacement ∆θ exhibit almost symmetri-

cal distributions, capturing the isotropic nature of displacements around the main heading

directions. There is a nominal directional bias along−sr̂y that reflects the slight asym-

metry in the steady-state attractor, indicating a slight preference for one lateral direction.

Asymmetries in attractor wings often emerge in systems that undergo spontaneous sym-

metry breaking, typically driven by inherent real-world imperfections. Such asymmetries

have been observed in various physical systems, where controlled asymmetry can stabilize

symmetry-broken states, as seen in oscillator networks [156, 157] and spontaneous symme-

try breaking in optical systems [158].The symmetric distribution of ∆θ centered on 0◦ with
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Figure 4.6: The translational and angular displacement of the dyad center of mass (CoM)
are computed by transforming coordinates into a co-moving frame centered at the com and
aligned with the vector pointing from robot 1 (grey) to robot 2 (purple). This yields the
distributions for the com displacement components sr̂x , sr̂y , and the angular displacement
∆θ.

a small variance suggests minimal directional fluctuations and strong persistence in the

dyad’s heading over time, indicating that individual trajectories maintain their orientation

with little deviation.
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4.3.3 Mapping an asymmetric dyad configuration across attractor wings to modulate

transport.

Generic dyad configurations deviate systematically from perfect anti-alignment, directly

influencing their transport direction. To map an asymmetric initial configuration onto its

counterpart on the reflected attractor wing, we transform both robots into a common ref-

erence frame centered at their initial center of mass, with robot 1’s (gray) body normal

aligned along the x-axis as shown in Figure 4.7 (a).

Given an initial dyad configuration S = (r̂12, r̂21, ϕ1, ϕ2), we apply a rotation:

x′i
y′i

 = R−ϕ1(0)

xi
yi

 , ϕ′
i = ϕi − ϕ1(0), (4.19)

which aligns robot 1 with the x-axis. We then swap the robots, exchanging their relative

positions and orientations:

E(r̂′12, r̂
′
21, ϕ

′
1, ϕ

′
2) = (r̂′21, r̂

′
12, ϕ

′
2, ϕ

′
1). (4.20)

This transformation rotates the dyad’s center-of-mass trajectory by approximately the same

angle:

C′(t) = R−ϕ1(0)C(t), (4.21)

demonstrating that relative asymmetry dictates transport and providing a direct means to

control dyad locomotion by tuning initial asymmetry.

The central configuration in Figure 4.7 (a) illustrates this mapping, where an asym-

metric initial state (green and gray robots) is mapped onto a new asymmetric configuration

with the purple robot replacing the green one. This subtle change in relative positioning

determines which robot’s arm strikes the other’s body, establishing a leader and setting the

direction of locomotion. By constructing ensembles for these two initial states, we track
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Figure 4.7: Modulating dyad transport by mapping an asymmetric dyad across attractor
wings. (a) An asymmetric initial configuration maps onto its counterpart on the reflected
attractor wing (center), resulting in two overlaid configurations with asymmetries related by
symmetry operations. Subtle differences in relative robot positioning dictate a deterministic
left or right movement, with trajectory rotated by approximately the same angle as the
initial configuration. (b) The time evolution of the angular coordinates ϕ1 & ϕ2 for two
representative trajectories from the ensemble.

their center-of-mass trajectories, revealing a deterministic preference for direction based

on the initial asymmetry.

As shown in Figure 4.7 (b), the strobed angular coordinates ϕ1, ϕ2 fluctuate persistently

in representative trials, sustaining transport for asymmetric initial conditions. In contrast,

a perfectly antisymmetric configuration reverts to its original state, as discussed in Sec-
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tion subsection 4.3.1.

4.4 Rectifying transport by controllably breaking exchange symmetry.

Figure 4.8: Breaking exchange symmetry explicitly by biasing configuration space of
the robots. (a) Robots traverse four key configurations in their biased gaits, with
bias introduced at the four corners as additional opening/closing from the arm angles
{−αmax,−αmax} and {αmax, αmax}. The shape space of arm angles is shown alongside
the physical configurations. (b) Swapping gaits reverses the roles of the robots, enabling
the sweep of a full range of bias values.

A perfectly antisymmetric initial configuration, which initially shows no net transport,

can be rectified to deterministically select a heading and achieve persistent motion. This

is done by altering the robots’ gaits and introducing a fixed offset from the perfect square

template with αmax = 90◦. The magnitude of this bias is identical for both robots, but one is

positively biased while the other is negatively biased. The effective bias being defined with

respect to robot 1. Figure 4.8(a) illustrates this biasing in shape space, causing each robot

to follow distinct deformation paths during their periodic cycles. This breaks the initial

exchange symmetry, setting a clear leader similar to the asymmetric initial configuration
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described in Section subsection 4.3.3. The biases introduce a phase shift of half a cycle

(T/2) between the gaits of the two robots. Robot 1 (positively biased, purple) follows

the sequence 1 → 2 → 3 → 4, while Robot 2 (negatively biased, green) performs the

same gait in a different order 3 → 2 → 1 → 4. The gait of Robot 2 is obtained by

translating Robot 1’s gait forward in time by half a cycle, τ → τ + T/2, followed by

a time-reversal transformation, τ → −τ . Swapping the robots’ gaits while keeping their

positions unchanged reverses their roles and direction of motion, as shown in Figure 4.8(b).

This enables precise control over bias values, explicitly breaking exchange symme-

try in a controllable manner and modulating transport, as opposed to modulation through

mapping relative asymmetry which involved mathematical transformations on an initial

configuration. Further we can sweep through an entire range of bias values based on this

scheme and are able to deterministically steer gliders from left to right. The magnitude

of transport is proportional to the amount of bias programmed into the gaits. Figure 4.9

presents the translational and angular displacements of the dyad’s center of mass (CoM)

in the co-moving frame described in Section subsection 4.3.2, across different bias values.

The extremal bias values are constrained by the maximum allowable angle before arm-body

collisions occur. We rectify the motion of the dyads with this scheme, and make them head

deterministically from left to right. The magnitude of the displacement is proportional to

the amount of bias programmed into the gait.

4.5 Emergent Non-Commutativity in dyad locomotion.

The spontaneously broken exchange symmetry between the robots forming the dyad pair

enables it to break the rotational symmetry in the plane and transport persistently in a given

direction. The commanded shape space of the individual robots couple together via pe-

riodic collisional interactions and give rise to an emergent shape space in the form of a

limit-cycle attractor shown here in coordinates r, ϕ1, ϕ2 for 3 consecutive cycles in Fig-

ure B.1. This in turn gives rise to the displacement of the individual robots in a periodic
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Figure 4.9: Modulating dyad transport by controllably breaking exchange symmetry. (a-c)
The translational and angular components of the CoM displacement per cycle measured
in the co-moving frame shown in Figure 4.6, depicts that the dyad transport can be tuned
to pick a direction to the left or right based on the value of the bias with magnitude of
displacement per cycle proportional to the magnitude of the bias.

way per cycle and causes the CoM to move along a fixed heading . This symmetry break-

ing and impending transport is a direct consequence of the inherent non-reciprocity of the

square gait being executed in the CCW direction here. This non-reciprocity shows up as
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an emergent non-commutativity in the transport of the robotic dyad due to the non-abelian

nature of the SE(2) lie group which is used for describing planar translations and rotations

[159].

Figure 4.10: The emergent shape space of the dyad, arising from the commanded shape
space of individual robots and their collisional interactions, causes a non-commutative
transport of the dyad’s center of mass (CoM).
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To relate cyclic oscillations in the emergent shape space r, ϕ1, ϕ2 to transport, we model

the dyad as a massless extensible rod linking the robot centers, undergoing planar expan-

sion, contraction, and rotation, while tracking the center-of-mass coordinates (x, y,Θ) over

each cycle. The net motion over a cycle can be understood by decomposing it into two half-

cycles: during the first, the leader (Green) executes a counterclockwise (CCW) rotation

about the nearly stationary follower (Purple); in the second, it reverses with a clockwise

(CW) rotation. The follower acts as a pivot throughout, slipping only intermittently every

few cycles during arm reconfiguration to catch up with the leader. The details depicting

these events are shown in SM. These rotations are coupled to the robots cyclically draw-

ing closer and sliding apart, captured by the shortening and lengthening of the massless

extensible rod used to approximate their transport. Operating in the overdamped regime

reinforces this approximation, as the absence of inertia suppresses fluctuations in the emer-

gent shape space dynamics, reducing transitions between wings of the attractor and yield-

ing more coherent cyclic behavior localized in one wing. In robotics and controls com-

munity, leader-follower models with cyclic pursuit are a common paradigm for analyzing

coordinated motion and control in multi-agent systems. These models render themselves

amenable to conducting stability and phase plane analyses after properly factoring out the

symmetries [160, 161, 162, 163]. In contrast, our system does not impose such dynamics a

priori; rather, leader-follower behavior emerges spontaneously as a result of gait-dependent

interactions, revealing a richer, more nuanced structure of coordinated motion. The net dis-

placement for the dyad arising from periodic shape changes can be captured by the Lie

bracket of the vector fields corresponding to the two half-cycle motions. This commutator

quantifies the extent to which the sequence of motions fails to commute—i.e., how per-

forming one followed by the other differs from doing them in reverse. This same principle

underlies maneuvers like parallel parking, where non-commutative drive and steering ac-

tions produce net motion otherwise inaccessible [18, 164, 78]. We derive the discrete vector

fields for effective dyad displacement over the first and second half cycles, by considering
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Figure 4.11: The dyad configuration with the individual robots at the beginning and end of
the first and second half cycles overlaid on top of each other. Lower transparency indicates
the beginning of the half cycle, while darker transparency indicates the end of the half cycle.
The angles ϕ̃1 and ϕ̃2 are the supplements of the angles ϕ1 and ϕ2 described in Figure 4.2.

the positions of the robots at the beginning and end of these events. The ending position of

the robots at the end of the first half cycle serves as the starting position of the robots at the

beginning of the second half cycle. These positions are depicted in Figure 4.11.

For the first half cycle this is given by:

g1 =


− sin(ϕ1,i + θ1,i) r cos(ϕ1,i + θ1,i) r cos(ϕ1,i + θ1,i)

cos(ϕ1,i + θ1,i) −r sin(ϕ1,i + θ1,i) −r sin(ϕ1,i + θ1,i)

0 1 1



∆r

∆ϕ1

∆θ1

 (4.22)

Given that the initial state for second half-cycle corresponds to the final state of the first

half-cycle, we write:

g2 =


− sin(ϕ1,f + θ1,f ) rf cos(ϕ1,f + θ1,f ) rf cos(ϕ1,f + θ1,f )

cos(ϕ1,f + θ1,f ) −rf sin(ϕ1,f + θ1,f ) −rf sin(ϕ1,f + θ1,f )

0 1 1



∆r

∆ϕ1

∆θ1

 (4.23)

Here:

• ϕ1,f is the final value of ϕ1 from the previous half-cycle: ϕ1,f = ϕ1,i +∆ϕ1.
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• θ1,f is the final value of θ1 from the previous half-cycle, where the angular coordinate

θ1 is the leader’s absolute orientation with respect to the lab frame and serves as the

second angular coordinate in place of ϕ2, which belonged to the follower, and had the

low amplitude oscillation in shape space. This angle serves as a more natural control

input to express the effective displacement vectors for the half cycles, the details of

which are provided in the SI. θ1,f = θ1,i +∆θ1.

• rf is the final value of r from the previous half-cycle: rf = ri +∆r.

To create a model that takes as input the emergent shape space dynamics (r, ϕ1, θ1)—analogous

to the drive and steer inputs in vehicle models—and computes the net displacement over

a cycle via the Lie bracket of the half-cycle vector fields, we transition to a continuous

representation of the vector field g, which maps the influence of shape variables onto the

configuration space q = (x, y,Θ).

g⃗ =


gx

gy

gΘ

 =


− sin(ϕ1 + θ1) r cos(ϕ1 + θ1) r cos(ϕ1 + θ1)

cos(ϕ1 + θ1) −r sin(ϕ1 + θ1) −r sin(ϕ1 + θ1)

0 1 1



ṙ

ϕ̇1

θ̇1

 (4.24)

The time evolution of shape variables in the first half-cycle t : 0 → T
2

, and the second

half-cycle t : T
2
→ T generate the corresponding vector fields. These are parametrized

by piecewise continuous equations and described in the SI. In the laboratory frame the

configuration evolves as:

qi+1 = qi + (g1 + [g1, g2])∆t (4.25)

The Lie bracket acts as a first-order perturbative correction that captures the effective dis-

placement arising from the cyclic evolution of the shape variables. This correction is in-

corporated through a Lie bracket term, which can be computed for any two vector fields g1

and g2 as:
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[g1, g2] =


g1yg2Θ − g2yg1Θ

g1Θg2x − g2Θg1x

0

 (4.26)

We use a simple Euler scheme to forward integrate this difference equation until ti =

T and obtain the trajectory for a cycle q(t) over [0, T ] with the prescribed input shape

space and repeat the process for the subsequent cycles using the same base template to

obtain the trajectory obtained by the model contrasted with that obtained from the full

DEM simulation with the corresponding contribution from the Lie bracket capturing the

non-commutative transport along the diagonal direction as shown in Figure B.10.

Simulation
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Figure 4.12: Non Commutativity in dyad displacement. The dyad displacement can be
approximated by measuring the non-commutativity between half cycle displacements cal-
culated wrt the emergent shape space of these dyads.
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4.6 Transition from static bound states to gliders as a function of gait non-reciprocity.

Since the non-reciprocity in the configuration space was encoded in the asymmetry between

the movement of the two robot arms, we parametrized it by the difference in their simulta-

neous opening. Starting with configurations that traced straight-line paths in shape space

along the two diagonals of the square gait—where both arms moved simultaneously—we

introduced increasing levels of non-reciprocity by varying the difference in simultaneous

arm movement, thereby expanding the gaits in area by a fixed opening d shown in Fig-

ure 4.13. This parametric variation led to distinct behaviors for the emergent bound states

along the two diagonal paths, observed in simulated collectives of compressed robots ex-

panding to a relaxed state, similar to the setting in which the original gliders were dis-

covered. Along the NE-SW diagonal, where robots alternated between U-shaped config-

urations (i), we observed only the existence of almost anti-symmetric bound states (C1),

characterized by sustained periodic contact at deviations from ϕ = 180◦. In contrast,

along the NW-SE diagonal, where robots alternated between Z-shaped configurations (ii),

we observed both the almost symmetric bound states (C2) deviating from ϕ = 0, 360◦

and the anti-symmetric bound states (C1) [114]. The configurations adopted by the robots

along these paths provided a mechanistic explanation for the emergence of self-organized

states. Specifically, the steric constraints imposed by U-shaped configurations caused the

robots to squeeze against each other, restricting the system to the C1 mode. In contrast, the

Z-shaped configurations relaxed these steric constraints, allowing one robot to slide into

the free space between the arm and the body, thereby enabling the stabilization of the C2

mode. Both families of gaits ultimately converged to the square gait, which, due to steric

constraints discussed in [114], only permitted the C1 mode.

During simulations, we observed that only the bound states emerging at higher levels

of gait non-reciprocity exhibited sustained transport. This observation motivated a system-

atic investigation of the transport properties of the C1 glider—the sterically stable mode
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Figure 4.13: Emergent modes for gaits of increasing non-reciprocity (parametrized by area)
starting from the two diagonals in the configuration space ending at the square. (a–d) Depict
the various gaits that were programmed into the robots starting from the two diagonals of
the square and sweeping through gaits of increasing area parametrized by the width d of
the hexagonal shapes for intermediate areas, until finally reaching the square (e). The
corresponding scatter plot for the lifetime vs. relative angle ϕ along with the respective
distributions shown under the gaits reveal that while C1 (anti-parallel) is the only emergent
mode for the first (i) family of gaits, both C1 (anti-parallel) and C2 (parallel) modes are
stable for the second family of hexagonal gaits (ii), which can be understood from steric
constraints.
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along both diagonal paths—as a function of gait area. We probed the transition from static

bound states to gliding dyads by quantifying their center-of-mass (CoM) displacement in

the comoving frame. To characterize this transition, we computed the distributions of CoM

displacement per cycle as discussed in Section subsection 4.3.2 and plotted the standard

deviation of these distributions for emergent dyads with different gait areas as shown in

Figure 4.14. Our results reveal that for small gait areas, the displacement distributions

are sharply peaked, resembling delta functions indicative of no transport with the robots

only maintaining sustaining periodic contact with each other, whereas for larger gait areas,

they broaden into more symmetric shapes indicative of bi-directional (i.e. to left or right)

transport as shown in Fig SI (See SM). This qualitative change in behavior appears as a

sharp transition in the standard deviation vs. gait area curve, signaling the onset of system-

atic transport beyond a certain threshold for non-reciprocity. This transition highlights the

essential influence of non-reciprocity in maintaining locomotion, distinguishing our robo-

physical dynamical system from theoretical and numerical models studied thus far [165,

21, 99], where such transitions are more commonly observed .

4.7 Steering Dyads by time reversing the direction of gait traversal

Time-reversal symmetry in this system is defined as the reversal of the gait phase, expressed

as τ → −τ , where τ denotes gait time. The direction in which the gait is traversed deter-

mines the sequence of arm activation, thereby introducing non-reciprocity in motion. This

non-reciprocity imparts a fixed chirality to the dyad configuration, characterized by a re-

peatable sequence of arm-arm collisions per gait cycle (highlighted in red). The assigned

chirality influences both the heading and curvature of the resulting trajectories: dyads of

opposite chirality form mirrored configurations and exhibit diverging paths that curve in

opposite directions, as illustrated in the CCW and CW ensembles Figure 4.15(a–b).

Building on this relationship, we implemented a minimal feedback control mechanism

to dynamically steer the dyads. Specifically, we introduced an exteroceptive control cue:
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Figure 4.14: Transition from static bound states to C1 type gliders as a function of gait area.
a(i-ii) X and Y components of the standard deviation of dyad CoM displacement per period
in the co-moving dyad frame as a function of gait area from the Diagonal U to Square path
in the configuration space.

an acoustic tone at 1100 Hz, detected via the onboard microphone, triggered a reversal in

the direction of gait traversal. This switch effectively flips the chirality of the dyad, thereby

reversing both its heading and trajectory curvature in real time.

The effectiveness of this control strategy is shown in Figure 4.15(c), where the center-

of-mass (CoM) trajectory of a travelling C1 dyad exhibits a clear point of inflection corre-

sponding to the moment the audio cue was applied. This curvature inversion is quantified

in Figure 4.15(d), which plots the instantaneous curvature along the trajectory. This exper-

iment reveals an actionable link between chirality, non-reciprocity, and it’s effects on the
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Figure 4.15: Steering the C1 glider by time reversing the gait with audio feedback. (a-b)
Ensemble of open loop dyad com trajectories with the square gait executed in CCW v.s.
CW direction. The time-irreversibility of the non-reciprocal square gait endows it with a
fixed chirality. Dyads of a given chirality are the mirror images of the dyads of the opposite
chirality. (c) We can steer a dyad trajectory by changing the gait chirality. We enable a
change in gait through an audio signal of a particular frequency detected by the microphone
on the robots, which switch the direction of time traversal of the gait from CCW to CW.
This change in gait chirality manifests as change in the curvature of the trial as shown in
(d).

collective dynamics of self-deforming bodies. By leveraging minimal external feedback,

we demonstrate a principle of how these emergent properties can be harnessed and steered

in real time—laying the groundwork for precise, task-oriented control strategies in active

robotic materials.

4.8 Conclusion

In this work, we have shown how symmetry breaking governs emergent transport in robotic

dyads driven by non-reciprocal gaits and interacting via collisional interactions with coulomb
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friction. We demonstrate how transport arises through the spontaneous breaking of ex-

change symmetry, where one robot in the dyad stochastically assumes the role of leader

while the other follows. Through simulations and experiments, we uncover how this emer-

gent asymmetry directs motion, and how the trajectory of the dyad reflects the underlying

symmetry structure of its configuration space. We rectify and enhance the dyad motion by

controllably introducing systematic biases in the gait thus turning this spontaneous sym-

metry breaking into a controllable mode of transport. Furthermore, we show how the com-

manded shape space dynamics coupled with overdamped collisional interactions give rise

to an emergent non-commutativity in the robot-transport. This behavior can be interpreted

as the outcome of coupling two individually self-deforming bodies—each with its own

internal gauge structure—through time-ordered collisions. The dyad acts as a composite

entity whose effective shape-space dynamics arise from the interplay of two independent

gauge potentials—each individually incapable of generating locomotion under isotropic

Coulomb friction. Wilczek [166] has suggested that when many deformable bodies will

interact, their individual internal gauge structures may couple in such a way that collective

behavior arises from space-time gradations of shape. Our robotic dyad serves as a mini-

mal realization of this principle: the impending transport and trajectory curvature arise not

from the behavior of either robot alone, but from the gauge-like coupling induced by asym-

metric, non-reciprocal interactions during contact which form the steady state attractor in

the emergent shape space. Further, the non-reciprocity embedded in the gait manifests

as a non-commutativity in the transport of the glider. As these dyads interact with other

members of the collective, their geometry and gait-induced chirality enable them to link

up with sterically compatible neighbors, assembling into chain-like structures that exhibit

long-range orientational order and self-sustained flows. It would be worth charting out the

dimensionally reduced attractors representing the space-time gradations of the emergent

shape space corresponding to these higher-order self-organized structures and mapping out

a rattling landscape [23], to construct a non-equilibrium microstate table; such a represen-
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tation would help identify configurations poised near tipping points, where slight manipu-

lations—akin to those demonstrated for the dyads—could extract more complex forms of

work from the collective.

We also identify a non-reciprocity–driven transition from static bound states to persis-

tent gliding, akin to phase transitions observed in non-reciprocal field theories and active

matter. A natural future direction would be to develop a hydrodynamic description of these

shape-changing robotic swarms by coarse-graining the microscopic alignment and trans-

port rules of dyads across the gaits of varying levels of non-reciprocity. Such an approach

could help map this system onto analytically tractable models where non-reciprocal phase

transitions have been studied [165]. This could, in turn, open the door to performing a linear

stability analysis around the observed transition point—an approach that is currently fea-

sible only through numerical exploration. Establishing a coarse-grained, continuum-level

theory would provide the analytical framework necessary to identify instabilities, bifurca-

tion structures, and critical behavior associated with the onset of directed motion. Such

analysis could help classify the nature of the transition and potentially reveal universal

features shared with other non-reciprocal active systems.

Crucially, we leverage the chirality associated with gait traversal direction as a control

handle, demonstrating a simple exteroceptive feedback mechanism that reverses trajectory

curvature on demand. This provides a robust method for steering these gliders, enabling

task-oriented manipulation of emergent transport with a small intervention. Our results

position shape changing programmable bodies with non-trivial interactions as a powerful

platform for probing symmetry, non-reciprocity, and geometric control in self-organizing

robotic systems. These insights strengthen the connections between deformable robotics,

non-linear dynamics, and active matter, offering unique strategies to understand and control

emergent behaviors in systems where broken symmetries shape the dynamics and can be

steered via minimal input.
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CHAPTER 5

GAIT-, COLLISION-, AND ADHESION-INDUCED SELF-ORGANIZATION IN

DENSE COLLECTIVES OF SMARTICLES

5.1 Summary

The same principles of collisional interactions and gait-template-induced self-organization

that govern dynamic binding and transport in dyadic shape-changing robots extend natu-

rally to dense planar collectives. In these systems, robots continuously connect with spa-

tially and temporally available neighbors, forming transient, polymer-like chains that per-

sist across multiple gait cycles before disassembling. The packing density plays a critical

role, directly influencing both the average chain length and their lifetimes.

Distinct gait templates give rise to qualitatively different modes of self-organization.

Non-reciprocal gaits that trace closed loops in configuration space generate long-range or-

der, producing self-assembled chiral chains with loops that span the entire spatial domain.

In contrast, a time-reversible gait that alternates between two U-shaped configurations

along the NE–SW diagonal disrupts order, resulting in a fully disordered phase. An al-

ternative time-reversible gait, cycling between Z-shaped configurations along the NW–SE

diagonal, induces a self-organized phase of long, nematically aligned chains with a com-

mon director.

A constrained robot variant limited to asymmetric, reciprocal deformations also ex-

hibits concavity- and collision-mediated dynamic clustering. Introducing Velcro strips on

specific arm faces further enhances adhesion upon contact, significantly amplifying both

clustering and transport efficiency.

This chapter presents some results characterizing these diverse self-organizing modes

in both simulated and physical collectives of shape-changing robots.
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5.2 Pattern formation via gaits in dense collectives of shape changing robots

To investigate the emergence of self-organized patterns in dense robot collectives, we simu-

lated a tightly compressed group of 100 robots at a packing fraction optimized for maximal

glider formation, and allowed the system to relax. The resulting dynamics revealed a range

of behaviors, dependent on the programmed gait. In addition to the gaits described in sec-

tion 4.6, we introduced two new figure-eight templates that retain non-reciprocity through

asymmetric arm movements. These self-deformation patterns enable robots to align and

form loopy structures, giving rise to system-spanning long-range order. Snapshots below

(shown for 5 unique gaits) illustrate the relaxation dynamics, with robots participating in

self-organization—i.e., in contact with neighbors—highlighted with green lines.

Figure 5.1 illustrates the time evolution of a compressed collective in which all robots

execute the time reversible NE–SW diagonal gait, cycling between two U-shaped configu-

rations. Unlike other gaits that allow transient binding through open-arm geometries, these

configurations maintain minimal spacing between the arms throughout the gait cycle. This

steric hindrance prevents robots from dynamically forming and sustaining inter-robot con-

nections, resulting in a failure to nucleate organized clusters or chains. As a result, the

collective remains disordered, lacking any long-range structure in the bulk.

Figure 5.1: Time evolution of compressed robot collectives relaxing while executing the
NE–SW diagonal gait, alternating between two U-shaped configurations. This results in a
disordered bulk phase.

Figure 5.2 shows the time evolution of a compressed collective of robots executing
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the time reversible NW–SE diagonal gait, characterized by a cyclic transition between two

Z-shaped configurations. Unlike the U-shaped variants, these Z-configurations preserve

open geometries during the gait cycle, leaving space between the robot arms. This spatial

allowance enables robots to intercalate between one another, facilitating parallel alignment

and sustained interactions. As the collective relaxes, these sterically accessible confor-

mations promote the spontaneous formation of extended, aligned chains of robots. The

resulting structures bear a striking resemblance to nematically ordered microtubule fila-

ments, as seen in cytoskeletal self-assembly systems [167]. This alignment-driven phase

reflects a robo-physical analog of liquid crystal order, where local interactions—mediated

by geometry and gait symmetry—give rise to coherent, system-spanning organization.

Figure 5.2: Time evolution of compressed robot collectives relaxing while executing the
NW–SE diagonal gait, alternating between two Z-shaped configurations. This phase fea-
tures long, aligned chains reminiscent of nematically ordered microtubule filaments [167].

Figure 5.3 presents the time evolution of a compressed robot collective executing a

square gait that cyclically transitions through four discrete, non-reciprocal configurations.

This non-reciprocity enables the emergence of two distinct types of gliders—motile dyads

exhibiting different internal configurations and lifetimes. Within the bulk of the collective,

these gliders dynamically interact, forming intermediate-length chains that are intermit-

tently connected through transient loopy structures. These loop-mediated contacts serve as

flexible joints, allowing local reconfiguration and the persistence of a chiral, system-wide

order. Meanwhile, gliders at the boundaries often decouple and radiate outward, contribut-

ing to an asymmetric relaxation front. The resulting phase is a chiral ordered state with
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internal dynamics qualitatively resembling those observed in 2D polymer melts, where

transient entanglements and fluctuating loop structures mediate collective organization and

mobility [168, 169]. This analogy highlights the role of time-asymmetric self-deformation

cycles in driving emergent material-like behavior in active robotic collectives.

Figure 5.3: Time evolution of compressed robot collectives relaxing while executing a
square gait that cyclically alternates between four discrete configurations. The system
forms a chiral ordered phase, characterized by short-lived loopy structures formed via
dyads and the boundary-driven radiation of gliders.

Figure 5.4 shows the time evolution of compressed robot collectives executing a figure-

eight gait, which cycles through diagonally opposed U-shaped configurations. This gait

is both non-reciprocal and geometrically permissive: during each cycle, the robots pass

through configurations that leave open space between their arms. These transiently ac-

cessible geometries enable nearby robots to physically interlock and remain bound for ex-

tended periods. As a result, the system supports the formation of long, aligned chains that

span significant portions of the domain, while also giving rise to chiral loops mediated by

short-lived dyads. The dual presence of bound, extended chains and transient loopy mo-

tifs gives rise to a chiral ordered phase that combines both coherence and flexibility. Over

time, these structures coalesce into system-spanning long-range order, reflecting an emer-

gent symmetry-breaking organization that parallels ordering transitions in non-equilibrium

active matter systems. The interplay of geometric openness, temporal asymmetry, and

inter-robot coupling in this gait highlights how internal shape cycles govern phase behavior

at the collective scale.
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Figure 5.4: Time evolution of compressed robot collectives relaxing while executing a
figure-eight gait, cycling between diagonally opposed U-shaped configurations. The sys-
tem forms a chiral ordered phase characterized by transient loopy motifs and aligned struc-
tures that coalesce into long-range order spanning the entire domain.

Figure 5.5: Time evolution of compressed robot collectives relaxing while executing a
figure-eight gait that cycles between diagonally opposed Z-shaped configurations. The
system exhibits a chiral ordered phase, marked by transient loopy structures and the emer-
gence of long-range order spanning the entire domain.

Finally, Figure 5.5 shows the time evolution of a compressed robot collective execut-

ing a figure-eight gait that cycles between diagonally opposed Z-shaped configurations.

Like its U-shaped counterpart ( Figure 5.4), this gait is non-reciprocal and momentarily

creates open geometries between the arms, enabling robots to interlock and remain bound

for extended durations. The Z-shaped configurations, however, offer enhanced steric com-

patibility for parallel alignment, promoting the formation of long, chain-like structures

interspersed with transient loops. These loopy motifs emerge from short-lived dyads and

dynamically link aligned segments, driving the system into a chiral ordered phase with

domain-spanning long-range coherence. The result is a robust yet flexible collective archi-

tecture shaped by asymmetric actuation and geometry-enabled binding.
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5.3 Characterizing self-organization using contact graphs

In our simulations, we can track the full contact history of each robot in the collective,

enabling a detailed reconstruction of when and where interactions occur. By focusing on

robots that maintain persistent contact with one another over the course of an entire gait

cycle, we construct an undirected contact graph that captures the underlying structure of

physical connectivity within the system. Each robot is treated as a node, positioned accord-

ing to its spatial coordinates, and an edge is formed between two nodes if the corresponding

robots remained in contact throughout the gait cycle. This method offers a principled way

to translate local, short-range physical interactions into a coarse-grained network represen-

tation of the system’s global organization.

Figure 5.6 shows a representative snapshot of this contact graph taken at Period 11,

during the relaxation of a 100-robot collective executing the square gait. The node colors

encode degree — the number of other robots a given robot maintained contact with — and

serve as a proxy for local density. The ability to monitor this undirected contact graph over

time provides valuable insight into the dynamics of self-organization. Specifically, the evo-

lution of the graph’s degree distribution reveals changes in local coordination and collective

connectivity: a tighter degree distribution may indicate more uniform local packing, while

broader distributions suggest heterogeneity in neighborhood size and multifarious levels of

self organization. Figure 5.11 shows the corresponding distribution from the contact graph

for the same square gait later on in the run.

By examining how the structure of this contact graph changes over time, we can char-

acterize the relaxation behavior of the system as it relaxes toward a steady state. Moreover,

because this framework is explicitly tied to persistent physical contact, it reflects the un-

derlying constraints imposed by the gait — different gait cycles induce different patterns

of repeated contact and hence different topological evolutions of the graph. This approach

thus provides a natural bridge between microscopic actuation dynamics and macroscopic
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Figure 5.6: Top view of a 100-robot collective executing the square gait at period 11, with
its corresponding contact graph constructed by tagging robots that maintained physical con-
tact throughout the gait cycle. The network reveals both tree-like and cyclic connectivity
patterns, reflecting the emergent self-organization during relaxation.

emergent behaviors, making it a useful tool for probing gait-dependent self-organization in

shape-changing robotic collectives.

Figure 5.7: Snapshot of the contact graph for the NW-SE diagonal gait collective alongside
its degree distribution, quantifying the number of persistent neighbors per robot.

As shown in Figure 5.7 and Figure 5.8, the NW–SE diagonal gait results in a sparsely

connected and dynamically disordered collective. The reciprocal alternation between two

U-shaped configurations leaves no room between the arms for the collisions responsible
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Figure 5.8: The time evolution of the degree distribution for the collective executing the
NW-SE diagonal gait converges to a stationary distribution with 0 neighbors depicting the
disordered phase in the bulk.

for dynamic binding, thereby disrupting the formation of persistent contacts. This steric

limitation inhibits dynamic self-organization in the bulk, driving the degree distribution

toward zero and leading to a disordered phase dominated by isolated robots.

Figure 5.9: Snapshot of the contact graph for the NE-SW diagonal gait collective alongside
its degree distribution, quantifying the number of persistent neighbors per robot.

Figure 5.9 and Figure 5.10 characterize the spatial and temporal contact network struc-

ture of the NE–SW diagonal gait. Figure 5.9 shows a representative snapshot of the contact

graph and corresponding degree distribution, highlighting a peak around degree 2. This

reflects a bulk topology dominated by robots maintaining persistent contact with neigh-

bors ahead and behind—forming chain-like configurations. Figure 5.10 captures the time-

evolving degree distribution for this gait, showing the persistence of this peak at degree 2

across periods, with occasional transient spikes at higher degrees. These brief excursions
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Figure 5.10: The time-evolving degree distribution for the NE–SW diagonal gait exhibits
a persistent peak at degree 2, indicative of chain-like bulk structures where robots connect
to neighbors ahead and behind, with occasional transient peaks at other degrees indicative
of branching behaviors.

correspond to branching events or short-lived clusters that momentarily reorganize linear

chains by engulfing new members. In contrast to the NW–SE gait, the NE–SW gait facil-

itates dynamic binding due to the open space available between the body and alternating

arms in the Z configuration, enabling self-organized alignment through robots sliding past

each other.

Figure 5.11: Snapshot of the contact graph for the square gait being executed with CCW
handedness collective alongside its degree distribution, quantifying the number of persis-
tent neighbors per robot.

Figure 5.11 and Figure 5.12 provide insight into the spatial organization and temporal

evolution of contact structures in the collective executing the square gait with counterclock-

wise handedness. As shown in Figure 5.11, the contact graph snapshot reveals a highly

heterogeneous structure, with robots exhibiting a broad range of degrees. The correspond-
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Figure 5.12: The degree distribution over time for the square gait displays multiple peaks
between degrees 1 and 5, with intermittent sharp spikes at degree 2—reflecting a bulk
composed of short chains, closed loops, and gliders radiating from the boundaries.

ing degree distribution displays multiple peaks, particularly around degrees 1, 2, and 4,

indicating the coexistence of different local arrangements. Figure 5.12 captures the time

evolution of this distribution, revealing persistent variability and intermittent sharp spikes

at degree 2. These spikes are indicative of chain-like motifs, while broader peaks reflect the

presence of short cycles and glider structures radiating outward from the bulk. In contrast

to the diagonal gaits, the square gait promotes a diverse mix of interactions, supporting

transient local order without settling into a steady state for a long period of time.

Figure 5.13: Snapshot of the contact graph for the figure of eight gait 1 being executed
with CCW handedness collective alongside its degree distribution, quantifying the number
of persistent neighbors per robot.

Figure 5.13 through Figure 5.16 present the spatial and temporal contact dynamics

for the two figure-eight gait templates executed with counterclockwise handedness. Fig-
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Figure 5.14: The evolving degree distribution for the symmetric figure-eight gait along the
two diagonal U configurations shows persistent peaks at degrees 1 and 2, with sporadic
spikes at higher degrees—reflecting a bulk of long chains interspersed with cycles and leaf
nodes.

ure 5.13 and Figure 5.14 correspond to the diagonal U configuration, where the contact

graph reveals extended chains with embedded cycles and terminal leaf nodes. The associ-

ated degree distribution exhibits persistent peaks at degrees 1 and 2, with intermittent spikes

at higher degrees—reflecting a bulk composed of long chains interspersed with branching

structures. Figure 5.15 and Figure 5.16 depict the Z configuration variant, which gives rise

to qualitatively similar features. The time-evolving degree distribution reveals compara-

ble peaks and temporal fluctuations, suggesting that both configurations support dynamic

self-organization through chain formation and localized network motifs.

Figure 5.15: Snapshot of the contact graph for the figure of eight gait 2 being executed
with CCW handedness collective alongside its degree distribution, quantifying the number
of persistent neighbors per robot.

Figure 5.17 consolidates the relationship between gait symmetry and the emergence of
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Figure 5.16: The time-evolving degree distribution for the symmetric figure-eight gait
along the two diagonal Z configurations reveals a bulk structure qualitatively similar to
that of the diagonal U configuration variant.

Figure 5.17: Tracking the time evolution of cycle count in the bulk across different gaits
reveals that the emergence of loopy structures is predominantly induced by non-reciprocal
actuation.

structural motifs in the bulk by tracking the time evolution of cycle count across different

gaits. A clear trend emerges: non-reciprocal, time-irreversible gaits—such as the square

and figure-eight variants—consistently induce higher cycle counts over time, indicative of

the formation of transient loopy structures within the collective. In contrast, symmetric and

reciprocal gaits stabilize with fewer or no cycles, corresponding to chain-like or disordered
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bulk configurations. These findings suggest that non-reciprocity in actuation manifests as

closed loopy structures in the macro scale, thereby enriching the topological complexity of

the emergent contact network and thus the bulk.

5.4 Cloud relaxation experiments conducted on collectives featuring a modified robot

morphology and actuation scheme

Our collaborators at Cornell designed a new generation of smart active matter modules

that enable robust 3D entanglement and are optimized for large-scale fabrication and de-

ployment by a broad spectrum of scientific users. A recent study by [170] demonstrates

the broad functional capabilities and simple sensing abilities of this platform. This design

emphasizes the advantages of entangled architectures over conventional rigid or lattice-

based assemblies commonly found in active matter and modular robotics. Key features

include a compact and lightweight form factor, affordability, user-friendly operation, and

a low barrier to adoption across disciplines. Smarticle 2.0 features an optimized aspect

ratio (length-to-width between 0.4 and 0.75), critical for achieving robust 3D entangle-

ment [170]. Each module transitions between “I” and “U” shapes using a non-backdrivable

crank-slider mechanism powered by a dual-threaded worm gear, which converts rotary to

linear motion through opposing gear racks. While this architecture is essential for defining

the module’s structure, weight, and cost it constrains actuation to be reciprocal, allowing

for only one asymmetric gait pattern. Modules integrate multimodal sensing and commu-

nication—optical, acoustic, and mechanical—and are powered by a 180mAh 3.7V LiPo

battery, enabling up to 200 actuation cycles. Cost per module (in a batch of 15) includes

$22.10 for the PCB, $25.53 for components, $14.99 for the motor, and $6.49 for the battery,

with negligible cost for 3D-printed parts.

When experimental collectives of these smarticles were allowed to relax from a com-

pressed initial configuration—similar to those described in Section section 5.2—we contin-

ued to observe transient chain-like structures with branching (tree) and cyclic motifs. How-
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Figure 5.18: Smarticle 2.0 modules transitioning between I and U shaped configurations
and entangling to form a cohesive structure like staple piles, adapted from [170].

ever, due to the uniform vertical height of all three links, individual robots were also ca-

pable of limited self-transport. Additionally, the crank-slider actuation scheme introduced

a slight asymmetry in mass distribution, imparting directional drift in certain configura-

tions. These sources of stochasticity were sufficient to destabilize chains, which typically

disintegrated rapidly.

To mitigate this, a simple yet effective mechanical solution was introduced: alternating

M and F sides of Velcro tape affixed to robot surfaces. This modification significantly

improved the formation of mechanically interlocked structures, enabling robots to adhere

in diverse configurations. Notably, these Velcro-induced clumps also exhibited enhanced

collective transport compared to unmodified robots.

The following subsections provide an analysis of the transport properties and chaining

behavior observed in these experiments. We also present preliminary efforts to simulate

the behavior of Velcro-equipped three-link robots. Notably, the spontaneous adhesion ob-
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served experimentally proved difficult to replicate in silico; an approximate approach was

implemented by introducing weld-joint constraints between adhering faces based on em-

pirical observations. Early results from a micro-state enumeration of chain configurations

up to N=5 robots are discussed in the final subsection of this thesis.

5.4.1 Transport properties of collectives with and without Velcro

To promote selective adhesion and mechanically induced clustering within the collective,

we affixed M and F Velcro strips to alternating arms of the robots. This asymmetric pat-

terning ensured that adhesion would occur preferentially between complementary surfaces,

thereby reducing spurious sticking and favoring structured interactions. The result was the

emergence of small clusters of robots that remained mechanically linked for extended pe-

riods. These clusters exhibited coherent transport, effectively acting as composite motile

units. Figure 5.19 contrasts representative snapshots from two experimental trials—one

without and one with Velcro strips—clearly illustrating the formation and locomotion of a

physically adhered clumps in the Velcro-enabled case.

Figure 5.19: Snapshots from smarticle collective relaxation experiments without and with
Velcro strips mounted on the arms. Velcro based adhesion promotes local clumping of
robots.
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These physically adhered clusters also exhibit enhanced transport dynamics, arising

from multiple sources of asymmetry in both their topology and actuation. The physical

configuration of the clumps introduces geometric asymmetries that bias their direction of

motion, while the coordinated actuation of bonded robots amplifies net displacement over

time. Figure 5.20 presents the ensemble of trajectories from multiple trials in the absence

of Velcro, highlighting a broader spatial spread and reduced coherence. The corresponding

mean squared displacement (MSD) versus delay time curves extracted from these trajec-

tories further quantify the differences in transport efficiency, revealing slower and more

diffusive dynamics in the non-adhering case.

Figure 5.20: Trajectories (a) of individual robots from the collective over multiple trials.
MSD v.s. delay (b) for the robot trajectories from the ensemble.

Figure 5.21 shows the corresponding spread of trajectories and mean squared displace-

ment (MSD) versus delay time plots for the Velcro-enabled ensemble. In contrast to the

non-adhering case, the robots in this configuration exhibit pronounced directional drift and

increased net displacement. The enhanced transport is a direct consequence of Velcro-

induced adhesion, which facilitates persistent physical coupling and coordinated motion

among robots. The MSD curves reveal that, on average, the robots in the Velcro ensemble

move in a super-diffusive regime, indicating sustained directed transport driven by collec-
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tive asymmetry and mechanical entanglement.

Figure 5.21: Trajectories (a) of individual robots from the collective over multiple trials.
MSD v.s. delay (b) for the robot trajectories from the ensemble.

Figure 5.22: MSD exponents (a) for individual robots extracted from the slope of the MSD
vs delay curve and speed (b) extracted from the intercept for collectives with and without
velcro.

Figure 5.22 summarizes the transport properties of the two ensembles—without and

with Velcro—providing a direct comparison of their mobility characteristics. For each

robot, the MSD exponent and drift speed are extracted from the slope and intercept, re-
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spectively, of the log-log plot of MSD versus delay time. The ensemble equipped with Vel-

cro strips exhibits consistently higher MSD exponents, indicating a transition from super-

diffusive to near-ballistic motion, alongside elevated drift speeds. These findings highlight

the role of Velcro-induced adhesion in enhancing directional persistence and enabling more

effective collective transport.

5.4.2 Analysis of Chaining Events in Velcro-Adhering Robot Collectives

Unlike the simulations experimental data didn’t bear any clear signature of contact medi-

ated interactions and hence we couldn’t employ the methodology described in the previous

section to analyze these experiments. To identify chaining events within a dense collec-

tive of robots interacting through stochastic collisions and intermittent Velcro adhesion, we

developed a robust computational pipeline centered on velocity correlations, directional

alignment, and inter-robot proximity. The pipeline enables the extraction of time-resolved

binding events and chain configurations by filtering correlated motion based on mechanical

and behavioral constraints.

1. Velocity Correlation-Based Filtering

We first enumerate all distinct robot pairs (Ri, Rj) such that i ̸= j, for i, j ∈ {1, 2, . . . , n}.

A dynamic speed threshold is computed based on the average of the minimum speeds over

time:

speed threshold =
1

n

n∑
i=1

min (speedi(t)) (5.1)

A binary mask is then applied to identify robots that exceed this threshold:

mask(t, R) =


1 if speed(t, R) > speed threshold

0 otherwise
(5.2)
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Next, the velocity correlation between pairs of robots is calculated using the dot product

of their unit velocity vectors:

vel correlation(t, i, j) = v̂x,i(t)v̂x,j(t) + v̂y,i(t)v̂y,j(t) (5.3)

This is then filtered by applying the mask:

vel correlation(t, i, j) = vel correlation(t, i, j) · mask(t, i) · mask(t, j) (5.4)

We retain only positive correlations:

vel correlation(t, i, j) =


vel correlation(t, i, j) if vel correlation(t, i, j) > 0

0 otherwise
(5.5)

Finally, we smooth the velocity correlation signal in time:

smoothed vel correlation(t, i, j) =
1

n

t+k/2∑
n=t−k/2

vel correlation(n, i, j) (5.6)

2. Directional Filtering via Pairwise Angular Alignment

We compute the instantaneous angle between the direction vectors:

θi,j(t) = tan−1

(
∥v̂i(t)× v̂j(t)∥
v̂i(t) · v̂j(t)

)
(5.7)

The time-averaged alignment is:

θ̄i,j =
1

T

∑
t∈T

θi,j(t) (5.8)

To reduce redundancy, we only consider upper triangular pairs:
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mask pairwise angles =


θ̄i,j if i < j

NaN otherwise
(5.9)

We then compute a directional alignment score:

cos θ̄i,j (5.10)

3. Chaining Event Definition

A binding or chaining event between robots i and j is defined at time t if:

binding event(t, i, j) =
(
smoothed vel correlation(t, i, j) > Factor · cos θ̄i,j

)
∧ (distancei,j(t) ≤ Threshold) (5.11)

Figure 5.23: Simultaneously filtering graphs based on velocity correlation and pairwise
distance.

4. Post-processing

A time-evolving interaction graph is constructed from the binding event map, where each

edge represents a detected bond between a pair of robots. The degree distribution of this
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Figure 5.24: Binding Map for correlated robot pairs in a trial without Velcro.

graph (not shown here) serves as a quantitative measure of chain structure and connectivity.

Figure 5.23 shows a representative time snapshot of this graph from a Velcro-enabled trial,

with edge weights encoding both the velocity correlation and pairwise distance. By jointly

analyzing these two metrics, we distinguish immediate physical neighbors from more distal

members of extended chains.

In addition to structural analysis, the binary binding map enables extraction of bonding

intervals, allowing us to compute the lifetimes of pairwise bonds over time. Figure 5.24

and Figure 5.25 present these binding maps for two representative trials—without and with

Velcro adhesion, respectively. The presence of Velcro significantly promotes sustained

clustering, as evidenced by the extended yellow bars shared among robots in the Velcro

trial. These longer-lived bonds are further quantified in Figure 5.26, where the heavy-

tailed distribution observed for the Velcro case indicates enhanced temporal stability and
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Figure 5.25: Binding Map for correlated robot pairs in a trial with Velcro.

persistent long-range order within the collective.

Figure 5.26: Comparison between lifetimes of correlated pairs for Velcro versus without
Velcro collectives for that particular trial.
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5.4.3 Mapping out micro-state table for clumped robots

Figure 5.27: Configurations of adhered robots were systematically constructed by enforc-
ing weld constraints between arms, enabling controlled micro-state enumeration for clus-
ters up to N=5. (selected configurations for each N shown here)

Replicating the experimentally observed spontaneous adhesion in simulation proved

non-trivial due to the configuration-dependent and stochastic nature of Velcro-induced

binding. As an approximate solution, weld-joint constraints were introduced in MuJoCo

between specific arm faces of robots, guided by empirical observations. This allowed for
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the systematic construction of adhered configurations through a combinatorial specification

of weld placements.

A microstate enumeration was carried out for robot clusters up to N = 5, generating

a diverse set of physically connected configurations. Figure 5.27 shows representative

snapshots of welded assemblies for different robot counts. Some configurations emerge as

symmetric counterparts of others, resulting in redundancy in their transport behavior.

Figure 5.28: Classification of all configurations for each N was performed based on their
center-of-mass speed to identify distinct transport behaviors.

To assess transport performance, each configuration was simulated and classified based

on its center-of-mass speed. Figure 5.28 presents an initial phase diagram mapping the

transport properties across the enumerated microstates.

5.5 Conclusion

This chapter highlighted the preliminary phenomenology observed when simulated dense

unconfined collectives of robots actuated via different gaits were allowed to relax. We ob-

served a range of different self-organized patterns which appeared and melted away. A

graph based analysis allowed us to characterize these different phases. Lastly, we studied
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a slightly modified experimental realization of these robots which were capable of only

asymmetric reciprocal actuation. Affixing Velcro strips on the arms enhanced local clump-

ing of robots and transport of the collectives. A correlation based analysis scheme was

developed to extract similar statistics from the experiments as the simulations. Lastly, an

approximation of the Velcro based adhesion mechanism seen in experiments was replicated

in Mujoco where a pre-defined weld-joint constraint between selected arm faces acted as a

proxy for the adhesion.
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CHAPTER 6

CONCLUSION

This dissertation has explored how macroscopic, shape-changing robotic particles—rooted

in the principles of granular matter—can give rise to emergent collective behaviors through

internal actuation, environmental interactions, and minimal feedback. Inspired by the dy-

namics of granular materials but extending beyond their traditionally passive convex ge-

ometry, the robotic systems investigated here introduce internal degrees of freedom and

concave morphologies, offering new mechanisms for self-organization in athermal, dissi-

pative systems.

In Chapter 2, we examined a constrained, pinned ensemble of three shape-changing

robots and uncovered a striking phenomenon: the spontaneous emergence of low-rattling,

repeatable motion patterns. These low-noise states arose not from explicit programming

but from the subtle interplay between internally driven actuation and constraints imposed

by the environment. The findings illuminated how regions of dynamic stability can emerge

amidst an otherwise chaotic phase space, echoing behavior found in other complex, high-

dimensional systems.

The focus in Chapter 3 shifted to the minimal interaction unit—a dyad of robots. Here,

we uncovered a rich mechanism of collisional binding. Despite the repulsive nature of in-

dividual contacts, specific timing and orientation of these collisions led to the spontaneous

formation of long-lived mobile gliders. These gliders exhibited asymmetric yet stable con-

figurations that persisted over hundreds of gait cycles. Crucially, shape-induced concavity

and tactile sensing enabled dynamic coordination, providing a decentralized route to struc-

tural stability.

In Chapter 4, we delved deeper into the transport properties of these bound gliders.

By analyzing how symmetry-breaking in the internal gaits leads to net translation, we
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demonstrated how non-reciprocal actuation can break time-reversal symmetry and gen-

erate directed motion. These gliders locomote through non-commutative interactions in

configuration space, and changes in gait area revealed clear transitions between static and

mobile states. Interestingly, the emergence of chirality under asymmetric actuation opened

up a simple strategy for steering through gait inversion alone, requiring minimal feedback.

Finally, Chapter 5 extended these principles to the many-body regime. Dense collec-

tives of these robots, interacting through collisions and shape change, self-organized into

extended morphologies such as chains and loops. The same concavity-enabled interactions

that stabilized dyads were found to support long-range order in these larger assemblies.

Moreover, by introducing a passive adhesion mechanism into the robot design, we fur-

ther demonstrated that mechanically reinforced contact, even in the absence of any sensory

feedback, could promote robust clustering and chaining. Gait templates once again played

a central role in dictating the emergent spatial patterns.

Taken together, these results offer a blueprint for how active, shape-changing, and

collisionally interacting robots can be harnessed to generate programmable collective

behaviors. From minimal gliders to extended self-assembled structures, this work shows

that decentralized, emergent coordination is achievable through the right blend of geometry,

actuation, and frictional interaction. These insights not only enrich our understanding of

robotic granular matter but also lay the groundwork for future efforts in scalable swarm

robotics, adaptive materials, and the physics of non-equilibrium systems.
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APPENDIX A

COLLISIONAL BINDING AND TRANSPORT OF SHAPE-CHANGING ROBOT

PAIRS

Robot Construction details The details for constructing the robots studied open loop with

their corresponding CAD files and Arduino codes are provided in [171]. The parts for

constructing scaled robots with force sensors are listed in Table Table A.1. The CAD file

for the scaled robots is available at [172].

Table A.1: Parts List for scaled up Smarticles

Item Purchase Link

LiPo Batteries Amazon
FSR squares DigiKey
Open RB 150 Boards Robotis
XL 320 Servos Robotis

Simulation details and calibration against experimental tracks.

The simulations of the smarticles were conducted using Project Chrono (referred to as

Chrono), a multiphysics dynamics engine designed for rigid body dynamics and contact

modeling. Chrono is an open-source software package [173], whose simulations have been

extensively validated against experimental results and other numerical solvers [174]. The

simulations in this study utilized Chrono version 8.0.

To model the rigid body dynamics of multibody systems, Chrono employs a multibody

physics solver that incorporates kinematic constraints. The software adopts a Cartesian

representation for the generalized position q and velocity q̇ of rigid bodies, where q denotes

the position of each body’s center of mass in an absolute coordinate system. The governing
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equations for multibody dynamics, in the absence of friction, are given by:

g(q, t) = 0, (A.1)

M(q)v̇ = f(t, q, v) +G(q, t)λ. (A.2)

The first equation defines the kinematic constraints between bodies, such as the revolute

joints used in this study, which are captured by the constraint function g(q, t). The second

equation describes the system dynamics, where M represents the mass matrix, f includes

internal forces (e.g., Coriolis forces, joint torques), and G(q, t)λ denotes the constraint

reaction forces.

Table A.2: Simulation parameters used in Chrono.

Parameter Symbol Value

Body length W 54 mm
Body width D 22 mm
Body height H 30 mm
Body mass m 35 g
Arm length L 50 mm
Arm width t 3 mm
Arm height h 27 mm
Control P gain KP 0.15 N m/rad
Torque saturation Ts 3.5* 1e-2 N m
Joint amplitude αmax 90◦

Joint angular frequency ω 2.5*π rad/s
Static friction coefficient µs 0.42
Kinetic friction coefficient µk 0.37

Contact Modeling and Solver

In addition to external forces, bodies also experience contact forces, which dynamically

appear or disappear based on their interactions. The contact resolution in this implementa-

tion is based on the discrete element method using a complementarity approach (DEM-C).

Unlike penalty-based DEM methods (DEM-P), which model contact through elastic defor-
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mation and small overlaps, the complementarity approach enforces non-penetration con-

straints through an optimization problem at each time step [174, 175]. This method ensures

that either a finite gap or a nonzero contact force exists between bodies. Experimentally

validated simulations benchmark DEM-P and DEM-C, highlighting their predictive accu-

racy and distinct strengths in modeling dry granular dynamics [176]. Further details on the

mathematical formulation and solution strategy for this approach are provided in [174] and

[175].
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Figure A.1: Comparison between experimental (a) and simulation (b) glider COM tracks.

The time integration scheme employed in our simulations is the linear implicit Eu-

ler method, with a fixed step size of 0.0001 s. At each time step, a solver computes the
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unknown accelerations and reaction forces. The default solver used is the Projected Suc-

cessive Over-Relaxation (PSOR) method, an iterative approach that incorporates relaxation

and immediate variable updates akin to successive over-relaxation (SOR) methods.
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Figure A.2: (a) Tracks of the body center of the smarticle for different gait amplitudes,
over 75 gait periods. (b) Time series for the angular coordinate of the smarticle. (c) βsingle
(MSD exponent) of a single smarticle vs. arm amplitude. (d) Speed of the body center vs.
arm amplitude.
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Simulation Parameters

For the purpose of creating our simulation, we created virtual smarticles with the same

dimensions, mass, and material properties as our real robots. The key parameters used in

the simulations are summarized in Table A.2. Once we initialized the smarticles with the

prescribed gait, all collision detection and handling were managed by the physics engine,

operating under the equations described above. A time step of 1e− 4 was sufficient for the

solver to stably resolve collisions and generate the trajectories for individual robots. The

full simulation code written in C++ is available at Ref. [172].

Figure A.1 shows the glider center of mass tracks for 10 different runs of the experiment

and simulation started from arbitrary initial conditions which would ensure a stable glider.

Experimental tracks curve more which can be attributed to the various sources of noise in

the real world bringing about directional modulation in the headings of the robots. In our

simulations we didn’t add any external noise (over the accumulated numerical error), since

we wanted to understand the phenomena in a cleaner setting. The tracks in the simulation

have a much lower direction modulation consequently, which also shows up as tighter peaks

in the PDF’s of the relative coordinates shown in Figure 3.3 (c).

Single smarticle locomotion vs. amplitude.

The anomalous transport of the bound pairs that were formed at lower arm amplitudes

was attributed mostly due to the enhanced drift of a single smarticle at lower amplitudes.

We wanted to characterize the behavior of a single robot as a function of the amplitude.

Figure A.2 (a-b) show the body center tracks and angular drift of a single robot for dif-

ferent gait amplitudes. The motion of a single smarticle is super-diffusive at higher and

intermediate amplitudes and approaches the ballistic regime for lower values of the ampli-

tude and it causes an increased drift speed, as shown in Figure A.2(c-d).

We suspected that this anomaly was due to the inertial effects from the overlap in the

motions of the 2 arms, since the gait was executed at maximal motor speed for all arm

amplitudes and we adjusted the dwelling time at the corners of the square to ensure the time
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Figure A.3: Time-series of arm angles α1, α2 over 3 gait periods for 90◦ (a) and a single
period for 10◦ (c) degree arm amplitudes (αmax) . Blue and orange curves represent arms
1 and 2 respectively. Gait represented in arm-angle configuration space (α1, α2), averaged
over 10 periods, for 90◦ (b) and 10◦ (d) arm amplitudes.

period scaled commensurately with arm amplitude. At lower amplitudes, the value of this

delay was so small that the other arm would start moving before the first arm completed its

motion. This overlap in the motion of the two arms caused a drift in the center of the middle

link. Figure A.3(a,c) shows the experimentally tracked arm angles of a single smarticle

for 90 and 10 degrees, and when plotted in the shape configuration space Figure A.3(b,d),

it becomes clear that in the lower amplitude regime the arms do not finish the prescribed

range of motion.

Non-reciprocal binding affinity in glider formation.

Figure 3.6in the main manuscript shows the selectivity in initial configurations that

ended up forming a glider vs. those that ended up being repelled. The scan was done by fix-
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ing one robot and scanning the space around the reference in a constant radius r = 1.3BL

polar grid . Figure A.4 (a-d) shows a pictorial representation of the scan for all the four

different initial gait phases p. The arrows represent the heading of the normal vector of

the smarticle being scanned at that position in space. The black arrows represent the initial

configurations that were attracted and the grey arrows represent the initial configurations

which were repelled, with the white space representing physically inadmissible configura-

tions similar to the pink, blue and black sectors in Figure 3.6.

= = .

= . = .

(a) (b)

(c) (d)

Figure A.4: Selectivity of initial configurations into regions of attraction vs. repulsion for
a constant radius polar scan for different values of the initial gait phase p as shown in (a-d).
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Upon second glance it becomes evident that the affinity of relative configurations to

form bound pairs follows a non-reciprocal selection rule. The results indicate that the for-

mation of a bound pair between two smarticles is governed by a non-reciprocal binding

affinity based on their polar angle θ and relative headings ϕ. Initial configurations within

an interaction range in 1st and 4th quadrants with respect to θ, are likely to form pairs

bound shown by (pink sectors and black arrows) when robots point in approximately op-

posite directions, while those where robots point in approximately the same directions are

likely to be repelled (blue sectors and grey arrows) or be physically inadmissible (black

sectors or white space). In contrast, configurations in the 2nd and 3rd are generally re-

pelled or physically inadmissible (black), as illustrated in Figure 3.6 (i-ii) and Figure A.4.

The selection to the C2 configuration is strongly dependent upon the initial phase of the

robots, as it required some initial arm opening for the robots to engulf each other and we

don’t observe a significant number of C2’s for p = 0 and p = 0.5. Further the attracted

configurations also have a (near perfect) reflection symmetry for a phase difference of half

a cycle as seen in Figure A.4. Recently its been reported how non-reciprocal interactions

between agents in spin models via preferential cone of vision and aligning torques gives

rise to long range order in the collective [126, 127]. Collectives of shape changing robots

also exhibit long range order mediated by gliders, which link up with other robots in the

vicinity to form polymer chain like structures with a finite lifetime.

Figure A.5 (a) generalizes this scan for random positions and orientations of the

scanned particle at a constant initial phase. We sweep the space around the reference smar-

ticle extensively up-to r = 6.5BLwith randomly placed and oriented smarticles. The black

arrows again represent configurations which were attracted and the grey arrows represent

the configurations which were repelled. Figure A.5 (b) is an attempt to depict the non

reciprocal binding affinity with a cartoon. The robots are simplified as spins positioned at

their center of mass and oriented along the body normal vector. (i) shows the initial con-

figurations which were attracted and repelled revealing the dominant preference for initial
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configurations starting off with a dominant anti-alignment. (ii) depicts how the steady state

ϕ values of the bound states maintain a slight deviation from either 180 ◦ and 0 ◦ similar to

the chiral phases observed in several non-reciprocally interacting systems [21] and belong

to the C1 and C2 glider conformation respectively.

Attracted IC
Repelled IC

Steady state C1

Steady state 
        C2

Steady state 
        C2

(a) (b)

(b)

(i)

(ii)

Figure A.5: Simplification of the binding interaction for a general phase (a) Initial con-
figuration scan showing attracted and repelled glider configurations for a general position
scan. Grey arrows represent repelled configurations, while black arrows represent attracted
configurations. (b) (i) Cartoon showing attracted and repelled initial configurations wrt a
reference smarticle. Only the configurations that started off with ϕ in the the 1st and 4th
quadrants formed C2 gliders, as the selectivity to C2 also requires an additional constraint
of the robots starting off with some opening between their arms. (b) (ii) A cartoon sum-
marizing the attraction to the selected glider configurations based on the non-reciprocal
selection of ϕ.

Impact sensor calibration and control algorithm.

We calibrated the force sensors by measuring the force pad readings during a squeeze

event, a characteristic interaction in C2 gliders. One robot was held in a fixed ’U’ shape

typical of the C2 configuration, while the other moved its arms sequentially. Throughout

this process, we continuously recorded sensor data. During the squeeze, the first arm made

initial contact with the stationary robot and was then held passive, while the second arm,
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Figure A.6: (a) To get a measure of the values registered by the sensors during the squeeze
event in a C2 glider we put the robots in similar relative configurations, and plotted the
reading registered by the force sensor as the arms of the engulfing smarticle pressed against
the other one. (b) Based on these values we were able to specify a sensor threshold for
both the active (blue sensor curve in a) and passive (purple sensor curve in a) arms and
compared it against the real-time sensor readings to adjust the gait amplitude upon detecting
the squeeze.

acting as the active component, delivered an impact after a quarter cycle. The spikes in

Figure A.6 (a) correspond to the impulse magnitudes recorded by the sensors on the arm

faces during these two collisions. These readings established a threshold for implementing

a feedback control strategy. Using this threshold with a defined tolerance, we compared

real-time sensor readings to detect high-force interactions. If the instantaneous force ex-

ceeded the threshold, the robot adjusted its gait amplitude (shape concavity) accordingly.

Figure A.6 (b) illustrates this control algorithm.

107



Dynamics and transport of open loop and feedback stabilized C2.

Open loop

Feedback

(a)

(b)

Figure A.7: (a) Configuration space of an open-loop C2 glider trajectory, color-coded by
time. (b) Configuration space of a feedback-stabilized C2 glider. Tactile sensing disrupts
the stable equilibrium (separated state) by inducing transient fluctuations in coordinates
through timed concavity modulation.

The dynamics of open-loop and feedback-stabilized C2 gliders differ fundamentally in

how stability and transport emerge. In the open-loop case, the system tends toward a stable

equilibrium—where the gliders naturally separate—resulting in short-lived bound states.

However, the feedback control strategy destabilizes this equilibrium by systematically in-

troducing noise through impact-driven amplitude modulation. This controlled perturbation

keeps the coordinates transiently fluctuating, preventing the gliders from settling into the
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separated state Figure A.7. As a result, feedback stabilization extends the glider lifetime, as

seen in the distribution of C2 lifetimes for different arm amplitudes. While both open-loop

C2 gliders at αmax = 85◦ and feedback-controlled gliders exhibit near-ballistic transport at

long times, the latter persist significantly longer, enabling sustained transport over greater

distances ( Figure A.8, [177]).
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90˚ 70˚
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Figure A.8: Msd vs delay for C2 gliders of different gait amplitudes vs. the feedback
stabilized glider.
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APPENDIX B

SYMMETRY BREAKING TRANSPORT IN GLIDING DYADS FORMED BY

COLLISIONS

Emergent Non-commutativity in dyad transport

We want to express the dyad’s center of mass coordinates, (x, y,Θ), as a function of the

emergent shape space arising from periodic collisional interactions between the robots ex-

ecuting their commanded gaits ( Figure B.1). This shape space is parameterized by |r|,

the separation between the robots, and ϕ1 and ϕ2, the tip angles accounting for exchange

symmetry between the robots.

To construct the model, we analyze a trial with rectified persistent motion where the

exchange symmetry was intentionally broken by introducing a bias (±8◦) between the two

robots, as detailed in the section section 4.4 . The net displacement of the dyad’s center of

mass is tracked by monitoring changes in the length and orientation of the vector pointing

from robot 2 (Leader-Green) to robot 1 (Follower-Purple), as illustrated in Figure B.2

and Figure B.3. We visualize this vector in Figure B.4 as a massless extensible rod

undergoing expansion, contraction, and rotation in the plane. The net displacement over a

cycle is broken down into individual half-cycles ( Figure B.8). In the first half-cycle, the

leader undergoes a counterclockwise (CCW) rotation about the follower, while the second

half-cycle results in a clockwise (CW) rotation. The follower remains nearly stationary

throughout the cycle acting as a pivot point and incurs intermittent slipping every few cycles

during the arm hooking to catch up with the leader.

The overall displacement resulting from this sequence of periodic shape changes can

be computed using the commutator of the vector fields generated by the first and second

half-cycle motions. The Lie bracket—a mathematical operation that computes the commu-
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Figure B.1: The emergent shape space of the dyad, arising from the commanded shape
space of individual robots and their collisional interactions, causes a non-commutative
transport of the dyad’s center of mass (CoM). This breaks rotational symmetry in the
plane due to broken exchange symmetry within the dynamically bound entity resulting
from the non-reciprocal square gait. The commanded shape space of the robots gives rise
to an emergent shape space due to the persistent collisional interaction between the robots
in the form of an attractor shown here in coordinates |r|, ϕ1, ϕ2, which gives rise to the
displacement of the com. This symmetry breaking and impending transport is a direct
consequence of the inherent non-reciprocity (time irreversibility) of the square gait being
executed in the CCW direction here.
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tator of two vector fields—quantifies how the sequence of one motion followed by another

differs from the reverse sequence. This principle appears in parallel parking, where the or-

der of steering actions matters, and the Lie bracket captures this non-commutative behavior

[178, 179, 180, 181, 18].

For example, the Lie bracket of a ”forward movement” vector field with a ”steering

left” vector field mathematically represents the net effect of moving forward while turning

the wheel left, a critical maneuver in parallel parking. By combining multiple Lie brackets

of different movements, one can design complex sequences of steering and acceleration

actions to achieve precise parking positions. The dyad system differs from the parallel

parking models in [178, 179], where forward motion and rotational steering are decoupled,

and the vehicle moves forward at a constant steering angle. In contrast, the dyad’s massless

extensible rod undergoes coupled rotation and elongation/contraction in the plane, intro-

ducing greater complexity to the system.

B.1 First Half Cycle

We start by visualizing the overlaid robot positions at the beginning and end of the first

cycle as shown in Figure B.2, shown along with the supplements of the exchange symmetry

factored angles ϕ1 and ϕ2 described in Chapter 4.

Given Information

From the overlaid robot configurations, we can visualize the dyad configurations with the

relevant coordinates used in the derivation in Figure B.3 with the respective robot bodies.

The configuration can be simplified further visualizing just the vector pointing from robot

2 to robot 1 in Figure B.4. The displacement vector S⃗ during the first and second half

cycles is given by r⃗21f − r⃗21i .
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Figure B.2: Dyad Configuration with the two robots at the beginning and end of the first
half cycle overlaid on top of each other. The dyad configuration with the individual robots
at the beginning and end of the first half cycle is overlaid on top of each other. The lighter
shade with the dashed line indicates the beginning of the half cycle, while the darker shade
with the solid lines indicates the end of the half cycle. The angles ϕ̃1i,f and ϕ̃2i,f are the
supplements of the angles ϕ1 and ϕ2 described in the main text to account for the
exchange symmetry between the robots. The blue and red arrows being the normal vectors
to the two robots respectively.

S⃗ = r⃗21f − r⃗21i

Let:

• r be the initial length of the rod and ∆r be the change in the length during this half

cycle.

• Similarly, the angles at the end and beginning of the half cycle are given by, ϕ1,f =

ϕ1,i +∆ϕ1, θ1,f = θ1,i +∆θ1.

The angle made by the r⃗21 with the lab-frame x̂ at the beginning and end of the half

cycle is denoted by Θ1i,f .

Θ1f = θ1f + ϕ1f − 270 Θ1i = θ1i + ϕ1i − 270
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Figure B.3: Dyad Configuration highlighting all the relevant angles used in the derivation.
The robot body configuration at the beginning (dashed) and end (solid) of the first
half-cycle is overlaid, with a cartoon depicting all the angles used in the derivation. The
angles ϕ̃1i,f and ϕ̃2i,f are the same as those in Fig. Figure B.2. The angles θ1,i and θ1,f are
the angles made by Robot 1 with the x-axis of the Lab Frame, and Θ1,i and Θ1,f are the
angles made by the vector pointing from Robot 2 to Robot 1 with the same. The net
displacement of the center of Robot 1 during this half-cycle is given by s⃗ = g1.

The net angular displacement of the vector pointing from robot 2 to robot 1 at the end of

this half cycle:

∆Θ1 = ∆θ1 +∆ϕ1

The angles θ1i,f and ϕ1i,f are related by angular constraint of the form,

∆θ2i −∆θ1i = ∆ϕ1i +∆ϕ2i ∆θ2f −∆θ1f = ∆ϕ1f +∆ϕ2f
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Figure B.4: Dyad displacement at the end of first half cycle. The vector pointing from
Robot 2 to Robot 1 at the beginning and end of the first half cycle, with all the angles used
in the derivation defined previously in Fig. Figure B.3.

which gives us,

∆θ2 −∆θ1 = ∆ϕ1 +∆ϕ2

Expanding S⃗ in the lab frame.
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S⃗ = {|r21i | sin(ϕ1,i + θ1,i)− |r21f | sin(ϕ1,f + θ1,f )}x̂

+ {|r21f | cos(ϕ1,f + θ1,f )− |r21i | cos(ϕ1,i + θ1,i)}ŷ

S⃗ = {r sin(ϕ1,i + θ1,i)− (r +∆r) sin(ϕ1,i + θ1,i +∆θ1 +∆ϕ1)}x̂

+ {(r +∆r) cos(ϕ1,i + θ1,i +∆θ1 +∆ϕ1)− r cos(ϕ1,i + θ1,i)}ŷ

Expanding for small increments ∆ϕ1 and ∆θ1 and excluding O(∆2) terms.

For the x-component:

Using small-angle approximations:

cos(∆ϕ1 +∆θ1) ≈ 1, sin(∆ϕ1 +∆θ1) ≈ ∆ϕ1 +∆θ1,

g1,x ≈ −∆r sin(ϕ1,i + θ1,i) + r cos(ϕ1,i + θ1,i)(∆ϕ1 +∆θ1).

For the y-component:

Using the same small-angle approximations:

g1,y ≈ ∆r cos(ϕ1,i + θ1,i)− r sin(ϕ1,i + θ1,i)(∆ϕ1 +∆θ1).

S⃗ = {−∆r sin(ϕ1,i + θ1,i) + r cos(ϕ1,i + θ1,i)(∆θ1 +∆ϕ1)}x̂

+ {∆r cos(ϕ1,i + θ1,i)− r sin(ϕ1,i + θ1,i)(∆θ1 +∆ϕ1)}ŷ
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The displacement vector field g1 as a function of ∆r, ∆ϕ1, and ∆θ1 is:

g1 =


−∆r sin(ϕ1,i + θ1,i) + r cos(ϕ1,i + θ1,i)(∆ϕ1 +∆θ1)

∆r cos(ϕ1,i + θ1,i)− r sin(ϕ1,i + θ1,i)(∆ϕ1 +∆θ1)

∆θ1 +∆ϕ1



Matrix Representation

Combining these, the displacement S⃗ = g1 for the first half cycle in matrix form is:

g1 =


− sin(ϕ1,i + θ1,i) r cos(ϕ1,i + θ1,i) r cos(ϕ1,i + θ1,i)

cos(ϕ1,i + θ1,i) −r sin(ϕ1,i + θ1,i) −r sin(ϕ1,i + θ1,i)

0 1 1



∆r

∆ϕ1

∆θ1


This matrix form captures the combined effect of changes in the rod’s length (∆r),

orientation (∆ϕ1), and global rotation (∆θ1) of the robot 1 on the state of the system,

which is x, y,∆Θ.

B.2 Second Half Cycle Robots

Similarly the overlayed the robot positions at the beginning and end of the second cycle

as shown in Figure B.5. Likewise, we can visualize the dyad configurations with the

respective robot bodies and relevant coordinates in this cycle Figure B.6 and the vector

pointing from robot 1 to robot 1 as in Figure B.7.

Expression for g2: Displacement in the Second Half-Cycle

The displacement vector g2 for the second half-cycle is analogous to g1 but uses the final

values of the first half-cycle as its initial values. The displacements for the two cycles are

shown in Figure B.8.
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Figure B.5: Dyad Configuration with the two robots at the beginning and end of the
second half cycle overlayed on top of each other. The dyad configuration with the
individual robots at the beginning and end of the second half cycle is overlaid on top of
each other.

Matrix Representation of g2

Given that the initial state for g2 corresponds to the final state of the previous half-cycle,

we write:

g2 =


− sin(ϕ1,f + θ1,f ) rf cos(ϕ1,f + θ1,f ) rf cos(ϕ1,f + θ1,f )

cos(ϕ1,f + θ1,f ) −rf sin(ϕ1,f + θ1,f ) −rf sin(ϕ1,f + θ1,f )

0 1 1



∆r

∆ϕ1

∆θ1


Here:

• ϕ1,f is the final value of ϕ1 from the previous half-cycle: ϕ1,f = ϕ1,i +∆ϕ1.

• θ1,f is the final value of θ1 from the previous half-cycle: θ1,f = θ1,i +∆θ1.

• rf is the final value of r from the previous half-cycle: rf = ri +∆r.
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Figure B.6: Dyad Configuration with the two robots at the beginning and end of the
second half cycle overlayed on top of each other. The configuration at the beginning and
end of the first half-cycle is overlaid, with a cartoon depicting all the angles used in the
derivation. θ1,i and θ1,f are the angles made by Robot 1 with the x-axis of the Lab Frame,
and Θ1,i and Θ1,f are the angles made by the vector pointing from Robot 2 to Robot 1
with the same. The net displacement of the center of Robot 1 during this half cycle given
by s⃗ = g2.

Vector Fields: Discrete vs Continuous

Discrete Version

In the discrete formulation, we derived the vector fields g1 and g2 from the net change in

the configuration space (x, y,Θ) due to the net changes in the shape variables (r, ϕ1, θ1) in

the half cycle ignoring the path taken by the dyads during the intermediate collision. The

shape variables act as control parameters that evolve over time, leading to discrete updates

in the configuration coordinates.
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Figure B.7: Dyad displacement at the end of second half cycle. The vector pointing from
Robot 2 to Robot 1 at the beginning and end of the second half cycle, with all the angles
used in the derivation defined previously with the net displacement of the center of Robot
1 during this half cycle is given by s⃗ = g2.

• The configuration space update is given by:

∆x = −∆r sin(ϕ1,i + θ1,i) + r cos(ϕ1,i + θ1,i)(∆ϕ1 +∆θ1),

∆y = ∆r cos(ϕ1,i + θ1,i)− r sin(ϕ1,i + θ1,i)(∆ϕ1 +∆θ1),

∆Θ = ∆ϕ1 +∆θ1,

120



Figure B.8: Dyad Displacements for the first and second half cycles.The vector pointing
from Robot 2 to Robot 1 at the beginning and end of the second half cycle with the
effective displacements of the robot 1 body center being s⃗ = g1 and s⃗ = g2 for the
individual half cycles. The net displacement over the cycle is shown in green.

Continuous Version

However in the dyads the motion of the robots during the collision is continuous and

smooth and the configuration space coordinates (x, y,Θ) evolve as a function of the contin-

uous evolution of the shape variables (r, ϕ1, θ1). The infinitesimal contributions from the

changes in the shape variables (ṙ, ϕ̇1, θ̇1) determine the vector fields.
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• The continuous evolution can be expressed as:

dx

dt
= −ṙ sin(ϕ1 + θ1) + r cos(ϕ1 + θ1)(ϕ̇1 + θ̇1),

dy

dt
= ṙ cos(ϕ1 + θ1)− r sin(ϕ1 + θ1)(ϕ̇1 + θ̇1),

dΘ

dt
= ϕ̇1 + θ̇1.

• The infinitesimal contributions from ṙ, ϕ̇1, and θ̇1 are mapped into configuration

space through the vector fields.

To model the system’s dynamics more accurately, we transition to the continuous ver-

sions of the vector field g, representing the contributions of the shape variables (r, ϕ1, θ1)

to the configuration space variables (x, y,Θ).

g⃗ =


gx

gy

gΘ

 =


− sin(ϕ1 + θ1) r cos(ϕ1 + θ1) r cos(ϕ1 + θ1)

cos(ϕ1 + θ1) −r sin(ϕ1 + θ1) −r sin(ϕ1 + θ1)

0 1 1



ṙ

ϕ̇1

θ̇1


The time evolution of the shape variables that serve as input to generate the configuration

space from

t = 0 ; t =
T

2

designated by the suffix FHC (first half cycle), generate the vector field g1 and the time

evolution of the variables from

t =
T

2
; t = T

designated by the suffix SHC (second half cycle), generate the vector field g2.

The piecewise continuous equation for the template shape profile r̄(t), ϕ̄1(t), θ̄1(t) as

shown in Figure B.9, is split into the FHC and SHC with T/2 = 8 seconds. For the First

half cycle between t = (0, T/2) the piecewise continuous equations are given by:
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Figure B.9: Emergent shape space for the dyad for 3 consecutive periods.The emergent
shape variables |r|, ϕ1, θ1 used in the model plotted for 3 consecutive period with the base
template for each period being shown in red from t = 0− T . We provide this piece-wise
continuous template as an input for the corresponding half cycle for forward integrating
the state update equation.
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r̄FHC(t):

r̄FHC(t) =



1.495, if 0 ≤ t < 1.6

1.495 + 1.512−1.495
2.4−1.6

(t− 1.6), if 1.6 ≤ t < 2.4

1.512− 1.512−1.48
4−2.4

(t− 2.4), if 2.4 ≤ t < 4

1.48, if 4 ≤ t < 8

ϕ̄1,FHC(t):

ϕ̄1,FHC(t) =


136◦, if 0 ≤ t < 1.6

136◦ + 91◦−136◦

4.0−1.6
(t− 1.6), if 1.6 ≤ t < 4

91◦, if 4 ≤ t < 8

θ̄1,FHC(t):

θ̄1,FHC(t) =


244◦, if 0 ≤ t < 1.6

244◦ + 281◦−244◦

4.0−1.6
(t− 1.6), if 1.6 ≤ t < 4

281◦, if 4 ≤ t < 8

Similarly for the second half cycle between t = (T/2, T ), the piecewise-continuous

equations are given by:

r̄SHC(t):

r̄SHC(t) =



1.48, if 8 ≤ t < 10.4

1.48 + 1.544−1.48
12−10.4

(t− 10.4), if 10.4 ≤ t < 12

1.544− 1.544−1.514
12.8−12

(t− 12), if 12 ≤ t < 12.8

1.514, if 12.8 ≤ t < 16
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ϕ̄1,SHC(t):

ϕ̄1,SHC(t) =


91◦, if 8 ≤ t < 10.4

91◦ + 134◦−91◦

12.8−10.4
(t− 10.4), if 10.4 ≤ t < 12.8

134◦, if 12.8 ≤ t < 16

θ̄1,SHC(t):

θ̄1,SHC(t) =


281◦, if 8 ≤ t < 10.4

281◦ + 244◦−281◦

12.8−10.4
(t− 10.4), if 10.4 ≤ t < 12.8

281◦, if 12.8 ≤ t < 16

The Lie bracket [g1, g2] is defined to account for the noncommutative effects between

the vector fields for the first and second half cycles:

[g1, g2] =
∂g2
∂q

g1 −
∂g1
∂q

g2,

where q = (x, y,Θ) represents the configuration variables.

Trajectory integration scheme with noise and repetition

Configuration Space

The configuration space is represented as:

q = [x, y,Θ]

where x, y are the planar coordinates and Θ is the orientation angle.
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Shape Variables with Noise

The shape variables are defined as:

r, ϕ1, θ1

with their base profiles over time given by:

r̄(t), ϕ̄1(t), θ̄1(t)

Noise is added to these base profiles for each cycle as:

ri(t) = r̄(t) + ηr, ϕ1,i(t) = ϕ̄1(t) + ηϕ1 , θ1,i(t) = θ̄1(t) + ηθ1

where:

ηr ∼ N (0, σ2
r), ηϕ1 ∼ N (0, σ2

ϕ1
), ηθ1 ∼ N (0, σ2

θ1
)

and σr, σϕ1 , σθ1 are the respective noise amplitudes.

Repetition of Cycles

The base profiles r̄(t), ϕ̄1(t), θ̄1(t) are defined for a cycle of duration Tcycle. The simulation

repeats this cycle*num cycles, ensuring that the initial conditions for the next cycle are the

same as the end point for the previous cycle:

rFHCfinal = rSHCinitial, ϕ1FHCfinal = ϕ1SHCinitial, θ1FHCfinal = θ1SHCinitial

.
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The Lie bracket between two vector fields g1 and g2 can be computed as:

[g1, g2] =


g1yg2Θ − g2yg1Θ

g1Θg2x − g2Θg1x

0



Integration Scheme

In the laboratory frame the configuration evolves as:

qi+1 = qi + (g1 + [g1, g2])∆t

The noise induces a drift in the template profile of shape variables r̄(t), ϕ̄1(t), θ̄1(t) and we

account for it indirectly by adding noise at the beginning and ending points of the cycle

instead of explicitly adding it to the state variables q = [x, y,Θ] hence we use a simple

Euler scheme to forward integrate this difference equation until ti = T and obtain the

trajectory for a cycle q(t) over [0, T ], with the process being repeated for the subsequent

cycles as shown in Figure B.10.
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Figure B.10: Non Commutative Displacement. Forward integrating the model using the
scheme described above for 5 cycles versus displacement from DEM simulation.
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Transition from static bound states to gliders as a function of gait non-reciprocity.

We present the distributions of the three angular coordinates in the co-moving dyad frame,

as defined in the main text, to illustrate the bifurcation in transport behavior as a function

of increasing gait non-reciprocity. These results correspond to a family of gaits along the

NE–SW diagonal in shape space, where the robots alternate between the two U configu-

rations. These family of shape space trajectories exclusively produces the C1-type glider,

which is the focus of our study. As the non-reciprocity parameter d—which defines the

area enclosed by the gait—increases, the initially sharply peaked distributions broaden into

more symmetric profiles, indicating a transition from static bound states to mobile, direc-

tionally transporting dyads.
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Figure B.11: The distributions for the com displacement components sr̂x , sr̂y , and the
angular displacement ∆θ in the comoving dyad frame for increasing gait areas.130
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