
A general locomotion control framework for
multi-legged locomotors

Baxi Chong1∗, Yasemin O. Aydin1∗, Jennifer M. Rieser2, Guillaume Sartoretti3,
Tianyu Wang1, Julian Whitman4, Abdul Kaba5, Enes Aydin1, Ciera McFarland6,

Kelimar Diaz Cruz1, Jeffery W. Rankin7, Krijn B Michel8, Alfredo Nicieza9,
John R Hutchinson8, Howie Choset4 and Daniel I. Goldman1

1 School of Physics, Georgia Institute of Technology
2 Physics Department, Emory University

3 Department of Mechanical Engineering, National University of Singapore
4 Robotics Institute, Carnegie Mellon University

5 Morehouse College
6 Pennsylvania State University

7 Rancho Research Institute
8 Royal Veterinary College

9 University of Oviedo
∗ Corresponding author. Email: daniel.goldman@physics.gatech.edu + Equally contributed.

Text

Numerical Derivation of Local Connection Matrix
Force and torque balance in the vertical plane

In Eq. 2, we prescribed the contact pattern by its phase, φ1. However, the supporting force

(against gravity) is not uniformly distributed among all the legs in stance phase, especially

when the robot locomote on the flat hard ground. In order to precisely model the friction, we

need to calculate the supporting force distribution among legs.

As shown in Fig. S2, we labeled the legs in stance phase with numbers. The location of
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each leg is represented as [xi yi] with respect to a pre-chosen coordinate. The supporting force

on each leg is Ni. Assuming that all the legs are elastic bodies, the supporting force on each leg

can be calculated as:

Ni =

{
KLεi, if Kεi ≤ 0

0, otherwise
(S.1)

where εi is the strain at leg i in stance phase; K is the spring constant and L is the leg length.

As suggested in [6], it is reasonable to assume that the robot is a toppling table. In other words,

we assume that only the legs are deformable bodies whereas the deformation in the ground

substrate and in the main robot body is negligible. In this way, the distance of the body plane

and the ground plane at location [xi yi] in a fixed reference coordinate can be expressed as:

Li = [xi yi 1]

e1e2
d

 (S.2)

where e1 and e2 are tilt angle in x and y direction and d is the constant offset. Note that the

distance of body plane and the ground plane can relate to the strain as:

εi = (Li − L)/L = [xi yi 1]

 e1/L
e2/L

(d− L)/L

 = [xi yi 1]

e′1e′2
d′

 . (S.3)

Therefore, the collection of the supporting forces of all legs is:

ε =


ε1
ε2
...
εn

 =


x1 y1 1
x2 y2 1
... ... ...
xn yn 1


e′1e′2
d′

 , (S.4)

for simplicity of notation, we define:

S =


x1 y1 1
x2 y2 1
... ... ...
xn yn 1

 , ε = S

e′1e′2
d′

 .
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Next, the force and torque balance in the vertical plane can be written as:

xcyc
1

mg =

x1 x2 ... xn
y1 y2 ... yn
1 1 ... 1



N1

N2

...
Nn

 , (S.5)

where [xc yc] is the coordinate of the center of mass. With Eq. (S1-S5), we can numerically

calculate the supporting force distribution on legs in stance phase N . Note that in the simple

linear case,

N = −S(STS)−1

xcyc
1

mg, (S.6)

is the solution to Eq. (S1-S4), if the obtainedN < 0 (element-wise).

Force and torque balance in the lateral plane

In this section, we will briefly describe the steps to numerically calculate the local connection

matrix. We refer readers to [2, 8] for detailed derivation.

The ground reaction force (GRF) experienced by the robot is the sum of the GRF experi-

enced by each body segment in stance phase, as show in example in Fig. S3. In each body

segments in contact with substrate (ci = 1), the GRF, fi, is directed related to its body velocity

(ξi) (see Fig. S3). In the isotropic environments, the direction of fi is solely determined by the

direction of ξi. For example, in the isotropic Coulomb friction model, the GFR can be related

to the body velocity by:

fi = µNi
ξi
|ξi|

(S.7)

where µ is the friction coefficient and Ni is its supporting force.

In the anisotropic environments, the direction of GFR is also related to the orientation of the

limb. Specifically, we choose x axis to be along the direction parallel to the limb orientation,
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and y axis to be perpendicular to the direction of the limb orientation. We then decompose fi

and ξi into x and y directions as:

fi =

[
f i
x 0
0 f i

y

] [
x̂
ŷ

]
, ξi =

[
ξix 0
0 ξiy

] [
x̂
ŷ

]
. (S.8)

We showed examples of such decomposition in Fig. S3. In the anisotropic Coulomb friction

model [7, 5], the x, y component of the GRF and the body velocity can be related as:

[
f i
x

f i
y

]
=
Ni

|ξi|

[
µx 0
0 µy

] [
ξix
ξiy

]
(S.9)

In the poppy seed RFT model [3], the x, y component of the GRF and the body velocity can

be related as:

fy = C sin (γ) (S.10)

fx = A cos (γ) +B(1− sin (γ)) + F0 (S.11)

where γ = arctan(ξy/ξx); C = 0.66, A = 0.27, B = −0.32, F0 = 0.09 is the emporical fitted

function to characterize the granular media resistant force.

Note that in each configuration, the body velocity of the body segment i, ξi, can be related

to the body velocity of the locomotor (in our case, we choose head frame as the body frame of

the locomotor) ξ0, by [1, 4]:

ξi = Adg−1
0i
ξ0 + Ji(Φ)Φ̇ (S.12)

where Ji(Φ) ∈ R3×3 is the body Jacobian matrix, a linear differential map from shape velocity

Φ̇ to the body velocity of body segment iwith respect to the head frame; Adg denotes the adjoint

operator, which maps body velocity between different frames; g0l denotes the configuration of
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the body frame of body segment i with respect to the head frame. Note that Adg−1
0i

and Ji(Φ)

are uniquely determined by the shape variable Φ.

Finally, the force and torque balance in the lateral plane can be written as:

n∑
i=1

f 0
i =

n∑
i=1

AdT
g−1
0i

f i
x

f i
y

0

 = 0 (S.13)

where f 0
i denoted the force applied to body segment i with respect to the head frame; AdT

g−1
0i

transforms the force in the body frame to the head frame.

With Eq. (S7-S13), we established a relationship between the body velocity in the head

frame ξ0 and the shape velocity Φ̇ and shape velocity Φ. We then linearilize the equations then

we can obtain:

ξ0 = A(Φ)Φ̇. (S.14)
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Figure S1: Static stability for gaits with body undulation Theoretical predicted static stability
of gaits with properly coordinated body undulation for (a) quadrupeds (b) hexapod, and (c)
myriapods. All the panels have the same axis as in (a).
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Figure S2: Supporting force distribution An example of myriapod model. In this example,
the robot is supported by eight legs. For a leg i, it provides supporting force Ni. Its location is
labeled as [xi yi]. The location of center of mass is labeled [xc yc]
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Figure S3: Relationship between the body velocity and ground reaction force (a) The robots
with hybrid contact with environments. The body segments in stance phase are labelled by red
circle. (b) The illustration of the force-velocity relationship. (Left) The vector of body velocity
(ξ) and GRF f on the body segment in contact with environments (red cube). (Right) The
decomposition of body velocity and GRF in the direction of body orientation.
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Figure S4: An example of gait design for sidewinding robot using Hildebrand gait princi-
ples. From the parameter space (a. left), we select the duty factor D and lateral phase lag Φlat.
We prescribe the contact by its phase φc (a. right), and the lateral body undulation by its phase
φb (a.3). (b) The height functions to design gait. The gait path (the purple curve) is designed
to maximize the volume enclosed in the lower right corner (in solid shadow) minus the volume
enclosed in the upper left corner (in dashed shadow). We illustrated the typical configurations
that the robot is statically stable, statically unstable, and unstable.
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Figure S5: Joint rotation angles of the robots. Red arrows show the rotation axis of the
joints. (a) Quadruped robot (b) A segment of the hexapod (includes 3 segments) and myriapod
(includes 8 segments) robots. (c) A segment of the sidewinder robot (includes 7 segments). All
scale bars are equal to 2 cm.
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