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This work examines the behavior of granular materials forced away from equilibrium in

two different experimental systems. We study pattern formation in vibrated granular

layers, and fluidization of grains near the onset of fluidization in a water fluidized bed.

When a thin layer of grains is subject to sufficiently strong vertical vibration of

frequency fd, standing wave patterns are excited and oscillate subharmonically at fd/2.

The patterns form when Γ, the peak plate acceleration normalized by gravity, exceeds

a critical value, Γ ≈ 2.5. To gain understanding of this transition, we studied the

behavior of the layer near the onset of patterns. Below onset, for Γ < 2.5, we found that

although no visible patterns were excited, the noisy state contained spatial structure. In

addition, we studied the formation and the evolution of order in square patterns after

a rapid change in Γ from below to above onset. We found that the pattern formed

in two distinct stages: a rapid ordering with universal properties, followed by a slower

non-universal ordering. We also examined the behavior of the average wavelength of the

patterns during the first stage ordering, and found that the evolution of the wavelength

was accompanied by a change in the effective fluid depth of the layer. The condition for a

rapid layer fluidization was shown to be governed by a previously studied grain mobility

transition. In the asymptotically formed square patterns, we found that the dynamics

of the nodes of the patterns displayed normal modes and dispersion relations analogous

to those of a two-dimensional crystal lattice. In addition, the normal modes could be

resonantly excited; if the amplitude of a mode became large enough, the crystal melted, in

accord with the Lindemann criterion for 2D melting. At higher values of Γ, we performed

experiments on patterns that displayed phase discontinuities, called kinks. We observed

that localized transient kinks called phase bubbles prevented the formation of stable

patterns that would oscillate at fd/6. By preparing the system with a uniform initial

condition, we were able to observe transient fd/6 patterns. In addition, we found that
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a convective motion associated with kinks led to segregation of different-sized particles:

large particles were pulled into the kink and remained trapped.

Fluidization in a water fluidized bed occurs when the pressure drop ∆P developed

by the flow Q through packed grains balances the buoyant weight of the grains, (ρp −
ρf )gh, where ρp and ρf are the solid and fluid densities and h is the height of the grains.

For increasing Q, fluidization is characterized by an increase in void fraction, 1−Φ, where

Φ is the solid particle fraction. Using a light scattering technique called Diffusing Wave

Spectroscopy, we studied the dynamics of grains for smooth increases and decreases of

Q near the onset of fluidization. We found that the behavior was strongly influenced

by the initial packing fraction of the grains. Loosely packed grains near Random Loose

Packed (RLP), with 1 − Φ ≈ 0.45, moved immediately at the onset of fluidization and

remained in motion. In contrast, tightly packed grains displayed a range in Q above

onset during which voidage changes were followed by a rapid settling into a motionless

state. We found that this was a result of yield stresses developed in the packed material

due to the creation of a stress-bearing network; the network resulted from jamming of

the grains due to frictional contacts between the grains and the walls of the cell. We also

found that behavior of the bed upon defluidization was analogous to the behavior of a

supercooled liquid near the glass transition: for 1−Φ > 0.45, the bed resembled a liquid.

For 1−Φ < 0.45, motion in the bed was hindered due to local regions of largely immobile

particles. These regions grew in size as Q was decreased until ∆P < (ρp−ρf )gh, at which

point all translational dynamics of the grains ceased.
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Chapter 1

Introduction

1.1 Motivation and problems to be studied

Granular materials are typically defined as a collection of macroscopic particles

which interact dissipatively upon collision and for which the thermal energy kBT is

small compared to any energy scale in the problem. Concealed in this rather mundane

description are systems that mimic the behavior of matter in many different regimes, see

Figure 1.1. These regimes can be high Knudsen number collisionless flow, shock waves

propagating with Mach number much greater than one, or solids which can support a

yield stress. Importantly, all regimes can be seen and studied in detail in a single-person

laboratory experiment.

As an example, imagine pouring sand, a common granular material, out of a jar

over a pencil and onto the ground. As the grains leave the jar, their flow resembles a fluid.

In fact, due to the large mean-flow velocity relative to the fluctuating component of flow

velocity (a factor of 10), the grains strike the pencil at high Mach number. Consequently,

an oblique shock forms. When the flow hits the ground it solidifies due to dissipative

collisions, coming to rest in the form of a pile. Unlike the fluid-like flow above it, the

pile can support stress. Thus, this simple experiment exhibits physical phenomena and

properties of matter that are typically studied only at great cost and almost never in the

same experiment. In this spirit, we explore the behavior of granular materials in different

regimes in this dissertation.

The problems that will be described cover a fairly wide range of behavior of a

collection of grains. In a single thesis I am able to describe systems which display peculiar

clustering effects in gas-like behavior, time dependence of wave patterns which form in

a granular fluid, the effects of fluctuations in the granular temperature on this fluid,

fluid-like behavior in a collection of grains forced by water, and solid, glassy behavior of

a packed set of grains where inter-particle forces and stress chains dominate the behavior

1.1.1 Overview of the Dissertation

The work in this dissertation deals with transitions between different regimes

of granular behavior as control parameters are changed. Two main systems will be
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Figure 1.1: Different behavior displayed by granular materials, left to right and down
the page: surface waves in a vibrated layer, Cerenkov wave radiation of a rod moving in
a thin layer, localized structures (oscillons) in a vibrated layer, sand piles on the Petrie
Islands, Ottawa (from website of The Friends of Petrie Island), stress chain backbone in
a solid granular pile of disks (from website of B. Behringer), the wake of a 1 mm sphere
falling in water (from E. Ramos)

studied, and both are effectively designed to maintain a set of grains out of the motionless

equilibrium state. Wave phenomena in thin vibrated layers will be discussed in Chapters

4-6. Chapter 7 discusses a problem in granular gases called inelastic collapse. Chapters

8-9 will deal with fluidization phenomena in a water fluidized bed, including behavior

of grains at onset of fluidization and analogies to glasses. Chapter 2 will review the

behavior of granular materials in regimes which are relevant to the problems discussed
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in the dissertation, and Chapter 10 will conclude.

The remainder of Chapter 1 introduces the two main systems that will be studied.

1.1.2 Wave patterns in vibrated layers

We study a system in which thin granular layers (up to about 15 particle diameters

deep) are vibrated vertically sinusoidally such that the position of the plate obeys,

y = A sin(2πfdt) (1.1)

where fd is the drive frequency of the plate, typically between 10−200 Hz, and A

is the amplitude of the plate. The state of the system is characterized by the peak plate

acceleration relative to gravity, Γ = A(2πfd)
2/g. Since chapters 4-6 review the literature

of vibrated granular layers relevant to the specific problems studied, in this section we

will only briefly introduce the basic features of the system which have already been well

described in [129, 179–181].

Behavior of the layer for increasing Γ

As an example of the basic phenomena encountered in vibrated granular layers, we

summarize transitions displayed in a thin layer of 100 µm bronze, 15 particle diameters

deep [137]. For Γ < 1.0, the plate never accelerates greater than −g and the layer rests

on the plate as a solid clump. For 1.0 < Γ <≈ 2.0, the layer leaves and strikes the plate

every oscillation but the energy input by the shaking plate is completely dissipated and

the grains remain in a compact solid state. The regime from 2.0 < Γ < 2.5 has been

studied in depth in [137]. In this regime for fd smaller than fd ≈ 70 Hz, the layer is in a

dilated state during some fraction of the cycle and this dilation is large enough for grains

to slip past each other–the layer becomes fluidized. For fd > 70, the layer is dilated but

there is not enough room for grains to move past each other; however the top of the layer

remains fluidized. For fd > 200, the dilation becomes so small that the layer remains in

a compact solid state.

Above Γ = 2.5 for fd < 200 hydrodynamic wave patterns oscillating at fd/2 form

(see Figure 1.2), and a phase diagram of the types of patterns is shown in Figure 1.3.

Here fd is normalized f ∗
d = fd/

√

(g/H), where H is the layer depth. In the presentation

of experimental results, we give layer depth in dimensionless form, N = H/d, where d is

the particle diameter. The system forms stripes for high frequency (f ∗
d > 0.33) [181] and

squares for f ∗
d < 0.33. Hexagon patterns oscillating at fd/2 form above Γ ≈ 4.0 due to a

temporal symmetry breaking in the collision with the plate.

3



Time
t = 0

T/2

T

3T/2

2T

Figure 1.2: Patterns that form in a vibrated granular layer oscillate subharmonically to
the plate oscillation. Under low angle illumination, peaks are visible and valleys are in
shadow.

The patterns that oscillate at fd/2 exist for Γ < 4.5. Above 4.5, the flat state

returns and now strikes the plate every other plate oscillation, allowing phase discon-

tinuities in the layer to form (for discussion, see Chapter 6). Above Γ ≈ 5, the flat

state bifurcates into patterns that oscillate at fd/4 again forming squares and stripes

and hexagons. Above Γ > 7.5, a qualitative change in the layer dynamics occurs; a

spatiotemporally chaotic state called a phase bubble state forms and prevents the fd/6

patterns which would be in the series of bifurcations fd/2 → fd/4 → fd/6 from forming.

Details are discussed in Chapter 6.

In this dissertation, we will explore the behavior of the vibrated layers in different

regions of the Γ − fd parameter space. In Chapter 4 we study the time evolution of

order in square patterns following a rapid change in Γ from a flat featureless state. We

find that the patterns form in two distinct stages: in the first stage, which lasts on the

order of 10 plate oscillations, the amplitude of the pattern rapidly grows and the pattern

displays ordering dynamics that are universal. In the second stage, which can last 104

plate oscillations, the pattern evolves through growth of large domains which eventually

coarsen to a perfectly ordered square pattern; the ordering dynamics in this stage are

not-universal. In chapter 5, we study the dynamics of the square patterns and find that

the elements of the patterns act as if they are coupled by Hookian springs. The dynamics

of the square patterns thus resemble a two-dimensional crystal lattice and we find that

the normal modes of this crystal can be resonantly excited. The amplitude of excitation

can be made large enough to melt the lattice, and the melting transition is in agreement
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Figure 1.3: Phase diagram for a layer 11 particle diameters deep. Samples of the patterns
seen in the phase diagram are shown for points a-d. f ∗

d is the normalized drive frequency,
with f ∗

d = fd/
√

(g/H) where H is the layer depth and g is the gravitational acceleration.

with a criterion used to predict melting in real crystals. Thus, we have developed a new

description of nonequilibrium patterns.

In Chapter 6, we discuss further the dynamics of patterns following a change in

Γ. We study the evolution of the average wavelength of the pattern and find that the

evolution of the pattern wavelength is related to a fluidization transition in the layer.

We also study the properties of the vibrating layer below the onset of patterns and find

that there is a characteristic length scale in the seemingly randomly excited “flat” state.

Finally, we examine the dynamics of phase discontinuities called kinks and phase bubbles.

We find that these discontinuities mask patterns which are predicted to oscillate at fd/6

and we have observed transient fd/6 patterns. In addition, we present results in which
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convection roll structures associated with the kinks are able to transport and segregate

grains of different size added to the vibrating layer.

6



1.1.3 Dynamics of grains at the onset of fluidization

We study a water fluidized bed near the onset of fluidization. In a fluidized

bed, grains are subject to a flow of fluid against the direction of gravity. At a critical

volume flow rate Qf , the grains make a transition from solid to liquid like behavior.

The fluidized bed system differs from the vibrated layer due the presence of the water.

Interaction between the grains is no longer due solely to inelastic contact collisions; grains

now interact by hydrodynamic effects which can operate at a distance greater than a grain

diameter. The grains that will be used in the experiments in this dissertation are glass

spheres and an image of the side of a fluidized bed is shown in Figure 1.4.

Figure 1.4: 335 µm glass spheres in water

Schematics of the fluidization transition are shown in Figure 1.5 and Figure 1.6.

We now describe the basic process of fluidization. Fluid is forced through a collection of

grains occupying a solid volume fraction Φ at a constant volume flow rate Q. In fluidized

bed research it is customary to instead use 1 − Φ, the voidage of the bed1. At low flow

rates (small Reynolds number for the pore), flow through porous media of voidage 1−Φ

follows an empirical relation called Darcy’s law; for higher flow rates Darcy’s law must be

corrected and these corrections are called Ergun’s relation [160]. Darcy’s law says that the

1Note that for identical spheres, the voidage cannot be smaller than the value for FCC crystal
packing, 1 − Φ ≥ 1 − π/(3

√
2) ≈ 0.26. This was conjectured by Kepler in 1609 and proved by Hales

in 1998 [84]. However, practically, the voidage never reaches a value lower than Random Close Packed
(RCP), 1 − Φ ≈ 0.37. The maximum possible voidage occurs when the solid volume fraction goes to
zero, or 1 − Φ = 1.
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a b c

Q < Qf Q = Qf Q > Qf

Q 

Figure 1.5: A schematic illustrating the behavior of grains at three points a-c as the
volume flow rate, Q is increased through fluidization.

pressure drop developed by the fluid, ∆P is proportional to Q and inversely proportional

to a monotonically increasing function of 1 − Φ called the permeability2. To make an

analogy to electrical current flow, the permeability can be thought of as the inverse of

the resistivity of the medium. Thus, for fixed 1 − Φ, ∆P increases with increasing Q.

When Q is increased so that that ∆P equals the buoyant weight of the bed normalized

by cross sectional container area A, a force balance occurs. The system can respond by

allowing all grains to be translated up the container at once. However, the fluidization

velocity, Q/A, is roughly a factor of 50-100 times smaller than the sedimentation velocity

of a single particle (see below). Thus when the bottom becomes exposed, particles fall,

filling in the space that was free of particles. This has the effect of increasing the voidage

of the sample as illustrated in Figure 1.5. By Darcy’s law, this restores the force balance.

Thus the net effect is that the system responds to fluidization by increasing its voidage,

and this is plotted in Figure 1.6.

Above fluidization, the relationship between the voidage of the bed and the flow

velocity of fluid vf = Q/A has been extensively studied, and different empirical rules

have been proposed [32, 109]. The formula of Richardson and Zaki [152] is perhaps the

best known of these fits, and proposes a power law scaling,

2In the Kozeny theory of porous media, the permeability is proportional to (1 − Φ)3 [160]
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Figure 1.6: Schematic plots of the basic measurements and phenomena in fluidization
for slow increases of Q. Top panel: ∆P , the pressure drop of fluid through the grains
normalized by the buoyant weight of the grains. Bottom panel: the average void fraction
(voidage) of the particles, 1 − Φ. Voidages at fluidization are typically between 0.37 <
1 − Φ < 0.45. Points a-c refer to the diagrams in Figure 1.5.

vf

vs

= (1 − Φ)n (1.2)

where vs is the terminal sedimentation velocity of a single sphere falling in the tube of

diameter D =
√

A. This rule applies to non-bubbling fluidized particles of diameter d

with 0.1 < d < 6 mm and particle density ρp between approximately 1 < ρp < 11 g/cm3

for fluids with densities between approximately 0.8 < ρf < 3 g/cm3. The Richardson-

Zaki power law is actually quite complicated: the exponent n depends on D, the particle

diameter d, and the Reynolds number at the terminal velocity of the sedimenting sphere

in an infinite fluid, Ret = dvtρf/µ, where ρf is the fluid density and µ the fluid viscosity.
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Due to wall effects, vs is slightly smaller than vt and is related to vt as log vs = log vt−d/D.

The expression given for n is shown in the table,

Exponent Range

n = 4.65 + 20 d
D

Ret < 0.2

n =
(

4.4 + 18 d
D

)

Re−0.03
t 0.2 < Ret < 1

n =
(

4.4 + 18 d
D

)

Re−0.01
t 1 < Ret < 200

n = 4.4Re−0.1
t 200 < Ret < 500

n = 2.4 Ret > 500

Table 1.1: The expression for n in Equation 1.2 for different parameters

For particles used in the experiments that will be described in Chapter 9, typical

Ret ≈ 10 giving a value of n ≈ 4.5. We find good agreement with Equation 1.2 below

the onset of bubbling. Thus, for our experiments near onset at 1−Φ ≈ 0.42, fluidization

velocities are typically a factor of 50 smaller than single particle sedimentation velocities.

Despite the complicated dependence of n, Equation 1.2 is a useful predictor of bed

height as a function of flow rate for non-bubbling beds (See Figure 8.28 in Chapter 8).

However, there is no theoretical derivation of this power law behavior.

Fluidized bed dynamics at onset

While the bulk behavior of fluidized beds is well characterized, the dynamical

behavior at the onset of fluidization is not as well understood. The first systematic study

of gas fluidized bed behavior was due to Geldart [63]. Existing data were used to create a

classification scheme of four types of onset behavior. This scheme relates onset behavior

to particle diameter and particle-fluid density difference. The so-called Geldart diagram

is shown in Figure 1.7. We note that there is no similar diagram for water fluidized beds.

There are four regions of behavior on the diagram, A-D. Behavior of Geldart

A “aeratable” particles is defined by a smooth expansion of the bed at the onset of

fluidization. Geldart A particles are typically small in size and have densities less than

roughly 1.4 g/cm3. The smooth expansion of the bed exists for a range in flow rate, above
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Figure 1.7: The Geldart classification scheme for air fluidized particles.

which the system becomes unstable to traveling structures of low particle density [156].

This is called bubbling and is ubiquitous in gas fluidized beds. Examples of bubbles are

shown in Figure 1.8. Geldart B particles differ from those in A, in that bubbling begins

immediately at the onset of fluidization.

We note that in liquid fluidized beds, the bubbling takes the form of regular trav-

eling waves of low particle density which span the entire cross sectional area, Figure 1.9.

This is one of the main differences between the behaviors of gas and liquid fluidized beds.

Many studies of bubbling and stability of the fluidized state to density waves have been

made [57, 97]. Much work has gone into stability analysis of the two-fluid models with

some success in the prediction of onset [4, 93] of bubbling. Two-fluid models predict that

the bubble is a secondary instability on the wave structure, but experimental studies are

lacking.

Very small particles for which interparticle interaction is important are grouped

in Geldart C. These beds display cohesive behavior at onset without a transition to a

uniformly fluidized state. D refers to spouting beds and will not be discussed here.

As noted, the Geldart diagram was compiled for gas fluidization and no similar

classification has been made for water fluidized beds. However, water fluidized beds

are a convenient experimental tool; unlike in gas fluidization, it is straightforward to

vary working fluid parameters like fluid density and viscosity. With that in mind, in

Chapter 8, we study a water fluidized bed in what we might think to be the simplest
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a b

Figure 1.8: (a) A streak photograph showing a side view of a bubble in a two dimensional
gas fluidized bed, from [97] (b) A top view of a bubbling gas fluidized bed. The surface
of the bed resembles a boiling liquid, from [42].

situation, water fluidized glass spheres which display uniform fluidization at onset. Our

results demonstrate that the dynamics of grains between 0.1 and 1 mm at the onset

of fluidization are strongly dominated by friction contact forces. We will describe the

motion of the grains at onset using a variety of techniques that will be described in

Chapter 3. We will also compare our results to previous onset studies of gas fluidization

of Geldart A particles.
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Figure 1.9: Liquid fluidized beds are unstable to low density waves of frequency roughly
1 Hz. Shown are upward traveling waves in 2 mm glass beads in a tube 3 cm in diameter.
From [97].
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Chapter 2

Review of phenomena in granular materials

The problems that will be discussed in Chapters 4-9 deal with granular materials

in the fluid and solid regimes. We will study such phenomena as collisional dynamics of a

dense inelastic gas, waves in a granular liquid, fluidization transitions from solid to liquid

behavior in a vibrating layer, and sub-micron motions of a granular solid forced by water.

Therefore, in this chapter I give a review of basic phenomena in granular materials, dry

and wet. I save more specific introductions to different experiments for their respective

chapters. I begin with the gas and fluid-like aspects of strongly forced grains, often called

rapid granular flow.

2.1 Rapid granular flow–granular gases and liquids

Figure 2.1: The coefficient of restitution for normal impact between two spheres as a
function of velocity for different materials. Plot taken from compiled data in [75].
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A collection of grains must be continuously forced to be maintained away from the

equilibrium pile on the table. This is due to the dissipative nature of the collisions. This

inelasticity is typically included in the description of granular materials by a coefficient

of restitution, r, which models the dissipation of energy at each collision, such that,

∆v
′

n = −r∆vn (2.1)

where ∆v
′

n and and ∆vn denote the relative collision velocities of the spheres before and

after the collision. The value of r is usually taken to be a constant. However, event-driven

molecular dynamics simulations of granular materials which use a constant r suffer from

a severe problem. For sufficiently high particle densities and low enough r, the gas can

suffer inelastic collapse: certain particles experience an infinite number of collisions in a

finite time and this overwhelms any computation as all of the time is spent computing

trajectories in these highly clustered regions. The collapse phenomenon was thought

to provide a mechanism for the formation of clusters of high density regions in a freely

cooling granular gas. However, we have shown (see Chapter 7) that inelastic collapse

is an artifact of the constant r model. In reality, r is velocity dependent, as seen in

Figure 2.1. When a velocity dependent r is used, this collapse phenomenon disappears.

Thus inelastic collapse creates a pathological form of clustering. However, the absence

of inelastic collapse does not imply the absence of clustering. Using a collision model in

which r was held constant but collapse was prevented by a cutoff in collision time, Luding

and Hermann found that a freely cooling granular still demonstrated clustering, forming

a growing set of filamentous structures, see Figure 2.2 [122]. Although it has been shown

that a velocity dependent r modifies the cooling rate [162] of the gas, to date, no studies

have been done to carefully examine clustering with a physical form of r.

The idea of rapid granular flow says that a collection of grains that is forced away

from its equilibrium state by suitable agitation can be thought of as a fluid and described

by hydrodynamic equations. The equations which govern this fluid-like behavior can be

derived from a kinetic theory of hard-sphere inelastic gases [51]. This theory starts from

the Boltzmann-Enskog equation whose collision operator is modified to include inelastic

collisions.

A snapshot of a granular gas is shown in Figure 2.3. When the collection of

grains is continuously agitated so that the cooling state is not reached [15, 133], the

system reaches a steady state. Using the kinetic theory, distribution functions for par-

ticle velocities at small inelasticity have been calculated for these steady states. Due to

inelasticity, these deviate from Maxwellian and compare well with molecular dynamics

simulations [133, 187]. In addition to changing the local velocity distribution function

by over-populating the tails, the inelasticity of the grains produces non-trivial effects

such as long range correlations in particle velocities. In the uniformly heated case, these
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Figure 2.2: The clustering seen in a three dimensional molecular dynamics simulation
of a freely cooling granular gas with a constant r model modified to prevent inelastic
collapse. As time increases the clusters grow in size and the average number of collisions
per particle C/N increases. Figure reproduced from [122]

correlations are not so severe as to produce the strong clustering as in the freely cooling

case but instead produce system wide circulation [15].

2.1.1 Hydrodynamics and continuum equations

For small inelasticity and density, the velocity particle distribution function given

by the Enskog-Boltzmann single particle distribution function is nearly Maxwellian. Ex-

pansion of the equation around this solution yields a set of Navier-Stokes like equations,

the Jenkins-Richman equations. For completeness, these are given in Appendix B. These
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Figure 2.3: A collection of vibrated 1.65 mm steel spheres is an inelastic gas. The
spheres are confined between two plates and the container is subject to vertical vibration.
Courtesy D. Miracle

equations and the expressions for the transport coefficients are computed from the kinetic

theory of inelastic hard spheres and they differ from a ideal compressible gas only by the

addition of an energy loss term due to the inelasticity of the collisions. The Jenkins-

Richman equations compare well to hard sphere molecular dynamics simulations [150],

and also have produced wave patterns such as those that will be discussed in the next

section. In fact, while there has been much debate on the ability of hydrodynamic-like

equations to describe granular flows [49, 51, 69, 100, 165, 175], it now seems clear that the

Jenkins-Richman equations can capture much of the behavior of simple vibrating flows

and the behavior of rapid granular flows [19, 150]1.

It should be noted that typical granular flows are supersonic as the speed of the

flow is usually much greater than the speed of the fluctuations around that flow. This

causes shocks to form when a flow impinges on an object. The hydrodynamic equations

agree well with molecular dynamics simulations in this regime [19, 150]. However, there

can be other effects such as size segregation and heaping which would seem to defy

hydrodynamic description. I will not in this thesis comment on the applicability of

hydrodynamics to granular flows.

Fluid-like phenomena in granular materials occur when the collision frequency is

1The wave phenomena I will describe have not been quantitatively compared to the Jenkins-Richman
equations, although there is evidence that the equations can reproduce fd/2 patterns. Private commu-
nication from J. Bougie.
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much larger than any frequency in the problem and the time of contact of the grains is

very small. In this thesis, we will also explore problems in the opposite regime, when

the time of contact is very large and collision rates are low. This is a situation when the

static aspects of granular materials come into play and will now be discussed.

2.2 Solid-like behavior

When the density of a granular material becomes so large that the grains do not

have enough room to slip past each other and the input energy becomes small enough so

that they don’t have enough energy to create the space to slip by each other, the granular

material displays the characteristics of a solid. In this regime, contact forces between the

grains dominate the behavior and collisional momentum transfer is unimportant. Under

shear, a dense packing will develop a yield stress and only flow by plastic deformation—

local grain rearrangement. This plastic behavior depends on the volume fraction of the

grains, applied shear and normal stresses and the shear stress rate. This behavior has

direct relevance to our studies of fluidized beds in the tightly packed states near onset

where the grains are in contact and slowly sheared.

Different theories have been developed to account for the behavior of these solids

under shear. A theory of solid-fluid transitions in granular materials called dilatancy was

proposed by Reynolds in 1885 [151]. Reynolds argued that for a shear stress to induce

flow, a collection of grains must dilate sufficiently to allow grains to slip by each other.

If the grains are confined, this creates stresses at the boundaries and thus the material

will develop a yield stress.

Since Reynolds, much work has been done in the field of soil mechanics with

the goal to find constitutive relations between stresses and strains on a granular sam-

ple [97]. We will give a qualitative picture of the surprisingly complicated behavior of

different grain packings under shear. Such a picture will be useful in interpreting results

in Chapters 8 and 9

2.2.1 Shear and stress-strain relations for granular packings

The basic processes for very slowly deforming granular piles is shown in Figure 2.4

and the description we give here has been adapted from Jackson [97]. A collection of

grains packed with solid volume fraction Φ0 is enclosed by two infinite plates that are

free to move in the plane of shear and also normal to this (an idealized Couette shear

apparatus). A shear stress T is slowly applied tangential to the upper plate and at the

same time a normal stress N is applied normal to this plate. Upon shear the plates

displace an amount s, and the relationship between T and s is shown in Figure 2.5 for
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Figure 2.4: A schematic of an experiment to shear a quasi-infinite packed collection of
grains. The plates are free to move in all dimensions.

two cases, a loose packing with a large normal force (small Φ0, large N) and a tight

packing with a small normal force (large Φ0, small N)

Tc(ρ0,N)

TF(ρ0,N) T   (N)T   (N)

Under shear:

ss

T T

Failure Consolidation

Loosely PackedTightly Packed

T   (N)    N 

Material strengthensMaterial weakens

Figure 2.5: The stress-strain relations for shear of two different packings.

For both cases, for small enough displacements, the stress is proportional to the

strain and the system can be reversibly deformed–this is due to the elastic behavior of the
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grains. However, there exists a yield stress above which the material no longer behaves

elastically and plastic deformation occurs. The qualitative behavior of the grains depends

on Φ0 and N and we discuss what happens when the shear stress goes beyond the yield

stress in both cases.

For the tightly packed state under a small normal force, the yield stress is denoted

by TF (Φ0, N), and is called the failure stress–the behavior of the material when it reaches

this value is called failure. This is apparent from Figure 2.5. When the stress reaches

TF , it suddenly decreases and the stress needed to increase s continues to decrease as s

increases reaching an asymptotic value Tinf(N) for large displacement. The material has

failed and has become weaker.

Contrast this to the loosely packed case with a large normal force, whose stress-

strain relationship shown in Figure 2.5 right panel. Here, the yield stress is denoted

TC(Φ0, N) and the behavior of the material when it reaches this stress is called consoli-

dation. Beyond TC , the stress needed to maintain a separation s increases with increasing

s and reaches the same asymptotic value Tinf(N) for large displacement. The material

has become stronger under shear.

Dilation and consolidation (compaction)

Compaction accompanies 
shear

Dilation accompanies 
shear

ss

Shear spreads throughoutShear confined to thin region

Tightly Packed Loosely Packed

Figure 2.6: The relative change in volume fraction for granular packings under shear.
Tightly packed grains dilate while loosely packed grains undergo compaction

The consequences of shear on the volume fraction of the grains are shown in

Figure 2.6. As argued, in the tightly packed case the material weakens at failure. Suppose

it weakens locally in a thin layer. This thin layer is now weaker than the rest of the
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material, so any further shearing will occur there. Thus the shear layer remains localized.

As the material has weakened, in the shear layer the density is lower and the grains are

further apart. Thus the material has expanded and the plate separation has increased in

the direction parallel to N . This is the phenomenon of dilation discussed by Reynolds.

As the name implies, the opposite occurs for the loosely packed case. Here when

the yield stress is reached, the material begins to strengthen. In this case, yield will

occur throughout the material. We can see this with the following argument: suppose

the material strengthens in a thin local layer. This material in this layer is now stronger,

so any continued strain will now deform the rest of the material which is weaker. Thus,

the material will continue to deform outside the layer until the strength catches up to

the strength of the initially deformed layer. In this way the entire material deforms in

unison. The source of the increased strength of the material is due to its consolidation:

the density is now higher and thus the plates are closer together2.

Yield stress as a function of Φ0 and N

TF Tc

N N

a

b

c


Φa > Φb > Φc Φa > Φb > Φc

a

b

c

Normal stress 
capable of 
inducing 
consolidation 
w/o shear stress

Nothing to 
oppose dilation

Tightly Packed Loosely Packed

Figure 2.7: Yield stress in a granular packing as a function of normal stress. The curves
in the tightly packed case are called yield loci, while those in the loosely packed state are
called consolidation loci.

The values of the yield stresses are functions of Φ0 and N , and these are plotted in

Figure 2.7. They are called the failure and consolidation loci, and the goal of any theory

of soil mechanics is to predict these curves for a given packing and set of stresses [97]. In

the tightly packed case, for a fixed Φ, the yield stress, TF increases as N increases. This

is reasonable, as the material must be dilated in order to fail and any normal force will

resist this dilation. For a given N , TF increases as Φ increases: the system must dilate a

2Under gravity, piles of grains naturally consolidate, and the process of consolidation is difficult to
observe [97]. However, poor flow distribution in our fluidized bed experiments (see Chapter 8) produces
local stresses that lead to (often unwanted) consolidation effects.
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sufficient amount to move past the elastic limit and this requires more force to move the

grains for a tighter packing (larger Φ, stronger material).

Again, we contrast this with the loosely packed case. The values of yield stress

display a different behavior. For fixed Φ, the value of the yield stress is 0 for finite

N . This is reasonable, as at TC , the material will compact, and the normal stress is

already supplying a force which would seek to increase Φ. The value of N needed to

begin consolidation in the absence of shearing force decreases as Φ decreases because the

looser packing is weaker and needs less force to begin the consolidation. For a given Φ,

as N decreases, it takes a corresponding a greater amount of shear force to begin the

consolidation. This is also reasonable, as the normal force seeking to consolidate is less

and therefore must now be supplemented with another shear force.

Discussion

As mentioned, theories in soil mechanics are developed to calculate the yield and

consolidation loci, seeking to find constitutive relations for the stress tensor [68]. The the-

ories are based on theories of plasticity of materials. A discussion of these theories is well

beyond the scope of this dissertation. It is unclear whether hydrodynamic theories like

those of Jenkins and Richman can be applied to slowly deforming solid-like granular piles.

Much of the behavior of granular materials in this regime is dominated by interparticle

contact forces and will play a significant role in the behavior of the grains in the fluidized

bed. However, there have been efforts to describe [89] the slowly shearing solid state with

hydrodynamic equations with suitably modified constitutive relations [16, 89, 117, 118]

We also point out that no values of Φ have been mentioned in this section. What

defines a tightly packed versus a loosely packed state? One answer to this question,

using the concept of the “dilatancy onset”, was provided in a study by Onoda and

Liniger [139]. They showed that the dilatancy onset, the packing density at which a

shear does not promote dilation, occurred at a state called random loose packing (RLP),

Φ ≈ 0.55. RLP is loosely defined as the lowest Φ that can support an external load.

Thus, a “tight” packing with Φ > 0.55 will dilate and weaken in response to a shear,

whereas a “loose” packing with Φ < 0.55 will consolidate and strengthen. We will return

to this important concept in Chapter 8, when we examine the fluidization behavior of

different packings.

The theory described in the previous sections is a continuum theory. However,

careful examination of static and slowly deforming piles of grains reveals that stress is

distributed inhomogeneously throughout the material along preferred network of chains

(see the image in Figure 1.1) and these have been shown to play a role in the stress-strain

relations. Thus, the discrete nature of the grains becomes important and we now discuss

some of these results.
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2.2.2 Force chains and contact forces

Careful examination of the stress-strain of a granular layer in a Couette shear

apparatus shows that there are large fluctuations in the stress as strain is increased [132].

These fluctuations have been shown to be associated with the stress chains [95], see

Figure 2.8. The stress chains were directly observed in two dimensions by measuring

the change in polarization of photoelastic disks placed between cross-polarizers. This

technique reveals that the stress is concentrated along a network of paths. Below a

critical value of the packing, the stress fluctuations are small and above this critical

value they can become very large. Thus the system organizes the stress into a backbone

of chains which have a strong influence on the dynamics.

Figure 2.8: Upper panel: A sheared collection of photoelastic disks between cross po-
larizers reveals the existence of stress chains. Under shear, the stress on the disks, G2

displays large fluctuations for tight packings (upper curve) and small fluctuations for
loosely packed state (lower curve). From [95]
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This backbone can be amazingly dynamic and experiments have been done to

probe its properties in response to small perturbations. As the stress is distributed

inhomogeneously, a large response in the material properties can occur for a local per-

turbation. Inserting a sound transmitter and detector in a granular pile of 5 mm glass

grains and locally heating a grain so that it changed linear dimension by 300 nm resulted

in a drop in sound received by 20%, see Figure 2.9 [113, 115, 116]. At other positions, the

heat pulse did not produce any effect. The interpretation is that the heat pulse deforms

the grains and if the deformed grains are members of a chain, significant re-organization

can occur. Since sound is traveling on stress paths, this re-organization can have a huge

effect. Such effects have also been seen in thermally heated beads using conductivity

measurements and the fluctuation properties of the medium were characterized in re-

sponse to perturbation [18]. We will see a similar effect in Chapter 8 and characterize

the response of the material using a less invasive light scattering techniques.

Figure 2.9: The response of a small detector (D) to sound emitted from a speaker (S)
after heat pulses are locally applied to grains in the box. Two successive pulses from
a heater (H) are applied at t = 0 and t = 88 sec. Each creates a thermal expansion
∆l ∼ 300 which dramatically changes the amplitude of the detected sound. From [113]

The presence of a stress chain backbone has a strong influence on the static prop-

erties of granular packings. For example, unlike a true liquid, the pressure in a column

of grains is independent of depth below a certain depth. This is due to the stress chains

which support the weight of the column. [188].

One way to approach the influence of chains is to study the the distribution of

force at contact between grains, P (F ). The presence of particles that are more signifi-
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Figure 2.10: The appearance of a plateau in the grain contact force distribution has been
observed in glass simulations and may occur in a jamming system or in a system undergo-
ing a glass transition. The ◦ points are from an experiment on granular materials [136],
while the other curves are for molecular dynamics simulations of particles interacting
with Lennard-Jones potential. Taken from [138]

cantly stressed than others should play a role in this distribution. Groups have [114, 136]

measured the force distribution between grains in a packed container and found it de-

cayed exponentially for forces above the mean force and was almost constant for forces

below the mean–a small plateau appears at low forces, see Figure 2.10. The plateau

is thought to be a consequence of the inhomogeneous distribution of stress due to the

force chains. In fact, it was proposed that the plateau indicates a more general jamming

transition, when a system develops a yield stress as a parameter is changed. We now

discuss the basic principles of jammed systems.

2.2.3 Jamming and Fragile Matter

A unifying picture has been proposed for systems that display a dramatic change in

material properties as a parameter is varied. It is called the jamming picture and notes

that very different systems often display similar behavior upon change of parameters.

For example, colloids and foams change viscosity by many orders of magnitude upon

a small increase in volume fraction or applied shear. Systems like supercooled liquids

display similar slow-down behavior upon decrease of system temperature to become a

glass. It has been proposed that these common behaviors can be unified in a jamming
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diagram [112], see Figure 2.11.

Temperature

Load

1/Density

Loose grains,
bubbles, droplets etc.

Jammed
grains etc.Glas

s

Liq
uid

Figure 2.11: The proposed jamming diagram. Jammed states can be reached by cooling,
change in volume fraction, or application of a shear. Taken from [112]

Different definitions of jamming have been proposed, for example “A system jams

when it develops a yield stress or extremely long stress relaxation time in a disordered

state” [138]. This is a very broad definition; we would like to understand the common

features that systems which are jamming display. Molecular dynamics studies of glass-

forming molecules showed that the appearance of a plateau in P (F ) coincided with the

temperature of the glass transition in this system [138], see Figure 2.10. In addition,

models of foams known to produce jamming were studied, and also displayed a plateau

at the jamming transition. Thus, it was speculated that the jamming transition could be

a more general form of a glass transition (we will discuss the glass transition in Chapter 9).

Features of a jamming transition would include the development of a plateau in P (F )

and the development of a yield stress. It was speculated that the appearance of a plateau

in the interparticle force curve could be related to the appearance of the stress chains. In

such a picture, the system jams when the force chain network has enough participants.

Formation of such a state has been called fragile matter, and is schematically illustrated

in Figure 2.12.
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Figure 2.12: A schematic of a jammed system. The system is strong in the direction of
the applied shear, but will reorganize when the shear is applied in the opposite direction.
Adapted from [27].

Fragile matter is defined as a system that is strong in the direction of applied

shear, but weak when the shear is reversed [27]. Such behavior is thought to be due

to the network of force chains that is set up in response to the applied shear. This is

illustrated in Figure 2.12. For applied stresses that aren’t strong enough to fluidize, the

grains may lock into place by development of a force network. This network now has a

yield stress and is jammed. The system responds elastically to further small stress in this

direction without the need for plastic deformation. However, this jammed state is fragile

in the sense that it is strong only in the direction of the previously applied shear. If the

shear is reversed, given what is called an incompatible load, the network will break and

the system will deform plastically to create a new network, unlike a regular solid. There

are chain particles and spectator particles in this description and the spectator particles

don’t participate in the main jamming chains. We will interpret our fluidized bed results

in terms of the jamming picture in Chapter 8.

It has also been proposed that dense packings of granular materials that can jam

share properties in common with glasses below the glass transition temperature [38, 39,

56]. In Chapter 9 we discuss these results in relation to the slow dynamics of the fluidized

bed.
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2.3 Multiphase flow

Describing the many different behaviors of dry granular materials is extremely

challenging. When fluid is added to the grains the properties of the system can change

radically. The problem are more difficult than in dry granular materials due to the

extended interaction range. Dry grains only interact at collision but grains in water

interact at a distance. Furthermore, the form of the interaction is governed by the Navier-

Stokes equation and changes for different particle Reynolds numbers, Re = vdρ/µ, where

v is a typical velocity, d is a typical particle size, µ is the viscosity and ρ is the density

of the fluid. The boundary conditions also play a role. As an example, we present the

work of Ramos3 who has shown that even the motion a single particle in a fluid can

be complicated, as shown in Figure 2.13. Here a ball is dropped at Re ≈ 230 between

two plates filled with water and the wake is visualized by Kaliroscope. For narrow gap,

vortices are shed similar to flow past a infinite cylinder. As the gap size is increased, the

wake changes character, becoming more like the wake behind a moving sphere.
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Figure 2.13: The wake behind a 3 mm acrylic sphere falling in water between two plates
is a function of the ratio of gap thickness to the ball diameter. In all cases, Re ≈ 230.

3Private communication, unpublished work.
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2.3.1 Few particle dynamics

At low Reynolds numbers, where inertial terms are unimportant, particles in-

teract by Stokes forces [86]. At moderate Reynolds numbers, dynamics becomes more

complicated. The two-body sedimentation problem has been studied in [60] and displays

interesting dynamics, seen in Figure 2.14. If two particles are dropped near each other,

the particle which is behind (the second particle) is pulled into the wake of the particle

which is ahead (the first particle). The second particle is then accelerated along the line

joining the centers of the particles. They briefly come into contact and the first particle

is sent tumbling off to the side. This process has been called drafting, kissing and tum-

bling [60], and is a mechanism by which vertical particle momentum is transfered into

horizontal momentum. However, most of the studies to date have been qualitative and

careful experiments should be done to describe the two-body problem as a function of

particle Reynolds number and to also clarify the roles of the boundaries.

00 00 00 11 11 11

Figure 2.14: Two particles falling in water draft, kiss, and tumble as they fall. Images
courtesy of Eduardo Ramos.

2.3.2 Multi-particle dynamics

While dynamics in systems composed of only a few particle are very complicated,

systems of many particles have received much more attention. The first treatment of the

effects of many particles on the properties of a fluid was the calculation of the viscosity

as a function of particle concentration by Einstein in 1905. Since then, the most carefully

studied and characterized multi-particle system has been that of sedimentation of spheres

with very small particle Reynolds number (Rep ≈ 10−4 in typical experiments). These
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systems have the advantage that due to the slow sedimentation rate, they can be observed

for long times in a steady state.

Even at these Reynolds number, sedimentation of tiny spheres is still not under-

stood theoretically: prediction of the sedimentation velocity for a collection of spheres as

a function of particle concentration is still an unsolved problem [22, 148]. There has been

considerable effort to calculate this sedimentation velocity beginning with Smoluchowski

in 1912 [168]. Thirty years ago, Batchelor gave a formula which works well at low particle

Reynolds number [11]. He proposed that the sedimentation velocity, vs for a collection

of spheres with volume fraction Φ should be related to the terminal velocity of a single

sphere slowly falling in an infinite medium, vt by

vs

vt

= 1 − 6.55Φ + O(Φ2) (2.2)

Experiments have confirmed the linear correction to the sedimentation velocity,

but find a prefactor smaller than 6.55 [22]. For larger velocities and higher volume

fractions, the Richardson-Zaki equations (Equation 1.2) give good predictions for sedi-

mentation rates, but in this regime there is no theoretical derivation of the power scaling

of vs with Φ.

Recently, experiments have been done to monitor the actual particle trajectories

during sedimentation. The dynamics of the flows even at these low Reynolds numbers is

surprisingly complicated, see Figure 2.15, and includes fluctuations of correlated regions

of motions which resemble turbulence even though particle Re is so small [176]. Cor-

relations of the velocity fluctuations have been extensively studied using PIV and light

spectroscopy techniques [111, 163, 164] and found to obey scaling laws.

At yet larger particle Reynolds number, Re ≈ 1 with bigger particles, the work is

much more sparse although new techniques are being developed to study these cases [34,

140, 141]. At these larger Reynolds numbers, the sedimentation steady state isn’t reached

as in lab size apparatus the sedimentation only lasts for a short time. Also, with larger

particle size, container size becomes important. It has been shown that fluidized beds are

useful to study a system with larger Re [34]. The fluidized bed allows the system to reach

a steady state, effectively sedimenting forever4. Fluidized beds also allow control of the

average volume fraction by changes in flow rate. Using a form of spectroscopy based on

the detection of multiply scattering sound, Cowan et al. studied the correlations present

in fluidization of 0.438 mm spheres in a container 120x200x12 mm3, and found that there

were correlations of the type found in smaller Re [34].

4However, there should be differences due to imposed flow profile; the sedimenting suspension is
allowed its own “imposed” flow
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Figure 2.15: The local velocity field showing fluctuating regions in a sedimenting suspen-
sion of 50µm particles particle at Re ≈ 10−4, from [164].

Figure 2.16: (a) A snapshot of particle velocities in a quasi-2D fluidized bed. (b) Time-
traces of the motion of two different particles. The leftmost trace shows that particles
can make rapid vertical excursions. From [155]

Work has been done in quasi-two dimensional fluidized beds at these Reynolds

number [154, 155]. In these experiments, particle tracking was used to account for all

particle positions at all times to study spatial correlations and obtain the velocity PDFs.

A crossover in the shape of PDF was found as particle concentration was changed. Par-

ticles were found to behave superdiffusively in the vertical direction but obeyed normal

diffusion in the horizontal direction, indicating that the particles undergo rapid vertical

motions within the the fluidized state.
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Work at higher Re and larger aspect ratio systems (3D beds) has been studied

for over 50 years [41, 83, 93, 97, 109], but without the precision experiments which are

currently being applied to sedimenting suspensions. Our experiments will help to fill

that void. We will discuss 3D beds in more detail in the chapters on fluidized beds, and

we postpone further discussion here.

2.3.3 Theories of multiphase flows

At low Reynolds numbers, Re � 1, theories have been developed to describe the

interaction of few and many particles. Details are discussed in [86].

Interpenetrating fluids

There have been different attempts to create a hydrodynamic description of many-

particle multiphase flow using interpenetrating fluids [92, 97], but none are tested with

the rigor of continuum theories of dry grains. As none of the results from two-fluid models

will be discussed in this dissertation, we will not discuss these theories.

Direct Numerical Simulation

Given the complication of the two-fluid models and lack of contact of with exper-

iments, perhaps the best hope lies in direct numerical simulation. However, this is an

extremely challenging problem due to the need to solve Navier Stokes with many moving

boundaries. Techniques for calculation have been developed at low Reynolds numbers

Stokes flows where computation called Stokesian Dynamics and have been shown very

useful for simulation of colloidal particles [20, 61].

In a more sophisticated approach, a recent Grand Challenge project has devel-

oped techniques to solve Navier-Stokes equations in three dimensions in the presence

of multiple moving boundaries. The goal was to develop general parallel code called

particle movers. Using a numerical scheme called fictitious domain method [67], Pan

et al have shown that a multiparticle-fluid (1000 particles) system at finite Re can be

modeled [143] including fluidization and sedimentation. These results are impressive,

see Figure 2.17, although quantitative comparison is in the early stages. Single particle

results are promising, as seen in Figure 2.18, and should improve as computers get faster.

2.3.4 Industrial applications for multiphase flows

Finally, we should mention that fluidized beds have been studied industrially

for over 50 years due to their importance in oil refining. For example, the Chevron

refinery in Pascagoula, MS uses a fluidized bed catalytic cracker to process almost 200, 000
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Figure 2.17: Direct numerical simulation of water fluidization of 1204 spheres confined
to a narrow gap. Simulation by T.-W. Pan.

barrels/day. At 14 dollars a barrel, that is almost 109 dollars per year5.

5Source: Chevron web site, http://www.chevron.com/about/pascagoula/
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DNS Experiment

Figure 2.18: Comparison of experiment and DNS results for the sedimentation of a single
sphere within a fluid filled gap of 1.1 particle diameters. The agreement is quite good.
Courtesy E. Ramos and T.-W. Pan
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Chapter 3

Experimental apparatus and techniques

3.1 Introduction

This section describes the experimental equipment used to study two different

problems in granular flow: the dynamics of wave patterns formed in a vibrated granular

layer and the motion of grains at the onset of fluidization in a water fluidized bed. The

experimental apparatus share little in common, other than that they are devices which

fluidize granular materials in a controlled way. The bulk of the effort in both experiments

has gone into minimizing inhomogeneity in forcing: in the vibrated layer experiment this

consists of creating a system which shakes sinusoidally in only the vertical direction with

minimal vibration in lateral direction while maintaining a controlled vibration accelera-

tion. In the fluidized bed, the effort was put into ensuring a uniform flow velocity across

the diameter of the column which houses the grains, without local inhomogeneities in

the flow.

3.2 Vibrated granular layer experiment

In this section, I describe the system used to vibrate thin layers of granular ma-

terial.

3.2.1 Mechanical details

A schematic of the shaker is shown in Figure 3.1. The system is designed to mini-

mize lateral vibrations while ensuring precisely controlled vertical sinusoidal acceleration.

I now describe the different components of the shaker.

Bronze spheres typically 165 µm are shaken in containers evacuated to 20 mTorr

to avoid effects due to hydrodynamic interaction [142]. The vacuum is produced by a

roughing pump and its level is monitored by a Granville-Phillips 275 Convectron con-

vection gauge. The containers have bases made from Aluminum plates with Acrylic

side-walls. As small grains can be strongly influenced by static charge effects due to the

repeated rubbing against the side-walls, the walls are coated with an anti-static coating

called Mar-Con developed by SciCron Technologies of Amarillo, TX. This coating con-
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sists of a thin film deposited on the acrylic which contains tiny (< 1 µm) conducting

spheres. For small particles, the application of the conducting film can alter the value Γ

for the onset of waves. In addition, without the coating, a cloud of fluidized particles,

presumably due to extra repulsion due to static effects, can appear above the surface of

the waves.

20 mTorr 



PCB 
accelerometer

1/4-20 
leveling 
screws

Air table with pneumatic 
supports

100 lbs VTS 
electromagnetic 
shaker

Teflon pads

Granite stone

Dalsa 256x256 at 
227 fps camera

S.S. 
Flexible 
coupler

140 LED ring

air bearing

Figure 3.1: A schematic of the vertically vibrating granular layer apparatus. The diagram
is not to scale. Each component is described in the text.

The heart of the system is a electromagnetic shaker (Vibration Test System 100)

whose armature oscillates in a field produced by two permanent magnets and is critically

damped with beryllium copper flexures: this produces undistorted sinusoidal vertical

acceleration over a wide range of frequencies and accelerations. However, the small

linear bearing in the VTS shaker is not sufficient to control lateral motions to the degree

necessary in the experiment and thus a more sophisticated stabilization arrangement was

developed.
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A square-shaft low-friction square shaft air bearing (New Way Air Bearings) in-

creases lateral stability of the shaking cell, see Figure 3.2. The cells are mounted to the

bearing ram, a 10 cm long shaft with square cross section 2.54 x 2.54 cm. The ram slides

in the square-bore shaft created by four precision aligned porous plates 8 cm in length.

The porous plates are connected to a supply of gas (compressed dry N2) through filters

and the gas pressure is regulated to 50 Psi, although the exact pressure is not critical.

The gas allows the ram to move almost frictionlessly without mechanical contact in the

vertical direction while being extremely rigid in the lateral direction (70 N/µm, 0.1 µm

of lateral travel per 1 cm of vertical travel).

square shaft air bearing 
0.25 µm/2.54 cm 
horizontal/vertical travel

2.54 cm

Dry air in

Porous Al 
plate

Figure 3.2: A detailed view of the air bearing assembly.

The stiffness of the shaker (flexures/linear bearing) is much lower (by a factor of

approximately 103) than that of the air bearing. To avoid undue mechanical stress on

the shaker and any lateral support of the air bearing housing, we use a flexible coupler

to couple the ram to the shaker. This consists of a steel rod, 1 cm in length and 0.16

cm in diameter. The rod has a stiffness intermediate between the shaker and the ram

and has a resonant frequency (104 Hz) which is much larger than any shaking frequency.

The flexible coupler is connected from the shaker to the bearing ram and the housing of

the air bearing is mounted to leveling plate which can be leveled by three screws. The

screws are attached to a table which is floated on isolating pneumatic supports (Newport

Corporation) to further reduce lateral coupling between the shaker and the container.

All of this aids in two problems. Without the square shaft bearing, due to lateral

components of acceleration, the patterns can rotate in solid body rotation with periods
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which can be less than a minute. Such rapid rotation produces boundary forcing on the

pattern which can introduce defects. The addition of the air bearing increases the period

of rotation to several hours, a time scale unimportant in the study of the phenomena

described in Chapters 4- 6. We have also measured the lateral accelerations using a

triaxial accelerometer (PCB 356A08) and the magnitudes are typically at the resolution

of the device, 10 mg.

The second problem caused by lateral vibration is more severe: this is a resonance

effect which causes the grains to heap in one direction toward the sidewall of the container

(effectively changing their level) at higher frequencies. The current shaker design has

reduced the severity of this effective de-levelling: below approximately 40 Hz, the level

doesn’t need to be changed once set. However above 40 Hz, the level must be adjusted

as the frequency is changed. Since most of the work which will be described is below

this frequency, this effect is unimportant. However, for controlled studies of patterns at

higher frequencies, this problem needs to be addressed.

3.2.2 Control Electronics

A Stanford Research SRS 345 function generator drives a Techron power amplifier

bridged to supply 500 Watts of power to the VTS shaker. The SRS generator generates a

voltage from a lookup table and produces extremely pure sinusoidal functions. However,

there can be significant drift in the output of the power amplifier and to account for this,

we implement Proportional-Integral-Derivative (PID) Control on the acceleration of the

container. The signal from the PCB accelerometer is input into a Metrabyte DAS-HRES

A/D board digitizing with a resolution of 16 bit at 40 kHz. The computer computes the

correction signal and applies a 0-5 VDC signal to a modulation input on the SRS of the

form required for PID. PID control is a standard control technique and I will not describe

the details of the implementation [125]. The control scheme maintains a stability of 0.1%

in Γ over a period of hours.

As a side note, we control the modulation input of the SRS instead of commu-

nicating with the SRS through its serial interface. This is because the SRS uses relays

to switch output ranges. When a relay switches, it creates a momentary 0 VDC. This

is undesirable as it creates a short spike in the control signal. The spike disrupts the

pattern and also causes the control to deviate from the set-point for a short time.

3.2.3 Frequency Modulation

In Chapter 5 we will describe experiments which study the response of square

pattern to frequency modulation of the container drive frequency, fd. We modulate the

forcing of the shaker using the frequency modulation (FM) feature of the SRS shaker in
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which the voltage has a form

y = A sin(2πfdt +
fms

fmr

sin 2πfmrt) (3.1)

which produces a frequency modulation of the drive signal fd with modulation frequency

(rate) fmr and depth of modulation (span) fms.

As the SRS can only generate fms and fmr in steps of 0.1 Hz, to conduct mod-

ulation sweeps with higher frequency resolution, we use a Intersil 8038 precision wave-

generator. We drive the FM input of the 8038 with the unmodulated output of the

SRS (which has resolution to 1 mv) ensuring stable frequency modulation. We do not

perform PID control when the system operates in this mode, and the 8038 has a large

enough thermal drift for this to be problem. However, since data are typically taken for

only several hundred cycles, the acceleration can be monitored and corrected if necessary.

This chip allowed us to perform high resolution “spectroscopy” of patterns, in steps of

10−3 Hz.

3.2.4 Illumination and imaging

The lighting in the system is controlled by a phase-locked loop circuit designed

by Paul Umbanhowar, and the details of the circuit are discussed in his thesis [182].

The circuit produces output pulses of 1/100 duty cycle phase locked to the signal from

the SRS generator. The phase in the oscillation cycle can be adjusted and the strobing

frequency can be a multiple 2n of the drive frequency, useful for study of patterns which

respond at different multiples of the drive frequency. The phase locked loop drives a

power transistor, operational amplifier feedback circuit (see Figure 3.3) which produces

constant current pulses to a circular ring of 120 red LEDs wired in parallel with opening

angle of 45 degrees. This ring is placed so that the grains are illuminated at low angles

and causes high regions to be brightly lit and low regions to be dark.

We image the layer using a DALSA-CAD256 8 bit digital camera, 256x256 pixels

at 227 frames/sec with an Imaging Technology frame-grabber. The camera has no trigger

input, so it is synced to the strobe light in software by acquiring frames when a light

threshold is reached in each frame. As the strobe frequency and camera pixel clock

frequency are incommensurate, this can lead to frames in which there is very little light

(frame straddling) and we must correct for such frames by discarding them in post-

processing. All image processing is done in the Matlab development environment.
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Figure 3.3: A constant current LED driver circuit. The feedback loop maintains a
constant current set by the voltage of the incoming pulse, Vin and the load resistor, R.

3.2.5 Rapid Γ change experiments

In chapters 4- 6, we study pattern formation after a sudden change in the accelera-

tion of the container. The experiment must jump at precise and repeatable accelerations

during the cycle. Because the inductive shaker oscillates with a frequency dependent

phase lag (LEAD) relative to the drive signal, we monitor the phase of the acceleration

using a Schmidt trigger set to output a positive-going pulse when the acceleration signal

crosses a certain threshold. These pulses are monitored by an input line on the parallel

port of the PC, allowing for msec resolution of phase detection. The accelerometer signal

is recorded by the A/D board, and written to disk at 40 kHz for the duration of the

experiment.
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3.3 Fluidized bed apparatus

In this section, I describe the experimental details of the fluidized bed experiment.

The experiment requires that a collection of grains, packed into a tube of square cross

section, receive a flow of water that is precisely controlled in time and spatially homoge-

neous. As equilibration times in the system can be long, the experiment must maintain

the desired flow characteristics over a period of days. We have designed a system that

satisfies these conditions and I will describe the system below. A block schematic diagram

illustrating all of the elements of the experiment is shown in Figure 3.4.

PMT Laser

∆P



Water
Reservoir

∆P Flow meter

Bypass
Valve



Correlator

640x480
30 fps

1024x1024	
1 fps

2.54 cm

Pentium 
Computer


Flow Rate:
  10-400 mL/min



Flow distributor

Pump

Figure 3.4: A block diagram of the fluidized bed flow apparatus. The different elements
of the experiment are described in the text.

3.3.1 Flow distribution

The most important element of a fluidized bed is the flow distribution element,

the distributor. The purpose of the distributor is to create a uniform flow profile at

the entry to the bed. Distributors in laboratory experiments are often constructed from

multiple layers of uniform mesh or single pieces of porous plate. However, the design of

distributors is still more an art than a science, with different groups using different designs

and materials. This artistry is unsatisfactory, as there is evidence that the distributor

design can strongly influence fluidization phenomena. For example, it has been shown
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that bubbling (and the size of bubbles) depends strongly on the distributor pore size [43].

In the most complete study to date, analysis and preliminary experiments were conducted

to study the stability of fluidization to large scale circulation as a function of the pressure

drop through a distributor [97]. However, comparison to experiment was hampered by

the lack of flow distributors with sufficiently uniform flow profiles. Furthermore, these

studies do not address the question of the specific designs; in recent years, very few

systematic studies have been done to test different designs [43, 109]. We hope that the

designs discussed below will be useful contribution. Our experiments are very sensitive to

slight flow inhomogeneity and our distributor design reflects this constraint. Two designs

have been used and tested, and schematics of the different fluidized bed designs are shown

in Figure 3.5 and Figure 3.7. The beds and control apparatus discussed here are designed

for fluidization of 0.1 − 1 mm glass spheres with density of roughly 2.5 g/cm3.

The design shown in Figure 3.5 uses several layers of precision mesh screening to

achieve uniform flow distribution. A double layer of mesh is pulled tight by o-rings across

a square opening. The o-rings are pressed on by a block which holds the square bore glass

tube. The bottom mesh is nylon screen (Nitex precision mesh, Sefar America, Kansas

City, MO) with 5 µm holes and 0.75% open area, (see Figure 3.6) and the top layer is 635

stainless steel mesh (TWP Inc, Berkeley, CA) with 20 µm holes and 26% open area. The

nylon mesh creates the bulk of the pressure drop (up to 70 kPa) through the distributor

while the stainless steel mesh supplies the rigidity. Both meshes have excellent uniformity

and the only difficulty is creating a reliable joint between the mesh and the walls. We

have found that the flow characteristics of the device using the mesh technique depends

sensitively on the sealing between the edge of the tube and the mesh. Because of the

flexibility of the mesh, a nonuniform clamping pressure around the perimeter of the tube

produces fast-moving jets of water at fluidization which persist far above onset creating

streaming jets in the fluidized bed.

These jets are undesirable and influence studies of the fluidization of different

packings of grains near the onset of fluidization. For loose packings, the jets locally

fluidized regions and allow the system to re-pack at a higher volume fraction. This

produces a measurable drop in bed height before fluidization. For tight packings, the

jets tend to expand the bed prior to fluidization and this produces a rounding of the

fluidization transition. The location and strength of the jets are sensitive to the clamping

and construction procedure and while with enough repetition a bed can be assembled

which does not suffer from the above problems, we have surged ahead looking for a

more robust design. We note that work on the stability of fluidized beds has shown

that beds become unstable to large scale circulation if the ratio of pressure drop through

the distributor to the pressure drop through the bed is less than about 10 [97]. In our

fluidized beds with mesh distributors, the pressure drop across the distributor is typically

30-50 kPa, a factor of 20-40 times greater than the pressure drop across the bed.
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Figure 3.5: The schematic of the fluidized bed which using different meshes as flow
distribution elements.

A more robust design uses a distributor made from a 2 mm thick porous glass

plate manufactured by Collimated Holes, Inc. of Campbell, CA. The plate is made from

an array of optical fibers which are bundled and fused together. The fibers have cores and

cladding which are made of different types of glass and after bundling, the core glass is

etched away leaving a hexagonal array of 10 µm holes arranged on approximately 15 µm

centers. As the plate is 2 mm thick, it is very rigid. See Figure 3.8 for magnified image

of the plate.

From our studies with the mesh distributors, we have found that the design of the
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150 µm 200 SS

635 SS

Nylon

Figure 3.6: Different meshes used as flow distribution elements. A combination of stain-
less steel and nylon mesh produces a uniform flow distributor. A 100 µm glass sphere is
shown for scale reference.

mounting of the plate is as important as the design of the plate itself. Therefore the plate

is bonded between two exactly matched glass tubes, the downstream side long enough

to ensure a uniform profile of fluid impinging on the distributor plate. The bonding

was done using UV curing epoxy which wicked into the joint and was hardened before

reaching the inner edge of the walls. All construction was done by Collimated Holes, Inc.

The entire apparatus is bonded to an acrylic flange using waterproof Devcon 2-

ton epoxy. The flange mounts to another homogenizing section which is mounted to
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epoxy in joint 
25 µm wide

glass capillary 
plate: 10 µm holes 
on 20 µm centers

40 µm thru hole, 20 µm 
above plate

flat to 25 µm

Figure 3.7: Schematic of a fluidized bed using a porous glass plate as a distributor
manufactured by Collimated Holes, Inc. The plate is bonded between two matched
square-bore glass tubes.

a kinematically mounted leveling plate. The flow accumulates in an overflow bucket

ensuring a constant height upper boundary condition.
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10 µm

Figure 3.8: Clockwise: An exploded view of the bed with capillary plate distributor. A
top view of the 2 mm thick capillary plate. A view with less resolution. A section of the
plate with a defect boundary.

Possible improvements in distributor design

The pressure drop across the porous plate distributor is about a factor of two

greater than the pressure needed to support the bed. As there is some debate on the

effect of the pressure drop in the distributor on the stability of the fluidized state, it

would be useful to be able to vary this pressure drop. A possible improvement of the

design is shown in figure 3.9. This design would allow different pressure drops to be

created while maintaining the rigidity and wall-plate precision of the porous plate. It

would consist of two matched sections of square bore tubing sandwiching a piece of mesh

and different weaves of meshes would control the pressure drop.

3.3.2 Pressure measurements

In both designs, (Figures 3.7 and Figure 3.5), the pressure drop due to fluid

passing through the bed is measured by differential pressure transducers (details of the

transducers are discussed below). In fluidization, the pressure drop is always less than

or equal to the buoyant weight of the bed. In our experiments, this is typically 0 to 1500
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Figure 3.9: Schematic of a proposed fluidized bed using a porous glass plate to sandwich
mesh. Different meshes would be used to vary pressure drop across the distributor.

Pa. In the mesh design, the pressure is measured through a 75 µm slot directly above

the distributor. In the capillary plate design, the pressure directly above the distributor

is measured through a 50 µm hole 20 µm above the base of the distributor.

3.3.3 Flow system

Steady stable flow in time is crucial for controlled studies near the onset of fluidiza-

tion. We have developed a fluid flow control system to maintain precisely and accurately

controlled steady flow rates from 0 to 200 mL/min over periods of hours. An example of

the controlled flow over typical measurement times (30 seconds) is shown in Figure 3.10.

Measurements over much longer times look similar. The flow is controlled by a Microp-

ump pump which is magnetically coupled to a DC motor. To sense the flow, we use a

Validyne DP-15 differential pressure transducer which measures the pressure drop across

a section of pipe. The high sensitivity, stability and time response make this an ideal flow

47



sensing element. The transducer forms one arm of an AC bridge and measures deflection

of a stainless steel diaphragm by changes in inductance in a pickup coil. The range of the

transducer can be set by changing diaphragm thicknesses, but we find it more convenient

to measure in different flow rate ranges by changing the length of the pipe across which

the flow is measured. These elements are incorporated into a PID loop using a Pentium

computer and a Metrabyte DAS-HRES A/D board. The accuracy of the pressure gauge

is 0.25% and has a sensitivity of 0.6 Pa for the diaphragm used in our experiments. The

length of the pipe and the sensitivity of the device determine the overall sensitivity of

the flow measurement, and for a pipe of length 30 cm, we can detect flow rate changes

as small as 0.05 mL/min. To convert to flow rate in mL/min, we calibrate the trans-

ducer arrangement against a McMillan 101-4TP paddle wheel-type flow meter (McMillan

Company, Georgetown, TX), accurate to 1%. With the arrangement described, we can

maintain high flow stability for the typical ranges in the experiments, 0 − 100 mL/min

over periods of hours and days.
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Figure 3.10: The flow measured under control at Q = 35.61 mL/min for 30 seconds. The
RMS deviation around the mean is 0.2%.

An ASCO three way valve is used to pulse flow to the bed and create different

bed packings (see Chapter 8).

3.4 Measurements and characterizations of grain behavior

We use a variety of techniques to characterize the behavior of the bed, including

high resolution imaging to measure the average volume fraction, differential pressure

measurements to measure the pressure drop across the bed and light scattering techniques

to measure small length scale motions of the grains. In this section I describe each.
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3.4.1 Pressure measurements

We measure the pressure drop developed across the bed using another Validyne

pressure sensor between a port slightly above the bottom of the bed and a point above

the bed. The position of the second pressure port is not critical as the effect of pressure

head is canceled since the ports of the transducer at the same level. The only effect of the

position of the second port is due to drag force along the square tube. We neglect this

contribution as for the large bore tubing used in the bed, the drop is not a measurable

within the sensitivity of our transducers.

3.4.2 Volume fraction

Figure 3.11: The voidage, 1 − Φ is computed from high resolution images of the bed. A
top section of a bed of 335 µm glass spheres, 2x2 cm2 is shown

The average voidage of the particles 1 − Φ is determined from high resolution

images of a face of the bed using a 1024x1024 10 bit Xilix camera. Since the interface

in the bed in our experiments is always flat (see Figure 3.11), we average horizontally.

Using this technique, we can achieve resolution of 5 µm, a factor of 20 to 200 smaller

than a particle diameter. For a bed of cross-sectional area A, the height of the bed h is
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converted to volume fraction by a measurement of the total mass mp of the particles and

their density ρp by,

1 − Φ = 1 − mp

ρpAh
(3.2)

The average densities of the glass spheres are accurately measured by immersing particles

of known mass in a tube filled with water and measuring the increase in height of the

water with the high resolution camera. The density for 300µm glass spheres is 2.56 g/cm3

3.4.3 Light scattering techniques

To study the motion of the grains in the fluidized bed, we study the intensity

fluctuations of laser light transmitted through the transparent particles. A schematic of

the light scattering is shown in Figure 3.12. Coherent light from a laser is incident normal

to one face of the glass fluidized bed chamber. The light beam is expanded by a lens to

avoid local heating effects. The light enters the sample, undergoes multiple scattering

events from the glass spheres, and emerges from the opposite face where it is collected

by a photomultiplier or a CCD camera.

The light accumulates phase proportional to the length of the path it travels

through the scattering medium. The intensity at a point in space is the square of the

sum of the fields from all paths which reach that point. For a collection of random

scatterers, the interference results in a spatially random pattern with regions of bright

and dark. These bright and dark regions are called speckles and are analogous to the

fringes in an interference pattern from regularly spaced array of scatterers. An image

of a speckle pattern is shown in Figure 3.13. In the scattering experiments, the optical

setups are such that a detector images a single speckle, called a coherence area.

Motion of the scatterers changes path lengths, and the interference from these

changing paths creates a fluctuating speckle pattern. Thus, measurement of the the

intensity fluctuations in a coherence area gives information about the motion of the

scatterers. The great advantage of the multiple scattering techniques is that they are

extremely sensitive to small particle motions. Since there are typically several hundred

particles involved in the scattering of the light, each must only displace a small amount

for the total phase of the light to change by π (the path lengths by λ). Thus, the

time evolution of the speckle fluctuations gives a high resolution measurement of particle

motion. For example, we can detect motions as small as 1 nm for a tube with cross

section 2.54 x 2.54 cm containing 300 µm particles.

As Figure 3.12 illustrates, we study the time evolution of the speckle pattern in

two ways. The first is a light scattering technique called Diffusing Wave Spectroscopy
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Figure 3.12: The scattered light in the experiment is detected by either a PMT or a
CCD camera. The pinhole in front of the PMT images one coherence area, whereas each
element of the CCD, 10x10 µm, images slightly less than one coherence area. A side-view
of the CCD is shown.

(DWS) [144]. In DWS, the scattered light in a single coherence area is collected by a

photomultiplier tube, shaped by a combination amplifier/discriminator and fed into a au-

tocorrelation computer card, Flexible Instruments Flex 30. The autocorrelator calculates

the intensity autocorrelation function g(2)(τ) using the multiple tau method [159], filling

channels spaced logarithmically in time. The correlator has time resolution (minimum

bin size) of 0.1 µsecond.

The theory of DWS is used to calculate the ensemble averaged mean square dis-

placement of the particles, MSD = 〈∆R(τ)2〉, from the measured temporal correlation

function g(2)(τ). We will discuss the theory of DWS in more detail in section 3.5.

Another technique, essentially an extension of DWS, involves imaging multiple

speckles onto a 8 bit 640x480 CCD [190]. In the multispeckle technique, the optics are

arranged such that each CCD element (pixel) records a single speckle coherence area1.

Each pixel records the intensity fluctuations from statistically independent scattering

1For the inspiration behind this technique, see experiments on multispeckle DLS, see [101, 195]
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1 mm

Figure 3.13: The speckle pattern created by random scattering of coherent laser light
from collection of 335 µm glass spheres.

events, and thus by proper averaging, we are able to boost signal to noise at long delay

times. However, due to the relatively slow speed of the CCD camera used, (30 Hz,

with shutter time roughly 30 msec), we are not able to resolve the short time dynamics.

However, by recording the CCD images to disk for long times (up to two hours), we can

use this technique to study transient grain rearrangements and motions.

Collection optics

The mean size of the bright and dark spots is called a coherence area and can be

thought of as the average size over which a region of light will be coherent. As seen in

Figure 3.12, it is calculated from,

d = zλ/R (3.3)

where z is the distance from the scattering volume, λ is the wavelength of light and

R is the characteristic dimension of the aperture. Equation 3.3 sets the geometry of

the collection optics, insuring that the detector images only a single coherence area.

In fact, the DWS measurements provide a measure of coherence area by the value of

the correlation curve at τ = 0. This will be discussed when experimental results are

presented, in section 3.5.3 and Chapter 8. In our setup, the collection optics consist of a

1 cm aperture, a 30 cm long tube with a blackened interior, and a 50 µm pinhole placed
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in front of the PMT. The inside of the tube is blackened to prevent the absorption of

stray reflected light. The length of the tube chosen such that the speckle is the size of the

pinhole. In the multispeckle technique each CCD element measures 10x10 µm, imaging

slightly less then one coherence area; we simply use the aperture and the tube length to

set the speckle size to be the size of the CCD element.

Practical considerations

The multiple scattering scatters light into all solid angles. Thus, to ensure good

statistics, the laser source must have high enough power so that enough photons are

collected in the small detector angle. We find that for DWS of colloidal particles, sampling

times of 30 seconds require laser power of roughly 100mW to ensure smooth correlation

functions. For 300 µm spheres in water, the power must be increased to 1 Watt. The

high power concentrated in the 2 mm beam diameter can cause significant heating of the

medium; we often expand the beam with lens to reduce this effect. The laser must also

have a coherence length which is longer than any scattering path length. This ensures

that the de-phasing of the light, the source of the fluctuating intensity, is only due to

fluctuations in the positions of the scatterers. We use a Coherent Verdi 532 nm laser

with a linewidth of less than 5 MHz. This creates a coherence length of 60 m, much

greater than any path length in the sample. The power output of the laser is controlled

to 1% over hours.

These multiple scattering spectrospcopy techniques are sensitive to motions as

small as 1 nm. Thus, to eliminate external perturbation and vibration, the system is

placed on a Newport Optical table.
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3.5 Diffusing Wave Spectroscopy (DWS)–theory and measure-
ments

As described above, DWS probes small length-scale motions over short time-scales

by measurements of the autocorrelation of intensity fluctuations of transmitted photons.

We now describe the theory of DWS. To test the theory and our apparatus we also present

measurements of diffusive behavior of small 0.596µm colloidal particles. We will present

data for application to the larger glass spheres of the fluidized bed in a Chapter 8.

3.5.1 Multiple scattering theory-essential physics

The goal of the measurement of scattered light is to relate the motion of the

scatterers to the measured decay of correlation of intensity fluctuations, g(2)(τ). At a

given instant in time at the detector, the field is the sum of the electric fields of all

light paths. This field will change (and thus the intensity fluctuate) due to changes in

scattering paths by the motion of the particles. To calculate the detected field, we need

to do a double sum. First, we must find an expression for the phase φ(t) accumulated by

a photon traversing a path p of length s(t) as it scatters N times through the medium.

This requires a sum over the positions of the scatterers in the path. The second sum

requires that we sum over all possible paths from source to detector. Now, the motion

of the particles creates a time-dependence in the length of the path, s(t), and thus the

phase accumulated in the path acquires a time-dependence. Thus, we will calculate how

the total phase for that path changes as the scatters move. The final sum can be thought

of as the sum over the change in phase weighted by the probability that a path of length

s suffers that change in phase. Therefore, we need an expression for the probability of

light to travel through the medium along a path of length s. This will be denoted P (s).

Each path of length s will contribute a decay to g(2)(τ) which can be thought of

as the characteristic time it takes for the phase of that path to change by π. If there

were only one path through the medium, this would yield the decay of the correlation

function immediately. However, there are many paths and each contributes a different

decay rate to the electric field intensity. Thus the final decay function will account for

these contributions. They will contribute in proportion to the relative probability for

light to travel that path, P (s). Paths which are more probable more strongly influence

the time-scale of the decay.

The contribution to the decay of g(2) for a single path will be calculated in the next

section. For diffusively moving scatterers, with trajectories which are random walks over

long times, it decays almost exponentially in time. To calculate the path length proba-

bility function, DWS relies on the assumption that in a sufficiently scattering medium,

the intensity of light follows a diffusion equation. To make this connection we use the
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fact that the light moves much faster than any of the scatterers; the diffusion coefficient

of diffusing light is written Dl = vl∗/3, where v is the average velocity of light (transport

velocity) in the medium [183]. For example, in a dense colloidal suspension, Dl is typi-

cally 1016 larger than the diffusion coefficient of a typical colloidal particle. Thus, on a

sufficiently short time-scale, we can view the problem as transmission through a collection

of static scatterers. The light scatters with a mean distance between scattering events of

l. After the light has undergone enough scattering events, characterized by a total path

length l∗, the direction of the light is uncorrelated with its original direction. Averaged

over this scale, the photons look as if they are diffusing, and the diffusion equation can

be used to calculate the intensity profile of the light in the medium. Since the number

of photons emerging from a point is related to the length of the path that it took for

those photons to diffuse to the point, this relates P (s) to the intensity calculated from

the diffusion equation.

In our experiment, l∗ > l and L � l∗. Typically L ∼ 2.54 cm, l ∼ 100 µm, and

L/l∗ ∼ 20. On average, light undergoes ≈ (L/l∗)2 scattering steps with l∗/l scattering

events per step, so the light is scattered ≈ (L/l∗)2l∗/l times by the time it emerges. This

multiple scattering ensures that the propagation of the light will be diffusive and this

approximation is crucial for the validity of DWS.

There is an interesting difference between media which multiply scatter and those

that do not. Consider the transmission coefficient, T , of a plane wave incident on scatter-

ing medium of length L. If L < l, most of the light is unscattered, and T ≈ exp (−L/l).

If L � l∗, none of the light is unscattered. It is transmitted diffusively and T ≈ l∗/L.

The transmission measurement is a useful check to determine whether we can use DWS.

We will use this formula later to compute the value of l∗.

3.5.2 Multiple scattering-calculations

In this section, I outline the basic theory for calculation of the ensemble averaged

MSD from temporal correlation of scattered light. The calculations in this section follow

Weitz [192].

Correlation functions and changes in field

Since we seek to calculate an expression for the electric field at the detector due

to scattering, it would be convenient to measure the electric field at a point and perform

the correlation of the electric field, g(1)(τ),

g(1)(τ) =
〈E∗(t)E(t + τ)〉
〈E∗(t)E(t)〉 (3.4)
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However, this is difficult due to the high frequency of visible light. Instead, we

detect the intensity of the scattered field, Ī = 〈E∗(t)E(t)〉, where the average is taken

over many cycles of the field oscillation. From this intensity signal, the intensity auto-

correlation function g(2), called the degree of second order coherence, is calculated from

g(2)(τ) =
〈Ī(t)Ī(t + τ)〉

Ī2
(3.5)

For intensity fluctuations which are rapid compared to the time scale of measure-

ment, g(2) and g(1) are related by the Siegert relation,

g(2) = 1 + β|g(1)(τ)|2 (3.6)

where β is a number related to the optical arrangement of the system: detection of

one coherence area or less yields β = 1 and g(2)(0) = 2 for polarized light, while for

unpolarized light, β = 0.5 and g(2)(0) = 1.5. We now outline the calculation E(t) for

light transmitted through many scatterers.

A calculation of E(t) relates to the experimentally obtained g(2) to the mean

square displacement of the particles. As described physically above, the calculated field

will be a sum over the paths p which have accumulated a phase Φ(t) = k0s during the

transit time t on a path of total length s(t) through the sample. Here k0 is the wavevector

of the light, with k0 = 2π/λ. At time t, the electric field at the detector E(t) is the sum

over all paths which reach the detector and can be written,

E(t) =
∑

p

Epe
ıΦp(t) (3.7)

where Ep is the amplitude of the field from path p and
∑

p represents the sum over all

paths. To connect with experiment, E(t) is inserted into Eq. 3.4. Assuming that photon

paths are uncorrelated, it can be shown that,

g(1)(t) =
∑

p

〈Ip〉
〈I〉 〈e

∆Φp(t)〉 (3.8)

where 〈Ip〉 ≡ 〈|Ep|2〉 is the average intensity of the path p. Thus, two quantities must

be calculated to turn this into a useful method. 〈Ip〉 will be calculated later using the

diffusion of light approximation. ∆Φp(t) = Φp(t) − Φp(0) is the phase shift in time due

motion of the scatters and we calculate it now.
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Figure 3.14: A typical scattering path used to calculate the change in phase of the light.

Phase change in a path

We must first calculate the change in phase of scattered light as a result of particle

motion. Figure 3.14 shows the basic physics of the scattering. The total path length, s,

of light which scatters elastically (|kn| = k0 = constant) N times on a trip through the

medium can be written,

s =
N
∑

i=0

|ri+1 − ri| =
N
∑

i=0

(
ki

|ki|
) · (ri+1 − ri) (3.9)

and from this equation, we calculate the total phase change for a given path,

Φ(t) =
N
∑

i=0

ki · [ri+1 − ri] (3.10)

The main result of this calculation, obtained after averaging over many particles,

is that for a path through the sample of total length s = Nl with N � 1, the mean

squared change in phase for the path can be written,

〈∆Φ2
p(t)〉 =

2

3
k2

0〈∆r2(t)〉 s

l∗
(3.11)

This equation relates the mean squared phase change of the light to the mean square

displacement of the particle motion. Physically, it says that for large path lengths, the

phase undergoes a large change, as many moving scatterers contribute. As an example

which will be discussed later, the motion of diffusing colloidal particles follow ∆r2(t) =

6Dt, where D is the self diffusion coefficient. In this case the change in phase would be

written as,

〈∆Φ2
p(t)〉 = 4k2

0Dt
s

l∗
(3.12)
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We will verify this later for colloidal particles, using the formula as a test of the

experimental technique.

Sum over all paths and calculation of P (s)

We now insert our expression for 〈∆Φ2
p(t)〉 into Equation 3.4, and sum over path

lengths. Rewriting Equation 3.4 in terms of P (s), the fraction of scattered intensity in a

path of length s, instead of 〈Ip〉/〈I〉, we obtain,

g(1)(t) =
∑

s

P (s) exp(−1

3
k2

0〈∆r(t)2〉 s

l∗
) (3.13)

This is the main result of our calculation, and it relates the decay of g(1) to

the motion of the scatterers. Thus, if this equation can be inverted, the mean square

displacement of the particles as a function of time can be directly obtained. For ex-

perimental data, g(1) can be obtained from g(2) using Equation 3.6; numerical inversion

of Equation 3.13 will give the desired 〈∆r(t)2〉. To proceed, however, we must have an

expression for P (s). The calculation of P (s) is where the diffusion approximation is used.

We assume that the light undergoes a large number of scattering events, and on length

scales much larger than l∗, we write the diffusion equation for the energy density of light,

U (number of photons per unit volume):

∂U

∂t
= Dl∇2U, (3.14)

where Dl is the diffusion coefficient for the photons. To obtain P (s) from U , consider the

following argument. If photons are sent into the sample at time t = 0, they will undergo

random walks with step size l∗, scatter many times, and emerge from the sample sometime

later. Those photons emerging at time t will have traveled a distance s = vt where v is

the average speed of light in the medium [183]. Therefore, the emerging flux of photons,

J , will be proportional to the number of photons which traveled the path of length s.

But this is equivalent to the probability for a photon to travel a path of length s, P (s).

Thus, to find P (s), we must compute J , and this is done using Fick’s law, J = Dl∇U .

U is obtained by a solution of Equation 3.14 with the appropriate boundary conditions.

It is clear that a solution to Equation 3.14, and thus P (s), will depend on the

geometry of the scattering situation. In this way, the geometry of the sample affects the

qualitative behavior of the autocorrelation function. For example, consider transmission

through a very thick sample with L � l∗. If the sample is thick enough, all of the
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detected photons will have scattered roughly the same number of times2, and P (s) can

be approximated by a delta function. In this case, assuming diffusive particle motion, the

autocorrelation function would decay exponentially. If scattered light is collected in the

backscattering geometry [192], some paths can be short and others long and the decay

function would be complicated mixture of the multiple path lengths. As we will only

consider the transmission case through relatively thick samples, our correlation functions

will be almost exponential. We now calculate the exact form to get the corrections.

z
p
l*z

e
l*

z
e
l*

L

Figure 3.15: The different length scales involved in the boundary conditions for DWS.

The solution to Equation 3.14, is obtained by assuming as an initial condition that

2More precisely, the spread around the mean path length will be small relative to the length of that
path
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at t = 0 a pulse of light spread over a region of size d begins diffusing at distance zp inside

the cell. Here, zp ≈ l∗. Another boundary condition must be imposed, and this is often

taken to be that U = 0 at a distance ze outside the boundary; we will comment on this

in a later section. For a schematic of the different length scales involved, see Figure 3.15.

For simplicity, for now, we use the standard approximation that ze = 2l∗/2 [192]. For

solutions to Equation 3.14, we refer the reader to [192] where the diffusion equation is

solved for a variety of incident light configurations. For the case in which the illumination

is taken to be constant over the incident face (a plane wave, d → ∞), the autocorrelation

function takes the following form,

g(1)(t) =

L/l∗+4/3
zp/l∗+2/3

{sinh [ zp

l∗

√

6t
τ
] + 2

3

√

6t
τ

cosh [ zp

l∗

√

6t
τ
]}

(1 + 8t
3τ

) sinh [ L
l∗

√

6t
τ
] + 4

3

√

6t
τ

cosh [ L
l∗

]
, (3.15)

In this equation and the following expressions, t
τ

= k0
2〈∆r(t)2〉/6. For a point source

(d → 0), it can be shown that,

g(1)(t) = C

∫ ∞

Q

J0(
R

L

√

ξ2 − Q2)D(ξ, ε, ζ)ξe−(1−ζ)ξdξ, (3.16)

where Q ≡ (L/l∗)
√

6t/τ , ε ≡ 2l∗/(3L), ζ ≡ zp/L, and C is a normalization constant

such that g(1)(t = 0) = 1. The function D(ξ, ε, ζ) is given by,

D(ξ, ε, ζ) =
2ε[(1 + εξ) − (1 − εξ)e−2ζ xi]

(1 + εξ)2 − (1 − εξ)2e−2ξ
. (3.17)

For the realistic case of an incident Gaussian beam of beam diameter d, a different form

is obtained,

g(1)(t) = C

∫ ∞

Q

e−(ξ2−Q2)(d/4L)2D(ξ, ε, ζ)ξe−(1−ζ)ξdξ. (3.18)

This formula reduces to the forms of Equations 3.15 and 3.16 in the appropriate

limits. In the experiment, the point source distributes more photons into the bed than an

expanded source, and thus produces smoother correlation curves. However, the narrow

beam can cause local heating effects. Thus, we find it useful to vary the beam size with

a lens to optimize between heating effects and signal-to-noise considerations. We use

Equation 3.18 to calculate 〈∆r(t)2〉 for this case.
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3.5.3 DWS on colloidal suspensions

To gain proficiency with the many complicated expressions in DWS, we have

repeated the results of [192] using colloidal suspensions. This allows us to study DWS

in a well understood situation.

Measurement of parameters

In practice, extraction of meaningful quantities using DWS can be tricky. Once

g(2)(τ) is obtained, Equation 3.15 must be inverted to find 〈∆r(τ)2〉. The inversion is

accomplished using a root finding technique using Matlab.

There are several fitting parameters which cannot be calculated from first princi-

ples and must be measured. Theses are the scattering length l∗ and ze, the extrapolation

length3. Durian [52] has proposed techniques to measure l∗ based on a formula which says

that for multiply scattering media, the transmission coefficient T is inversely proportional

to the sample thickness,

T =
1 + ze

(L/l∗) + 2ze

, (3.19)

It can be shown that ze can be found from the angular distribution of light emitted

from the sample,

P (µ) =
zeµ + µ2

ze/2 + 1/3
, (3.20)

where µ = cos θ.

To compare with experiments, the intensity must be calculated and it can be

shown that the detected intensity as a function of θ goes like,

I = [
ItD

2

2πR2
D

]P (µ) (3.21)

where IT is the total transmitted intensity. Thus by angular detection of the light we

can fit ze, and from a measurement of the transmission coefficient, we can calculate l∗.

We measure the transmitted intensity through a 1% by mass colloidal suspension

using a Coherent Fieldmaster head which has a 10 degree opening angle and we also

measure the intensity with 10 degree integration using this head. Figure 3.16 shows the

3The penetration length is to a good approximation always taken to be zp ≈ l∗. I will assume this in
the measurements on the colloids.
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Figure 3.16: The intensity of light scattered from a colloidal suspension as a function of
angle. The fit to Equation 3.21 gives the value of ze ≈ 0.89.

angular distribution and the fit to Equation 3.21. From this fit we find that ze ≈ 0.89, in

reasonable accord with other measurements and the theoretical prediction of 2/3 [192].

Colloid diffusion

We present data in which we measure the motion of 0.596µm polystyrene spheres

suspended in water. Since the colloidal suspensions have been well studied using the

DWS [192], they provide a useful test of our setup. We use two different geometries: a

“slab” in which the cell is much larger than it’s thickness (10x8x0.5 cm2, aspect ratio 20)

and a square tube with dimensions like those of the bed (2.54 x 2.54 x 15 cm3, aspect

ratio 1). The slab geometry is used to test DWS in the limit where Equations 3.16-

3.15 are valid. The tube geometry is used to confirm that for large enough L/l∗, the

small aspect ratio does not lead to significant corrections. In fact, we find no significant

difference between measurements in the two geometries, indicating that we are in the

multiple scattering limit for the colloids.

In Figure 3.17, we present g(2)(τ) for 0.596 µm polystyrene spheres (Duke Scien-

tific, 5060A) with volume fraction 0.01 at room temperature. The laser was expanded

to a beam 1 cm in diameter onto the incident face of the slab. Since we want to maxi-

mize counts, we do not use a polarizer between the sample and the detector. Thus, the
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Figure 3.17: The autocorrelation function for the colloidal suspension described in the
text, slab geometry

intercept g(2)(0) is approximately 1.5, in accord with theory [119]. The value of 1.45

indicates that we have detected only about one coherence area and that we have sampled

a sufficient number of decorrelation times4.

Using Equations 3.19- 3.21 and the measured angular intensity data, we find

ze = 0.89. Taking reflections into account from all surfaces, we measure T = 0.1 over

the integrated area of the power meter head (1 cm in diameter). This yields a value of

L/l∗ ≈ 20, indicating that we are in the limit in which DWS will apply. Inverting g(2)

using Equation 3.15, we find that 〈∆r(t)2〉 = Dtα, and this is plotted on log-log axes

in Figure 3.18. α is very close to 1, indicating diffusive motion. Our best fit measures

1.05 and we believe that the deviation is due to flow induced by thermal heating from

the laser; measurements at lower laser power have exponents closer to 1. Measurements

in which the fluid was agitated using a magnetic stir bar show exponents that deviate

further from 1 as the stir rate increased. The intercept gives the value for D, and we find

that it is 0.7 µ m2/sec. This is in good agreement with D = 0.73 µ m2/sec calculated from

the Stokes-Einstein relation, D = kT/6πaµ, where a is the particle radius. However, for

4For the colloids, the decorrelation occurs within roughly 100 µ seconds, much shorter than the
sampling times. For slowly moving granular materials, the decorrelation times can approach the sampling
times. In this limit, the intercept deviates from the ideal value [186].

63



10
-4

10
-6

10
-5

10
-4

τ (sec)

<∆
r(

τ)
>2  (µ

m
2 ) Slope=1

10
-6

Figure 3.18: The MSD for colloids, showing diffusive behavior, slab geometry.

our purposes, the value of the intercept is unimportant: inaccuracy in a measurement of

the value l∗ scales all MSD curves (changes the intercept, the value of D), but does not

significantly effect the scaling exponents (the values of α). We will examine the behavior

of α during fluidization in Chapter 8.

Practical considerations and limitations

As shown, DWS allows measurement of diffusion coefficients of colloidal particles.

These particle are typically sub-micron, with sizes comparable to 2π/k0. However, we

would also like to use DWS to measure properties of large particles which may not move

diffusively. Note that the curves g(2) bend over after some time–this is the time it takes

for light paths to change by a wavelength λ due to particle motion. This time sets the

limitation on maximum particle displacements that can be resolved. We can estimate

the time and distance for which measurement of particles in the following way: For

thick samples in which every photon path undergoes many scattering events, the average

photon will undergo ≈ (L/l∗)2 scattering steps of length l∗ so the light is scattered many

times on average 〈s〉 ≈ (L/l∗)2l∗ by the time it emerges. Thus as a sample becomes very

thick, the spread of path lengths relative to the longest path length goes to zero and P (s)

can be approximated by a delta function, P (s) ≈ δ(〈s〉). Substituting into Equation 3.13

the integral disappears and the correlation takes takes a purely exponential form,
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g(1) = exp(−1

3
k2

0〈∆r(t)2〉L
l∗

) (3.22)

For diffusing colloidal particles, 〈∆r(t)2〉/ = 6Dt where D is the diffusion co-

efficient. Thus, g(1) will be approximately exponential and decay in a time tdec =

1/k2
0D(l∗/L)2. For the diffusing particles measured in our experiment, this works out

to be 70µsec, in agreement with our data. The particles will have moved
√

6Dtdec ≈
(l∗/L)2λ, roughly the wavelength of light. This makes sense, as the correlation functions

decay over the time it takes for a path to change length by λ or equivalently, the time

the phase changes by π. For our 0.596 µm colloidal particles, the distance traveled in

a decay time is 0.013 µm, much less than a particle diameter. Thus we are visualizing

short time and length scale diffusion.

Now we would like to make a similar estimate for glass spheres which are moving

(as will be shown in Chapter 8) ballistically, such that 〈∆r(t)2〉/ = v2t2, where v is a

typical particle velocity. Inserting this into Equation 3.13, we find that g(1) will decay like

exp−1
3
k2

0v
2t2; we determine that a characteristic decay time (e-folding time) goes like

tdec =
√

3/v2k2
0(l

∗/L)2. For particles moving ballistically at 1 mm/sec, this is roughly

10 µsec in accord with our measurements in Chapter 8. In this time, a 335 µm particle

will move vtdec ≈ 13 nm, a factor of 20000 of its diameter5. Thus, we will only resolve the

short time and length scale motion, even with several decay times because of experimental

limitations of noise. This is obviously a huge limitation for examining long time dynamics.

This timescale can be increased by increasing l∗ but there is a fundamental limitation on

the size of l∗ before the diffusion approximation becomes invalid. However, the technique

becomes very useful if short time behavior is desired. The technique is extremely sensitive

to small scale motion–since we would like to understand the motion of grains which are

trapped at long times but can rattle in local cages, DWS is ideal. In fact, as will be

seen in Chapter 8 we are able to resolve the short time ballistic motion associated with

fluidization. The multispeckle DWS is sensitive to similar length scales, but increases

the timescale over which decorrelation can be accurately measured. In addition, the

measurement of transient events due to minute grain rearrangements is possible using

the multispeckle technique. Data will be presented in Chapter 8.

To resolve larger scale motion, the wavelength of the scattering field must be

increased and techniques involving ultrasound have been used to do this, for example the

tools of Diffusing Acoustic Wave spectroscopy [34].

5We have used a Vision Research Phantom 4 camera with a 5 kHz frame rate to confirm the collisional
velocity measurement.
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Chapter 4

Emergence of order in an oscillated granular layer

The contents of this chapter have been published in [73]

4.1 Introduction

Our experiments on a vertically oscillated granular layer reveal that spatial pat-

terns emerge in two stages following a change of parameter into the pattern-forming

regime: an initial, domain-forming stage and a later stage in which domains coarsen

to form ultimately an extended regular pattern. We characterize the evolution of the

pattern using a “disorder function” δ̄(β), where β is a moment of the disorder operator

[Gunaratne et al., Phys. Rev. E 57, 5146 (1998)]. The disorder in the initial stage is

found to be consistent with a decay given by δ̄(β) ∼ t−β/2, in accord with theory that

predicts that behavior in this stage should be universal for pattern forming systems. The

final stage is non-universal.

Nonequilibrium spatial patterns have been extensively studied in laboratory ex-

periments and model systems, but most studies have focused on the dynamics of small

deviations from asymptotic well-ordered states described by amplitude equations [35].

The dynamics of such perturbations exhibit universal (system-independent) properties.

Much less is understood about the development of a pattern from an arbitrary initial

condition and the extent to which this dynamics is universal. We present experimen-

tal measurements of the time evolution (ordering) of a pattern from an initial noisy,

featureless state and compare our observations to theory [37, 58, 82, 94, 161].

We characterize the development and ordering of a pattern using a recently intro-

duced measure, the disorder function, δ̄(β), which vanishes for any completely ordered

pattern, and has a nonzero positive value that increases as the amount of disorder in

the pattern increases. A further description of δ̄(β) will be given in Section 4.4 Be-

fore presenting our main results, we describe our experimental apparatus in Section 4.2,

present results for a typical experimental realization in Section 4.3, and review previous

theoretical work on the development of nonequilibrium patterns in Section 4.4.
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4.2 The Experiment

Our experiments generate patterns in a layer of 0.165 mm bronze spheres con-

tained in a vertically oscillated circular container with a diameter of 140 mm [129]. The

layer is four particle diameters deep, and the cell is evacuated to 4 Pa so that hydro-

dynamic interaction between the grains and surrounding gas is negligible. The control

parameters are the frequency f of the sinusoidal oscillations and the peak acceleration

of the container relative to gravity, Γ = (2πf)2A2/g, where A is the amplitude of the

oscillation and g is the gravitational acceleration. As f and Γ are changed, a variety of

temporally subharmonic patterns including locally square, striped, or hexagonal patterns

are observed [129]. In this paper we consider the development of the square patterns.

To visualize patterns, the granular surface is illuminated with a ring of LEDs

surrounding the cell and is strobed at the drive frequency of the container. The light is

incident at low angles and the scattering intensity is a nonlinear function of the height

of the layer; scattering from peaks (valleys) creates bright (dark) regions. The circular

container allows relaxation to an almost perfect square array through wavelength adjust-

ment of the pattern at the container wall over a distance of less than one wavelength 1.

In the region of the Γ− fd phase diagram studied, square patterns appear for increasing

control parameter at Γ ≈ 2.75; the bifurcation is subcritical. In our experiments, Γ is

suddenly increased at a specific phase in the vibration cycle from an initial value of 2.2,

where no discernible structure is observed. The grains are not in contact with the plate

when the acceleration is changed, and we assume that the initiation of the quench (the

time origin for our experiments) occurs at the last layer takeoff time before Γ is changed

(the point where the acceleration of the plate is equal to −g); this is the lower bound of

possible quench initiation times, and is physically reasonable, as it is the last time that

the layer “knows” about the initial Γ = 2.2. The uncertainty in the time origin is the

dominant source of systematic error in the interpretation of our observations. This is

illustrated in Figure 4.1.

For a typical quench experiment, we take 10 sets of data at the same Γ and f ,

and record images of the pattern at a fixed phase in the oscillation cycle. Since the

images’ absolute phase in the oscillation cycle relative to the last layer takeoff time is

arbitrary (chosen for highest contrast in the images), the time between the last layer

takeoff time and the first image will not in general be an integer period of oscillation

and may be different for different sets of runs, although this time is fixed within a set of

10 runs. Thus in our analysis of the image data, the values for the number of container

oscillations may be fractional, but in each case there is one container oscillation between

1Experiments done in square containers also exhibit our main results. However, the formation of a
single domain takes a much longer time, as the final pattern orientation is strongly influenced by the
boundaries.
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Figure 4.1: The trajectory of a single inelastic ball during a jump from Γ = 2.2 to
Γ = 3.0. The single inelastic ball described the motion of the center of mass of the layer.
Γ changes while the layer is in the air, resulting in uncertainty in the initial quench time.
We take t = 0 to be the last time the layer was on the plate before the change in Γ.
Trajectory calculated with the code in Appendix D.

successive images (see the abscissas of Figure 4.3 and Figure 4.5; the number of periods

has been rounded in Figure 4.2).

4.3 Observations of the development of order

The emergence of local square domains and their coarsening to a final, almost

perfect square array is shown in Figure 4.2 The first three frames of the top row show that

the system quickly (within six oscillations) creates a pattern with a range of orientational

order the size of a wavelength. The last three frames show slow growth of domains of
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Figure 4.2: Snapshots showing the emergence of a square spatial pattern in a granular
layer at fd = 27 Hz and Γ = 3.3; the times given in the upper left corner of each image
are in units of container oscillation periods. Each image in the top row is of the central
8 cm of the 14 cm diameter circular container. Each image in the bottom row is the
Fourier transform of the image above it. The first three frames of the top row show
the emergence of local domains from a uniform background, and the last three show the
slower coarsening of these domains to an almost perfect square array.

pattern with different orientations. These domains grow and compete, and the final state

of the system is a single domain of pattern. This process can be viewed in Fourier space

as well, as shown in the bottom row of Figure 4.2. The early stage narrows the range

of wavevectors in k-space, while the later stage selects a discrete set of wavevectors. We

study aspects of this relaxation that are invariant under repetition of the experiment

and analyze the dependence on the control parameters fd and Γ. Our goal is to gain a

quantitative understanding of the process of pattern evolution. Before we present our

analysis of the observations, we review theoretical work on the evolution of patterns after

a quench from an initial noisy and spatially featureless state and the methods that have

been used to characterize this evolution.

4.4 Theory

Most analyses of the development of patterns have focused on solutions u(x, t) to

the Swift-Hohenberg equation [35],

∂u

∂t
=
(

ε − (4 + q2
0)

2
)

u − u3 − ν(∇u)2 + η(x, at), (4.1)

where u(x, t) is a two-dimensional scalar field, ε is the distance from pattern onset, ν

is the strength of a non-variational term [82], and η a random forcing term such that

〈η(x, t)η(x′, t′)〉 = 2Fδ(x − x′)δ(t − t′), where F denotes the strength of the noise. For
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suitable control parameters, random initial states evolve to patterns under spatiotemporal

dynamics given by (4.1).

The most common measure used to characterize patterns generated by (4.1) is

the width of the structure factor S(t) [28, 37, 58, 161] (i.e., the width of the peak in

the azimuthal average of 〈ũ(k, t)ũ(−k, t)〉), which decays in two distinct stages [161]:

S(t) ∼ t−
1

2 is obeyed until the peak amplitude of the field u(x, t) saturates, beyond

which time the pattern coarsens and the decay becomes slower. For ε = 0.25 and ν = 0,

Elder et al. [58], Cross and Meiron [37], and Hou et al. [94] found that in this second

region S(t) decreased as t−
1

5 when F = 0, and as t−
1

4 when F 6= 0. Schober et al. [161]

found that for F = 0 and ν = 0, S(t) ∼ t−
1

4 ; the discrepancy with earlier results could

be due to the one-dimensionality of their model 2.

The structure factor provides a single characterization of a pattern while the

disorder function δ̄(β) provides families of characterizations of a pattern, just as the

generalized dimensions dq [87] and singularity spectra f(α) [174] provide a family of

characterizations of strange attractors. The details of a pattern depend on the initial

state, but different patterns generated under fixed control parameters have the same

δ̄(β) [80]. For a pattern at fixed time represented by a scalar field v(x) (e.g., v(x) =

u(x, t0) at time t0) the disorder function is defined as

δ̄(β) =
(2 − β)

(
∫

d2x)

∫

d2x|(4 + q2
0)v(x)|β

q2β
0 〈|v(x)|〉β

, (4.2)

where q0 is the typical wavevector associated with the pattern, 〈|v(x)|〉 denotes the mean

of |v(x)|, δ̄(β) (0 ≤ β < 2) has been normalized to be scale invariant, and
∫

d2x is the

area of the system. The ingredients used to deduce the form of the disorder function are

its invariance under arbitrary rigid motions of the pattern and the fact that the pattern

locally consists of a small number of plane waves. Modulation of squares due to curvature

of the contour lines contributes to δ̄(β) through the Laplacian, while variations of the

size of squares contribute via the choice of a “global” q0 [82]. Unlike the information

contained in the structure factor, |(4 + q2
0)v(x)| is a measure of local irregularity in

the pattern, and hence distinct “moments” β can be used to quantify multiple aspects

of the disorder in patterns. For example, limβ→2 δ̄(β) is proportional to the density of

defects [81].

Calculating δ̄(β) for experimental data requires some care. Images shown in

Fig 4.2 have sharp changes at the edges which lead to high frequency contributions

2Additional quantities have been measured in the second relaxation region. Hou et al. measured
total domain wall length as a function of time. For F = 0, it was shown to decay as t−

1

4 , while for
F 6= 0 the decay was proportional to t−0.3. Cross et al. showed that a stripe orientation correlation field
decayed as t−0.24. The interpretation of these results is that different measures probe different features
of the pattern, and these features relax at different rates.
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in their Fourier spectra. Consequently, their removal through simple filtering causes con-

tamination of the pattern near the edges and leads to error in calculating the disorder

function. We use a method of noise filtering that involves extending the image to a pe-

riodic one [90] using “Distributed Approximating Functionals” (DAFs) [91]. A method

for calculating δ̄(β) from filtered data has been presented in Ref. [80].

The disorder function analysis of the evolution of patterns generated by (4.1)

from an initial noisy state reveals two stages: the emergence of domains characterized

by δ̄(β) ∼ t−σE(β), where σE = 1
2
β is an exponent that characterizes this early stage, and

a later slower domain-coarsening behavior characterized by δ̄(β) ∼ t−σL(β) [82]. Unlike

σE(β), σL(β) depends on the value of ν in (4.1), and is thus expected to be system and

model dependent. Since (4.1) contains the general features of a nonequilibrium pattern-

forming system, we will compare the results obtained for δ̄(β) from our experiments with

the results from numerical simulations of (4.1) [82].

4.5 Analysis of the observations

4.5.1 Evolution of the disorder function for fixed Γ

The behavior of δ̄(1) for the relaxation of Figure 4.2 is shown in Figure 4.3. In

repetitions of the experiment for identical control parameters, the details of the patterns

differ for each run, but δ̄(1) behaves the same. The initial formation of domains and the

final coarsening exhibit different decay rates. The transition in behavior coincides with

the saturation of the peak amplitude (cf. Figure 4.3). This transition is consistent with

that exhibited by the structure factor for the spatio-temporal dynamics of (4.1) [161].

During the initial stage of pattern formation the data are described by δ̄(1) ∼
t−0.5±0.1. The domain formation stage is short, lasting only through the first six periods

of oscillation of the container; hence the observation of power law behavior in the initial

stage is suggestive rather than conclusive. The uncertainty in the exponent is a result of

two main sources of error. First, the short time range of the data makes the contribution

of the beginning and end points of the initial region very important. The uncertainty in

the time of the initiation of the quench contributes to a systematic shift in the value of

the exponent; the value of −0.5 is found if we assume that the quench begins at the time

of the last layer takeoff before Γ is changed (see discussion in Section 2). In addition,

the end point of the initial region is known only to within one period of oscillation.

Variation between runs also contributes to uncertainty in the exponent, but the error

bars in Figure 4.3 show that it is small relative to the above uncertainties.

Since nonlinear effects are negligible during the initial stage, the evolution can be

modeled by (4.1) without nonlinear and stochastic terms. Numerical integration of noisy
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Figure 4.3: The time evolution of the disorder function δ̄(1) for square patterns at Γ = 3.3
(◦), showing the domain forming stage with slope of −0.5 and the coarsening stage with
slope of −0.13. Also shown is growth of the pattern amplitude (•), which grows rapidly
in the domain-forming phase and saturates in the later coarsening phase. Each curve is
an average of 10 runs at the same control parameters. The error bars at late times show
typical variation between runs. The error bars at early times are the size of the symbols.
The abscissa is in units of number of container oscillations from the last layer takeoff
time before the container acceleration was changed.

initial states shows that
∫

d2x|u(x, t)| ∼ eεtt−
1

4 and
∫

d2x|(4 + q2
0)u(x, t)| ∼ eεtt−

3

4
3;

consequently δ̄(1) ∼ t−
1

2 . The same behavior has been found in the initial decay of the

structure factor [161] and in the rate of domain growth. More generally, for 0 < β < 2,

we find that in our data the moments of the disorder function decay as δ̄(β) ∼ t−σE(β),

where σE(β) ≈ 1
2
β; see Figure 4.4. This is also seen in numerical integration of the

linearization of (4.1).

The latter stages of pattern formation correspond to nonlinear spatiotemporal

dynamics of the field [161]. For the evolution shown in Figure 4.3 at Γ = 3.3, the

decay of disorder at long times is described by δ̄(1) ∼ t−0.13. This decay exponent is

3In the absence of diffusion, u(x, t) ∼ eεt. The effects of the diffusive terms are thus studied through

the behavior of e−εt
∫

d2x|u(x, t)|, which is numerically observed to decay as t−
1

4 .
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Figure 4.4: The slopes of log-log plots of δ̄(β) vs. β during domain formation (•) and
domain coarsening (�). The results are for a single run at f = 27 Hz and Γ = 3.3. There
is no scatter in the curves because the calculation for δ̄(β) is done for multiple values of
β on the same data set. Since we assume that the quench initiation time is the time of
last layer takeoff before the acceleration is changed, the uncertainty in the initial time
does not enter the error calculation and the error estimates on the slopes of the lines,
0.47± 0.05 and 0.13± 0.02, are obtained by comparing different data sets within a 10 set
run and different choices for the region over which a power law is fit. While statistical
variation between runs is a source of error for both σE and σL, the narrow range of time
in the first region is the dominant source of error for σE.

not expected to be universal [82]. The magnitude of the exponent is smaller than that

for the relaxation rate of the structure factor upon integration of (4.1) with F 6= 0,

−0.25 [58, 94], and also with F = 0, −0.20 [37, 58, 94]. We find that σL(β) is linear

with σL(β) ≈ 0.13β (Figure 4.4). In contrast, (4.1) yields [82] a nonlinear concave-down

function for σL(β). We speculate that the linearity found in our study implies that the

spatiotemporal dynamics is governed by relaxation with a single length scale, and is

thus a consequence of finite cell size. If we calculate σL(β) for intermediate times (10-

1000 oscillation periods), where domain sizes are small compared to the system size and

boundary effects should be negligible, a nonlinear concave-down relationship is obtained.

This nonlinearity implies that during intermediate times relaxation of the pattern occurs

over multiple length scales, and work is in progress to test this hypothesis using (4.1).
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4.5.2 Evolution of the disorder function for increasing Γ

Next, we consider changes in the behavior of the disorder function as Γ is increased

from 2.8, driving the system further away from the onset of patterns (Figure 4.5). We

find that in the domain formation stage the exponent σE(β) is independent of Γ; identical

behavior is observed on integration of (4.1) [82]. Although the form of the curves in the

second region deviates from power law decay, the mean decay rate (measured by σL(1)

for a given Γ) decreases from 0.18 to 0.12 as Γ increases from 2.8 to 3.2; similar behavior

is seen with decreasing ν in (4.1) [82]. The long time behavior of the curves is not shown

because for Γ < 3.3 a secondary oscillatory motion dominates the dynamics of the pattern

after about 100 oscillations; work is in progress to understand these oscillatory dynamics.
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Figure 4.5: The time evolution of δ̄(1) for square patterns at three different final container
accelerations, Γ = 2.8 (◦), Γ = 3.0 (�), and Γ = 3.2 (+). The decay during the initial
domain forming stage is independent of Γ while the magnitude of the slope in the later
stage decreases as Γ increases. The abscissa is in units of number of container oscillations
from the last layer takeoff time before the container acceleration was changed.
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4.6 Conclusions

We have shown that the formation of a pattern in a vertically oscillated granular

layer occurs in two distinct stages. During the early stage the spatiotemporal dynamics

is essentially linear and the decay of the disorder function determined in our experiment

is consistent with the power law found in pattern formation for the Swift-Hohenberg

equation: δ̄(β) ∼ t−σE(β), with σE(β) ' 1
2
β. During the later domain coarsening stage

the emergence of order is described by δ̄(β) ∼ t−σL(β), where σL(β) is a nonlinear function

at intermediate times and becomes linear at long times, when the finite system size dom-

inates the decay. This relaxation is not universal, since the decay rate (and thus σL(1))

decreases with increasing Γ. Such behavior is also seen in model systems, in which σL(β)

is a model and parameter dependent nonlinear function of β [82]. Such characterizations

of pattern formation can be used to determine the validity and limitations of model sys-

tems [189], and can be used to study patterns and their evolution in other laboratory

experiments.
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Chapter 5

Lattice vibrations and melting of square patterns

5.1 Introduction

Previous studies of the square patterns in shallow vibrated granular layers studied

average properties of the pattern like wavelength and angular correlation [181]. In this

chapter, we present studies of the dynamical behavior of the square patterns. For certain

control parameters Γ and fd, the patterns can have time independent long-range order

the size of the system, as seen in Fig 5.1. In this chapter, we will discuss dynamics of the

patterns which disrupt the perfect long-range order. To summarize our main findings, we

have observed that the square patterns exhibit dynamics like those of a two-dimensional

crystal lattice with elements coupled by Hookian springs. Different transverse normal

modes of the granular lattice are resonantly excited for different container frequencies

and accelerations. If the container frequency is modulated at a particular normal mode

frequency, that normal mode amplitude increases until the lattice melts (becomes disor-

dered). Molecular dynamics simulations conducted for decreasing friction between the

particle and vibrating plate also show melting, and this occurs in accord with the Linde-

mann criterion for 2D melting.

Although the dynamics that will be described will be in the fd/2 strobed reference

frame, for completeness, we briefly discuss the sloshing motion of the grains that forms

the peaks and valleys of standing wave square pattern. A three dimensional view in

Fig 5.2 reveals that the peaks in shallow layers are formed of several hundred particles

connected by thin lines containing many fewer grains. The four peaks surround a valley

in which there are almost no particles. After a single plate oscillation, the peaks become

valleys and the valleys become peaks. A schematic of this process is shown in Figure 5.3.

Every plate oscillation, the peaks collide with the plate and spread radially. A cycle later,

a new peak is created in the intersection of the collision of grains from neighboring peaks,

forming in the place where there was a valley. The lines are formed by the intersection

of flows along the lattice directions and also contribute to the formation of peaks–upon

plate collision, grains spread perpendicular to the lines and contribute to the formation

of the peak.

There is some indication that the dynamics of the peak to valley motion is neces-
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Figure 5.1: A square pattern formed in a square container with four layers of 165 µm
bronze for Γ = 3.0 and fd = 27 Hz. The pattern is oriented at π/4 to the container walls.
The region shown is 16x16 cm2.

Figure 5.2: A time sequence of images taken at an oblique angle to the container: dur-
ing one plate oscillation, peaks containing several hundred grains become valleys which
contain very few grains.

sary to develop the theory of the lattice dynamics that will be presented in this chapter1.

1Private communication from Chris Bizon
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Figure 5.3: A schematic showing the flow of grains from peaks and lines into valleys after
a plate oscillation cycle. The black and white indicate the positions of the peaks and the
lines after one plate oscillation. The gray arrows indicate the direction of the flow of the
grains. In the schematic diagram, the grains return to the original peaks after another
oscillation cycle.

However, for simplicity, we will only consider motions of the pattern in the strobed fd/2

frame.

Section 5.2 of this chapter is a preprint of a paper describing the dynamics of

square patterns [72]. Following this section is a discussion of the frequency modulation

technique that were briefly described in the paper. We present details of the dispersion

relation calculation in Appendix C.

As the dynamics of the patterns are characterized by many different spatial and

temporal frequencies, Table 5.1 presents the symbols used in this section.
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Symbol Description Range

Γ Peak plate acceleration 0 − 4g
fd Container drive frequency 17 − 34 Hz
fL Pattern normal mode frequency 0 − 2.5 Hz
fmr FM rate frequency 0 − 5 Hz
fms FM span frequency 0 − 5 Hz
fBZ First Brillouin zone edge frequency 1.5 − 2.5 Hz

Table 5.1: The symbols used in this section
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Figure 5.4: Square patterns form in a vibrated layer for a range of Γ and fd and resemble
two dimensional crystal lattices. (i) A lattice pattern at Γ = 2.90 and fd = 30 Hz
averaged over 10 plate oscillations. (ii) Relative motion of two peaks of the lattice (with
lattice constant a) for Γ = 2.90, and fd = 30 Hz. The lattice is oscillating in a fixed
mode such that peaks separated by

√
2a oscillate exactly out of phase at roughly 1 Hz.

5.2 Resonantly Excited Normal Modes and Shear Melting

5.2.1 Introduction

Systems driven away from thermodynamic equilibrium often form patterns when

forced beyond a critical threshold. Close to the bifurcation, the dynamics of large length

scale perturbations to the local wavelength of the pattern are well described by partial

differential equations (PDE) called amplitude equations, whose form is universal [35].

Our study of square lattice-like patterns formed in a vertically vibrated granular layer

finds that instead of diffusive relaxation of perturbations, which are often described by

the amplitude equations, perturbations to these patterns relax in an oscillatory manner,

and the individual peaks of the pattern behave as if they are interacting elements in a

lattice. We propose that the behavior of this nonequilibrium pattern is governed by the

coupled set of ordinary differential equations (ODE) that models the dynamics of the

interacting lattice elements.

This ODE approach differs from the traditional description of patterns by the

PDE amplitude equations. The inspiration for such an approach comes from the work

of Umbanhowar et al. who postulated that nonequilibrium pattern dynamics could be

described using a collection of interacting localized excitations called oscillons as the

basic pattern elements [179]. Although the lattice elements in the square patterns are not

oscillons, we will give evidence to show that the general approach of localized interacting

elements is useful as a description of patterns found in a laboratory experiment.

80



5.2.2 Experimental details

As in [129], we oscillate a thin layer of bronze spheres2 at a drive frequency of

vibration, fd, ranging from 17 to 34 Hz and the non-dimensional peak plate acceleration

Γ ranges from 2.35 to 4.0. For these parameters, square patterns develop as shown in

Fig 5.4. The granular surface is imaged by a 256x256 CCD camera using low angle

illumination which creates bright regions at the peaks [14].

For the layer depth studied, square patterns exist in a region of parameter space

for 2.5 < Γ < 4.0, and fd < 34 Hz. To verify that boundary conditions did not influence

our main results, the experiments were checked in two different containers, a circular cell

with diameter 7 cm and a square cell 18 cm on a side. The container shape only selects the

direction of the pattern: a circular cell allows the pattern to form with any orientation,

whereas in a square container, patterns form preferentially at π/4 to the direction of the

container. None of the results reported depended upon the shape of the boundaries of

the container3, indicating that the lateral boundary conditions are unimportant for the

phenomena described.

5.2.3 Oscillating peaks

An overhead snapshot of a typical square pattern seen in the experiment is shown

in Figure 5.4i. At the phase in the plate oscillation cycle where the pattern amplitude is

maximum, the pattern is composed of an array of peaks of grains arranged in a square

lattice connected by a network of thin lines of sand4. The plate oscillates with a frequency

fd and the pattern oscillates subharmonically at fd/2; after each plate oscillation, a peak

becomes a valley. At maximum height, each peak typically contains on the order of 100

particles, and we collect images at this phase in the cycle. Between the peaks, in the

dark regions, there is almost no sand. Thus, when strobed at fd/2, the pattern resembles

a two dimensional crystal lattice made of discrete elements separated by lattice constant

a. In this paper, we will only consider the strobed motion of the pattern.

Even in the strobed frame, this pattern is not stationary — the center of mass

of each peak of the pattern oscillates around its time averaged position (averaged over

several hundred plate oscillations) which defines its lattice site. This motion occurs in the

plane of the pattern, and may either appear as random, aperiodic oscillation (as would be

seen in a lattice in contact with a thermal bath) or take the form of a collection of peaks

oscillating around their respective lattice positions with fixed relative phases (coherent

2The phenomena was also observed in 165 µm diameter lead particles.
3Square boxes and circular cells of different sizes produced the same results.
4Connecting the peaks are thin lines of sand which could play an important role in the mechanism

responsible for the dynamics of the patterns.
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motion, the details of which will be discussed below). As an example of a type of motion

that is seen, in Figure 5.4ii, a time series of snapshots of two peaks (in boxes A and B)

is shown. In this case, the peaks oscillate exactly out of phase with each other, and the

peaks within a particular row (shown in the box at π/4 to the natural lattice direction)

maintain a constant separation of
√

2a as they move; this is an example of a transverse

mode in the (1, 1) lattice direction. In general, a series of frames will not always show

such perfectly coordinated behavior, but will exhibit complicated motion around the

mean lattice positions. We analyze this motion by decomposing it into Fourier modes.

5.2.4 Dispersion relation

To enumerate these modes we take a time series of 256x256 pixels images strobed

at fd/2 and perform the three dimensional discrete Fourier transform on this series,

giving Ĩ(kx, ky, fL), and for each fL, we determine the (kx, ky) at which the most power

is present. To avoid confusion, we denote frequencies of motion of the peaks by fL.

Spatial modes, phase modulations of the square lattice, are represented as sidebands

(at fL 6= 0) of the the reciprocal lattice wavevectors (at fL = 0). Although sidebands

can in principle be found in any direction, we find them only in a direction π/4 (or

the degenerate 3π/4) relative to the lattice basis extending to distances of 1/(
√

2a), the

maximum wavenumber modulation on the lattice. Examples of sidebands are shown by

the dotted lines in Figure 5.5.

In the language of lattice dynamics, these are the (1, 1) modes of the lattice and

we find that only the transverse (1, 1) modes are excited. Examples of modes in Fourier

space are shown in Figure 5.5 in panels i and ii. The relationship between temporal

and (1, 1)T spatial modulations of the lattice is shown in Figure 5.5, plotted by finding

the wavevector with maximum power for each fL. This dispersion relation is fit well

by the dispersion relation for modes produced by N harmonically coupled (1, 1) rows of

peaks with free endpoint boundary conditions5, fL = fBZ | sin(ka/(2
√

2)|, where fBZ is

the frequency at the edge of the Brillouin zone, a the lattice spacing and k = nπ
√

2
aN

is a

wavevector in the (1, 1) direction [102]. Here N represents the number of (1, 1) rows of

peaks in the lattice and (0 ≤ n ≤ N) is the mode number. We emphasize that there are

no fit parameters. N is determined by the number of (1, 1) rows and fBZ is the frequency

measured at the edge of the Brillouin zone. For the parameters in Fig. 5.5, fBZ ≈ 2.5

Hz. While fBZ shows systematic variation with Γ and fd, it is always approximately a

factor of ten lower than fd.

5We assume free boundary condition as the row of peaks near the wall is able to translate against
the wall in a square cell. In addition, since in the square containers the patterns always form at π/4
relative to the container, there are always an integer number of (1, 1) rows in the container.
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Figure 5.5: Comparison of the measured dispersion relation (◦) for the (1, 1)T normal
modes of the lattice with a one dimensional lattice model (solid line) with harmonic
coupling between (1, 1) rows. The wavevector, n is in units of 2π√

2aN
where a is the lattice

constant and N is the number of rows in the (1, 1) direction. The dashed line denotes
the edge of the first Brillouin zone. The power in each mode (•) is evenly distributed
among all modes. The images in i and ii show spatial Fourier transforms, Ĩ(kx, ky, fL)
at two temporal lattice oscillation frequencies, fL = 1.2 Hz and fL = 2.3 Hz, the mode
at the edge of the Brillouin zone. For clarity, the location of the four peaks which form
the basic square lattice (found at fL = 0 Hz) are shown by • symbols in the Fourier
transform images. The grayscale is proportional to |Ĩ|. Here fd = 25 Hz and Γ = 2.75.
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The power in each mode is also plotted in Fig 5.5. It is roughly independent of

the mode, indicating that the system is in contact with an effective constant temperature

thermal bath. Note that we cannot observe modes n = 1 and n = 2. This is due to large

scale lighting variation present in the images of the patterns.

5.2.5 Resonant modes

We find that different lattice normal modes are excited with different amplitudes

as the basic system parameters, Γ and fd, are varied. The response of the pattern is

found by the same Fourier transform procedure described above. We integrate the power

in the dominant sideband after subtracting off a background, which can be present from

disorder in the pattern which changes on a time scale longer than the measurement time.

The integrated area gives a measure of the total amount of power present in the lattice

modes, and this power is plotted as a contour map of lines of constant power absorption

in Figure 5.6(a). Two regions of dominant response are seen, and will be referred to as

resonance peaks I and II. Sufficiently far from the resonance peaks, the lattice is nearly

stationary, with small amplitude, incoherent oscillation of the lattice elements around

the mean sites.

The lattice oscillates in different normal modes in the resonance peaks: in the

bottom panel of Figure 5.6 we plot the (1, 1)T dispersion relations measured at four

different points in the resonance diagram and the corresponding power in each mode.

For points near resonance I, the power is dominant in the Brillouin zone mode (k =

kBZ = 2π/(a/
√

2)) while near resonance II, the power is dominant in a mode near the

middle of the Brillouin zone. The even distribution of power found in Fig 5.5 is because

this point lies between the tongues, away from the resonances.

Dispersion relations which agree with the harmonically coupled lattice model exist

throughout the parameter range of square stability, and the frequency of the edge of the

Brillouin zone (the effective spring constant) changes systematically as Γ and fd are

changed. We presently have no explanation for the timescales of the modes, or the

resonances which excite these modes.

5.2.6 Disorder and Melting

For Γ and fd near the peak of resonance II, the amplitude of oscillation of the

modes can be large and the patterns often contain dislocation defects. These defects are

created by a process in which the amplitude of a mode becomes large enough to locally

“break” the lattice. The lattice then re-heals, although imperfectly, leaving a defect

which contributes to the disorder of the lattice. This competition between disordering

and ordering depends on the amplitude of oscillation of the mode. The disordering can
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Figure 5.6: Excitation of different normal modes of oscillation for different values of Γ
and fd occurs in two resonance peaks, I and II. Top panel: Lines of constant power show
the relative excitation of the lattice in the range of square pattern stability; the grayscale
represents the power in the most dominant mode. Bottom panel: The wavevector nor-
malized by the wavevector of the Brillouin zone traced by a path through both resonance
peaks. When Γ and fd are tuned to resonance I, modes at the edge of the Brillouin zone
are excited; tuning to resonance II excites lower wavevector modes.
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Figure 5.7: Defect creation and melting after a sudden change in system parameters at
t = 0 for a weakly oscillating pattern at Γ = 2.9, fd = 32 Hz. (a) At t = 0, frequency
modulation with fmr = 2 Hz and fms = 5 Hz is applied. (b) At t = 0 the same frequency
modulation is applied for particles which have been cleaned and graphite has been added.
(c) Molecular dynamics simulation by Sung Joon Moon: At t = 0, the friction coefficient
µ between the grains and the plate is set to 0. The intensity is the local density of the
grains. The insets in each panel shows the structure factor at the corresponding time.
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be further enhanced by resonantly exciting modes using a modulation of fd; the signal

applied to the shaker has the form,

y = A sin(2πfdt +
fms

fmr

sin 2πfmrt), (5.1)

where 0 < fmr < 5 denotes the rate of modulation and 0 < fms < 5 denotes the depth

of modulation (the span). The lattice responds to the frequency modulation (FM) at

exactly fmr/2. Details of the lattice response to FM are discussed in Section 5.4.

The top row of Figure 5.7 shows the use of FM to further excite the mode present

near the peak of resonance II. Several hundred oscillations after the modulation is turned

on, the amplitude of the excited mode is quite large and a few defects have been created.

We have found that the process of disordering can be enhanced by cleaning the

bronze particles with acetone and methanol in an ultrasonic cleaner and adding of a small

amount of fine graphite powder to the grains 6. This creates much stronger resonances

(the amplitude of oscillation at resonance peaks is much larger), and within several

hundred oscillations after modulation is applied, the amplitude of the modes become

large enough to completely disorder the lattice, creating a liquid-like time dependent

pattern as shown in the middle row of Figure 5.7. We hypothesize that the addition of

graphite changes the collisional friction properties between the grains (or between the

container and the grains) and we now describe our study of the lattice resonances as a

function of friction 7. We point out that the implementation of friction in the kinetic and

hydrodynamic description of granular materials is far from understood and an effect like

we have described here can be useful in testing proposed theories. [98]

5.2.7 Friction and lattice melting

Since friction is difficult to change in a controlled way in the experiment, we used

an inelastic hard sphere molecular dynamics (MD) code to study the effect of surface

friction on the dynamics of the lattices. The simulations were performed by Sung Joon

Moon. This code generates patterns which match patterns seen in the experiments for a

wide range of Γ and fd and the details have been reported elsewhere [14].

The effect of suddenly reducing the value of the sliding coefficient of friction µ

between the grains and the vibrating plate in shown in Figure 5.7c at fixed Γ = 3.0 and

6Extra Fine Graphite powder manufactured by AGS Co, Muskegon, MI
7We note that the amplitude of the modes also depend on the bottom plate boundary condition;

patterns created in containers with roughened bottoms (sandpaper grit 400 epoxied to the container
bottom) show only weak modes and thus almost perfect defect free patterns, even at the peaks of the
resonances.
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Figure 5.8: Melting occurs when the Lindemann ratio, γM = 〈|um − un|2〉/a2, reaches
approximately 0.1. Main figure: γM plotted versus time for different values of µ, the
friction between the grains and the plate. Inset: The correlation length of the pattern ξ,
(◦) (normalized to 1 at t = 0) for µ = 0 reaches the minimum value when γM ≈ 0.1.

fd = 32 Hz. The value of µ is a fitting parameter in the collision model and does not

relate to physical values of the coefficient of friction. The time series is created by initially

generating a prefect square pattern at µ = 0.5 (the value chosen to match stable patterns

between the MD simulation and the experiment) and suddenly changing the value of µ.

At µ = 0.5, the pattern weakly oscillates in a mode of roughly kBZ/2 since Γ and fd

are close to resonance II. When µ is suddenly changed to µ = 0.0, the amplitude of this

mode begins to grow while the wavevector of the growing mode remains unchanged. As

in the experiment, when the amplitude of this mode becomes large enough, the pattern

ruptures. The motion is so vigorous that the lattice no longer is able to locally re-

crystallize and instead forms a liquid-like state: individual lattice elements no longer

maintain a fixed position in the lattice, but undergo large displacements away from their

equilibrium sites and may even annihilate or spontaneously create new peaks. This leads

to a small fluctuation in the number of lattice elements in the pattern, but we expect the

fluctuations to become negligible as the system size increases.
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To measure the spatial disorder expected in a transition from an ordered lattice

to a disordered fluid, in Figure 5.8 we plot the correlation length of the pattern, ξ versus

time (see inset). ξ is calculated by fitting an exponential to the envelope of the azimuthal

average of the two-dimensional autocorrelation function and is written in units of a. For

µ = 0, ξ decreases monotonically in time from about 5a until the lattice disrupts after

about 30 plate oscillations, after which it oscillates around 1.5a as the lattice continues

to locally disrupt and re-heal. As shown in the main section of Figure 5.8, the loss of

long range order coincides with the Lindemann ratio γM = 〈|um − un|2〉/a2 ≈ 0.1, where

um and un are displacements from lattice positions of nearest neighbor pairs. γM is a

commonly used criterion for predicting the melting temperatures of solids [172]. We

compute γM by tracking the motion of peaks of the lattice using an algorithm which

works well until the lattice becomes disordered. The value of γ is in agreement with

literature values for two-dimensional melting [12] even though melting of the pattern in

our experiments occurs in a non-thermal way, driven by a resonantly excited mode of the

lattice.

The main figure indicates that a melted state is reached for µ = 0.0 and not at

all for µ = 0.5 as γ < 0.1. For µ = 0.1, the pattern oscillates with increasing amplitude

until local melting events disrupt the perfect long-range order. However, this µ does not

produce fully melted patterns; after a defect is created, the mode amplitude becomes

small and the lattice can locally re-crystallize, as seen in the re-crossing of the γM ≈ 0.1

line. This prevents a transition to a fully liquid state. We emphasize that the value

of γM is somewhat arbitrary and further work is necessary to determine if there is an

actual transition that occur at this value. However it does provide a condition for onset

of defect creation or loss of long range order away from the primary bifurcation in a

nonequilibrium pattern.

5.2.8 Conclusions

We have demonstrated that the square patterns in a vibrated layer behave like a

two dimensional lattice and that conditions which govern the dynamics and steady states

of real equilibrium lattices apply in this analogous nonequilibrium system. We have also

shown a nontrivial effect of friction on the properties of patterns, and such an effect could

be useful in judging friction collision models in granular kinetic theories. Whether such

concepts and predictive criteria can be applied to other nonequilibrium systems is an

interesting and open question.

We note that a study of melting in the lattice should include development of the

FM techniques to create a more thermal type of heating of the lattice, such that power

is distributed equally in every mode. It would be interesting to study the defect creation
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under such forcing, looking for 2D melting transitions such as those predicted by the

theory of Halperin and Nelson [85].

5.3 Temporal frequencies of the modes
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Figure 5.9: The temporal frequencies of the resonantly excited modes. In the top panel,
the grayscale represents the frequency of the excited mode, fL. The bottom panel plots
the frequency of the resonantly excited mode along a cut through both resonance peaks,
◦. The frequency at the edge of the the Brillouin zone, fBZ is also plotted, � for a range
of the data to show the dependence of fBZ on system parameters.

The resonance diagram of Fig 5.6 shows that the lattice is excited in two main

resonance peaks. In peak I, the short wavelength Brillouin zone mode is excited and in

peak II, a longer wavelength mode is dominant. In Figure 5.9 we plot the corresponding

temporal frequencies of the modes excited throughout the parameter space. The grayscale

indicates the frequency of the most dominantly excited mode and shows that the Brillouin

zone modes of peak I have frequencies of about 2.5 Hz, while the longer wavelength modes

in peak II have frequencies of about 1.5 Hz. The white line is a cut which passes through

resonance peaks I and II and the values of the frequency along the cut are plotted in the
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lower panel, shown by the ◦ symbol.

For data in the middle range of the cut, we were able to find the frequency at

the edge of the Brillouin zone, fBZ , and this is also plotted in the lower panel (�). As

expected, in peak I, the most dominant excited mode has the frequency of the Brillouin

zone mode. However, as in the wavevector plot in Fig 5.6, near 26 Hz the dominant mode

is no longer at the edge of the Brillouin zone and as shown in Fig 5.9 begins to deviate

from fBZ . We emphasize that the important feature of the curve is the maximum value

of fBZ at around 26 Hz. This indicates that the spring constant of the lattice elements

reaches a maximum, and a theory of the normal modes should predict the shape of this

curve.

5.4 Frequency modulation and parametric resonance

In this section we present more results from the frequency modulation experi-

ments.

We frequency modulate the container drive frequency by applying a signal to our

shaker of the form in Eq 5.1. Shaking at a particular fd and Γ, we apply the modulation

at a specific rate frequency, fmr (rate) and span frequency, fms (span) and wait a number

of cycles (≈ 1000) for transients to decay away. We then take a time series of images and

apply the techniques described in the previous section to extract the dominant spatial

and temporal modes of the pattern. To summarize our results, we find that a signal

with a fixed fmr excites a normal mode with temporal frequency of fmr/2 independent of

fms. The normal mode excited has a wavevector determined from the dispersion relation

of the crystal at the particular fd and Γ. We find the the response occurs in a tongue

centered on approximately fBZ/2 whose width increases as fmr increases.

5.4.1 Temporal response

Figure 5.10 shows the temporal response of the lattice for a fixed fmr, found by

Fourier transforming in both space and time and integrating over (kx, ky). A forcing

frequency of fmr excites oscillation with dominant response at exactly fmr/2.

Subharmonic response is found in a a tongue centered approximately around

fBZ/2 shown in Figure 5.11(a). Figure 5.11(b) shows the measured response near the

bottom the tongue, with the integrated power in the fmr/2 peak after background sub-

traction plotted as grayscale pixel for a given fmr and fms. For fms < 0.1 Hz, there is no

subharmonic lattice response; as fms is increased, a threshold is crossed, and the lattice

oscillates in a mode with temporal frequency fmr/2, independent of fms. This threshold

is a function of fmr, and the width of the tongue in fmr is an increasing function of fms.
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Figure 5.10: The temporal response of the lattice under frequency modulation at fd = 32
Hz and Γ = 2.90. The imposed rate frequency is fmr = 3.70. The strongest response oc-
curs at one half of the imposed rate frequency. The other peaks shown are the harmonics
of the fmr/2 response.
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Figure 5.11: (a) The resonance tongue for fd=32 Hz, Γ = 2.90. Subharmonic response is
found inside the tongue and the width of the tongue increases with increasing fms. For
fmr ≈ 3.0 above fms ≈ 4.0 the crystal order is destroyed. (b) Detail of the lower section
of the tongue. The grayscale intensity for each pixel represents the integrated power in
the response at a given fmr and fms after background subtraction.

When fms is large enough, the amplitude of oscillation of the mode becomes large and

the underlying lattice may be destroyed. As shown in the grayscale of the figure, within

the tongue, the power absorbed by the lattice decreases with increasing fmr for a fixed
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fms, and is an increasing function of fms for fixed fmr.

5.4.2 Spatial response

We now examine the spatial response to the imposed modulation–the real space

representation of the modes found in Section 2. A few modes are shown in Figure 5.12.

As expected, for a fixed fms, as fmr is increased, the wavenumber of the excited mode

increases. Also shown is a schematic which demonstrates the relative motion found in

different modes. As before, the modes are excited at wavevectors at π/4 to the lattice

direction, the [11]T modes.

a

b

cc

Figure 5.12: (a) and (b) are images taken at fd=32 Hz and Γ = 2.9 under frequency
modulation for constant fms = 4.0 Hz and increasing fmr, where (a) fmr = 1 Hz, (b)
fmr = 2.25 Hz. The wavenumber of the mode increases with increasing fmr. To the right
of each picture, a schematic shows the relative motion of the rows of the crystal in the
given mode. The mode shown in (c) is never excited over the range of fms and is an
image of the lattice in resonance peak I, with Γ = 2.65 and fd = 21 Hz.
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In Figure 5.13, we plot the measured wavevectors vs. fmr/2 to compare to the

form of the dispersion relation found in Figure 5.13. However, from Figure 5.11, we see

that the number of modes capable of being excited is a function of fms. Thus, the range

in wavevectors which can be probed (the extent of the dispersion curve) is a function of

fms. This is a limitation of the excitation technique as we discuss below. The dispersion

curves found for two different fms are shown in Figure 5.13. For low fms, all of the points

fit a dispersion relation which is in good agreement with that by natural forcing (see

Section 5), but that at larger fms there is significant deviation for fms near the center

of the resonance band for a fit to the same dispersion relation. We propose that this is

because at these fmr, (inset in Figure 5.13), the amplitude of the amplitude of oscillation

is large compared to the lattice spacing and may distort the perfect crystal lattice; at

such large amplitudes, it is unclear whether the response of the lattice is linear.
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Figure 5.13: Dispersion relations produced by excitation at (a) fms = 1.0 Hz and (b)
fms = 4.0 Hz for fd = 32 Hz and Γ = 2.90. The range of modes excited is a function
of fms and is seen to increase with increasing fms. The insets show a snapshot of the
lattice. Note that the largest deviation from the harmonic fit occurs at the point of large
distortions of the lattice.

5.4.3 Discussion of parametric resonance

The presence of a resonant tongue and subharmonic response is typical of systems

that are parametrically forced, and the excitation of the lattice by frequency modulation

may have features in common with a Mathieu equation modified to include spatial dy-

namics that has been studied by Rand [149]. We propose that the parametric forcing

results from changes in the effective spring constant (fBZ) due to changes in fd.

Using the frequency modulation technique, we have been unable to excite the

highest mode of the lattice. We believe that this is a combination of two factors: Since
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the sides of the resonance tongue are very steep, we must apply large fms in order to

excite the modes near the edge of the Brillouin zone. However, if fms is large enough,

the exciting waveform becomes significantly different from sinusoidal and can no longer

produce the underlying square pattern.

For a given fmr, the lattice always oscillates at exactly fmr/2; this locking is

responsible for the spread in the points in Figure 5.13–the same spatial mode can be

excited in a range of temporal frequencies. We hypothesize that dissipation is large for

each mode: if dissipation were low, at low forcing amplitude (where nonlinear detuning

effects are small) each mode would have a sharply defined resonant frequency. Dissipation

tends to broaden such response and thus allow locking at exactly fmr/2 for any fmr.
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5.5 Oscillatory behavior in deep layers

5.5.1 Lattice oscillation in deep layers

The oscillations of the lattice are not specific to shallow layers, but manifest in

deeper layers as well. We have observed that for square patterns, at a given Γ and fd, the

Brillouin zone frequencies, fBZ decrease as layer depth increases although no systematic

study has been undertaken.

As the depth increases, the number of grains that form each peak increases, and

effects of the height of the peak can become important. For thin layers, the peaks move

as a single unit and the lattice element approximation is quite good. However, for deep

layers, the peaks can become so large that the tips execute significant motion. A snapshot

of a peak in a deep layer with a moving tip is shown in Figure 5.14.

Figure 5.14: A zoom showing that the peaks bend quite dramatically at the maximum
lattice oscillation amplitude. Γ = 3.0, fd =??, N=15.

We observe that the lateral motions of the tips of the peaks are induced by the

lateral normal mode motion of the base of the peak. Shown in Figure 5.15 are two images

taken in 15 layer bronze particles, taken one lattice mode oscillation apart. The dashed

arrow indicates the transverse lattice motion of a particular (1, 1) row. Clearly visible

are the tips of the peaks–when the lattice mode is at a maximum in amplitude, the tips

point in the opposite direction. Thus the tips execute a flopping motion that is exactly

out of phase with the normal mode oscillation of the base of the peak. We note that the

elements near the boundary are pinned and do not execute transverse oscillation.
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Figure 5.15: A time sequence of images spanning one normal mode lattice oscillation,
showing the motion of the top of the peak tied to the pattern oscillation, Γ = 3.0, fd =??,
layer depth=15. The large dashed arrow indicates the motion of the (1, 1) row while the
smaller arrows indicate the motion of the tips of the peaks.

Figure 5.16 further demonstrates that the tip flapping is slaved to the normal mode

oscillations of the square patterns. In (a), the system is detuned from the resonance and

the positions of the tips of the peaks do not deviate significantly from the position of the

base. However, when the system is tuned to a normal mode resonance, the peaks of the

peaks execute a strong flapping motion.

5.5.2 Oscillation of 1-d stripe patterns in deep layers

Briefly, I describe a rather surprising pattern which seems to act like a one-

dimensional lattice. This was observed in 25 layer 165 µm bronze spheres.

As shown in Figure 5.17, the stripe pattern oscillates in an optical mode like that

seen in the experiment on falling liquid columns. This oscillation occurs at fd/4. This is

an example of a (1, 0) mode and is surprising, as this compressional mode is never seen

in the two-dimensional lattice patterns. It may be due to the softening of the effective

compressional springs between row elements. When Γ is increased slightly, the roll acts

like a set of coupled strings. The observation of the optical mode indicates that a Coullet

type argument might be useful in describing the dynamics of these stripe patterns [33]8

8Oscillatory behavior of the string-type has been observed in roll patterns in Rayleigh-Bénard con-
vection in CO2 by Karen Daniels – private communication.
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a) b)

Figure 5.16: The tops of the peaks do not oscillate coherently when the system is detuned
from a resonance. (a) The system is detuned from a normal mode resonance, Γ =??,
fd =??. (b) Tuning to the resonance excites the motion of the tips of the peaks. Γ =??,
fd =??, layer depth 15.
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Figure 5.17: Top panel: Stripe patterns taken two plate oscillations apart. Bottom panel:
A time sequence of stripe patterns in 25 layers, Γ = 3.65, fd=27 Hz. The entire length of
the stripes vibrates in an optical mode. The space-time diagram is calculated by plotting
a row of pixels (in the middle of the box, perpendicular to the roll) as a function of time
and shows the fd/4 optical mode oscillation. The time series was taken at fd/2.
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Figure 5.18: Top panel: Same as the previous Figure, but Γ is slightly higher. The
amplitude of oscillation is larger and the mode develops a transverse structure: Different
points on the roll expand and contract out of phase and this repeats every four oscillation
periods. Bottom panel: Space-time diagram for a row of pixels perpendicular to the roll
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5.6 Comparison with previous Work

5.6.1 Square patterns

The most detailed work on nonequilibrium square patterns has been done in a

vertically oscillated container of liquid — the Faraday instability. Lattice dynamics

of the type described above is not seen in this system. As the container acceleration

is increased, the square patterns become time dependent due to defect creation; for

large enough forcing amplitude, a large amount of defects are created and the pattern

becomes spatio-temporally chaotic as shown in Figure 5.19. Several groups have studied

these transitions and found that the defects are created due to a transverse amplitude

modulation instability [29, 40, 59, 178, 199]. It was found that the disordering of the

pattern does not occur through a two-dimensional melting scenario like that described

by Halperin and Nelson [85]. Could the Lindemann criterion describe this melting?

Although the “peaks” in the Faraday pattern are not as localized as the peaks in the

granular square pattern, it would be an interesting to determine if the elements of the

Faraday pattern interact similarly to the waves described in this chapter.

5.6.2 Secondary instabilities of one-dimensional patterns

We have shown that phase disturbances of square patterns in a shaken granular

layer propagate in an oscillatory fashion. However, most patterns studied in nonequilib-

rium systems show diffusive behavior [35]–perturbations to the local phase of the pattern

relax according to phase diffusion equations. We now discuss other systems in which

propagating phase dynamics have been seen. We emphasize that the dynamics seen

in our square patterns are unique: while other groups have reported bifurcations to sec-

ondary oscillatory instabilities with a specific wavevector modulation of a one-dimensional

pattern, the lattice patterns act like a coupled array whose dynamics is governed by a

dispersion relation that contains all possible lattice modulations.

Most of the systems for which oscillatory behavior has been observed are one-

dimensional: these systems form patterns in which the “elements” collectively oscillate

in a mode or many modes. A good example of a nonequilibrium system that displays

oscillatory dynamics is the Taylor-Couette system studied by Wu et al. When a sudden

perturbation was applied to one end of the container, propagating phase perturbations

to the Taylor rolls were seen [197]. Analysis revealed a coupled set of phase equations

which had damped oscillatory solutions [21].

In an experiment on falling liquid columns, Wesfried [64–66] found that the

columns would spontaneously begin to oscillate in a particular mode (the so-called opti-

cal mode) as the distance between the columns was changed beyond a critical value, as

shown in Figure 5.20
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Figure 5.19: Images of capillary wave patterns in n-butyl alcohol for four driving ampli-
tudes ε = (A − Ac)/Ac, where Ac is the threshold for waves. The region shown, about
20% of the cell is 3.5x3.5 cm2. From [178].

Such spontaneous oscillation in a particular mode has also been seen in an annular

Faraday system [48], in a narrow Rayleigh-Benard system [50], and in viscous fingering

experiments [131].

A theory which classifies the types of secondary instabilities of one-dimensional

patterns has been advanced by Coullet and Iooss. It is based on symmetry arguments and

predicts ten possible types of secondary instabilities [33]. They find that the oscillatory

modes can either have a wavelength twice the roll space, or a period irrationally related

to the base wavelength. It would be interesting to determine whether this theory can
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Figure 5.20: Array of liquid columns observed below a horizontal cylinder along which a
liquid is flowing from top to bottom at a constant rate. Inset: space-time diagram of the
array of liquid columns for fixed boundary conditions (optical mode). From [66].

be extended to two-dimensional patterns as work has been done to classify the possible

secondary bifurcations of square patterns [96].

However, we find that our experiment does not fall into this classification scheme,

as we can excite all modes of the square lattice. Furthermore, the modes of the lattice

are excited resonantly, thus a theory of bifurcation is probably irrelevant. However, the

“optic mode” oscillations of the stripe pattern are effectively one dimensional and may

fall into the classification scheme.

5.7 Open questions

We have shown that a pattern generated in a layer of vibrated granular material

displays behavior associated with a collection of localized interacting elements (lattice

elements). There are many open questions in this study, and here we address some of

them.

1. What mechanism is responsible for an effective potential between the lattice

elements? Any proposed mechanism should address these two other questions: Why are

the modes seen only in the π/4 direction? What sets the frequency at the edge of the
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Brillouin zone, and why is it so much smaller than the natural drive frequency of the

container? The dependence of mode frequencies on layer depth should also be addressed.

2. Where do the resonances in the natural response come from and by what

resonance mechanism can a system which is vibrating at fd excite a mode which oscillates

with a frequency which is an order of magnitude smaller? A satisfactory explanation of

the resonance should explain the excitation of the kBZ mode in resonance one, and the

sudden jump to a mode of roughly twice the wavelength.

We note that the mode seen in resonance I is very difficult to excite using the

FM due to the steepness of the tongue as a function of fms, but is easily excited when Γ

and fd are tuned to the parameters near resonance I. This implies that the mechanism

of excitation in the resonance is different than a frequency modulation.

3. Is an approach which treats a pattern as a collection of elements (lattice

elements) useful, and can it address questions which an amplitude equation formalism

cannot? Can it be treated in an amplitude equation formalism? There is a general

theory of secondary instability on cellular patterns due to Iooss and Coullet [33] which

uses symmetry arguments to predict bifurcations to instabilities at twice the wavelength

of the underlying pattern. The fact that we see such a mode may be coincidence, and this

mechanism seems unlikely, as it predicts a bifurcation, and we see a resonance. Is there

a feature of the pattern we can explain with a lattice dynamics model which could not

have been explained using amplitude equations? The fact that we can make a prediction

about the stability of a nonequilibrium pattern using a melting criterion from lattice

dynamics is a sign that this approach could have merit.

4. Effectively, the lattice patterns produce a reduction of the partial differential

equation describing a hydrodynamic field (the waves) to a coupled set of ordinary differ-

ential equations describing concentrated regions of the field (the lattice elements). Can

such a property be derived for wave phenomena in general, or does it rely on the fact

that the density field of the square pattern has steep gradients?
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Chapter 6

Wavelength evolution, noise induced patterns, phase

discontinuities, and segregation in vibrated granular

layers

The chapter deals with several different phenomena in vibrated granular layers.

The first section studies the evolution of the wavelength of a pattern following a sudden

change in Γ from below to above onset. The second section examines fluctuations in the

layer below the onset of patterns. The third section describes phenomena associated with

phase discontinuities present at higher Γ.

6.1 Wavevector selection and evolution after a quench

6.1.1 Introduction

Building on our studies of the time evolution of disorder in patterns in Chapter 4,

in this section we investigate the behavior of the average wavelength of the pattern after

a sudden change in Γ. Γ is changed from below a flat state below the onset of patterns

to above onset at constant fd. Examples of the type of sequences we will analyze are

shown in Figure 6.1. We will show that evolution of the wavevector following a quench

in Γ is a consequence of a fluidization of the layer.

The question of asymptotic wavevector selection is an important one in pattern

formation in nonequilibrium systems and no clear cut criterion works for all cases. The

most linearly unstable mode controls the wavevector very close to onset, but further from

the bifurcation, no theory has been developed [35].

6.1.2 Evolution of the wavevector–observations

All of the experiments we will present monitor the average wavevector q0 as a

function of time following a jump from Γ = 2.2 to a final value of Γ. The jumps are done

at constant fd and images are recorded at either fd or fd/2. We also verified that the

phenomena described did not depend on the initial state. The acceleration of the plate is

also monitored during the experiment and this allows precise determination of the initial

quench time. Also, perturbations of the acceleration due to the impact of the layer with
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Figure 6.1: The time evolution of pattern after sudden change in control parameters for
two different frequencies. For a given frequency, the columns correspond to an image of
the granular layer, the modulus of the Fourier transform of the image, and the azimuthal
average of the Fourier transform. For (a) 4 layer, fd = 33 Hz, Γ = 2.2 → Γ = 3.0, q0

decreases with time, while in (b) 7 layers, fd = 49 Hz, Γ = 2.2 → Γ = 3.0, q0 increases
with time. The dashed vertical lines are to guide the eye and represent the asymptotic
value of q0. The time units are in plate oscillations.

the plate are used to characterize the average dilation of the layer as function of time.

We will discuss acceleration data later in this section.

To determine q0 of the pattern, each image is Fourier transformed and the az-

imuthal average is computed. The region above the half maximum of intensity in the

main peak in the azimuthal average is fit to a Gaussian and we define q0 as the mean

of the Gaussian. Fourier transforms and azimuthal averages for two time sequences are

106



shown in Figure 6.1 1.
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Figure 6.2: The time evolution of q0 after a rapid jump from initial Γ = 2.2 to final
Γ for constant fd. In each panel the fd, N , and initial ṽ of the jumps are (a) 27 Hz,
N=4, ṽ = 3.16 (b) 33 Hz, N=4, ṽ = 2.59 (c) 40 Hz, N=7, ṽ = 2.13 (d) 49 Hz, N=7,
ṽ = 1.74. Each panel shows jumps to increasing final Γ and final ṽ denoted by symbols
◦, �, �, ∗, with the final Γ: (a) (2.65, 2.70, 2.95, 3.18), (b) (2.55, 2.58, 3.10, 3.40), (c)
(2.75, 3.20, 3.35, 3.8), (d) (2.48, 2.60, 2.85, 2.98) and the final ṽ: (a) (3.81, 3.88, 4.24, 4.56),
(b) (3.0, 3.03, 3.64, 3.99), (c) (2.67, 2.68, 3.10, 3.24), (d) (1.96, 2.06, 2.26, 2.36).

Figure 6.2 shows the time evolution of q0 for different values of fd and Γ plotted

on log-log scales. We observe that for low fd (Figure 6.2a), q0 is monotonically decreasing

during the first 10-20 oscillations. For large fd (Figure 6.2d), q0 typically increases. We

will argue that this difference in behavior is due to the fluidization of the initially flat

layer.

For intermediate values of fd, we find that for low Γ, q0 increases with time. As

Γ is increased, q0 begins to decrease as a function of time, and the rate of decrease of q0

with time increases for increasing Γ. However, the Γ at which this crossover occurs is a

1We note that a broad peak in the power spectrum is visible even below onset and we will discuss
the significance of the peak in Section 6.3
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Figure 6.3: Dispersion relation taken for fixed Γ at constant particle size and varying
particle depth obtained in [181]. The different symbols represent different dimensionless
layer depths, N = h/D, where h is the layer depth and D is the grain diameter. The fit

is to λ∗ ≡ λ/h = 1.0 + 1.1(fd/
√

h/g)−1.32. Thus, q0 = 2π/λ ∼ f
4/3
d . The inset show the

deviation of the data from the fit.

function of fd. For example, at fd = 33 Hz (Figure 6.2b), we find that q0 increases for

Γ < 3.0 and decreases for Γ > 3.0. A similar behavior is seen Figure 6.2c for fd = 40 Hz,

but there the crossover occurs at Γ ≈ 3.3.

We have observed that both crossover points occur when the normalized collision

velocity between the plate and the grains at the final Γ, ṽ = (2πAfd)/
√

Dg reaches a value

of ṽ ≈ 3.0. Here A is the amplitude of oscillation of the plate, D is the grain diameter and

g the acceleration of gravity. The values of ṽ for a given jump are given in the caption

of Figure 6.2. ṽ is a parameter which has been shown to correspond to a transition in

grain mobility within the layer [181]. For ṽ > 3.0, the collision velocity between the layer

and the plate is large enough to dilate the layer enough to allow grains to slip past each

other in the horizontal direction during some portion the oscillation cycle. Thus the layer

is fluidized for some fraction of the cycle and the waves are hydrodynamic-like. These

are typically low frequency waves and follow the dispersion relation shown in Figure 6.3,

with q0 ∼ f
4/3
d .

For ṽ < 3, plate does not impact the layer with a large enough collision velocity

to dilate the layer significantly and the grains are unable to move past each other in the
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horizontal direction. The layer does not fluidize and instead acts like a weak solid—the

excited waves are bending motions of the solid. These are non-hydrodynamic excitations

of the layer and the dispersion relation for q0 deviates from the f
4/3
d scaling. This is seen

in the residual plot in the inset. As the frequency is increased, ṽ decreases and the fit no

longer represents the data.

To investigate the role of ṽ after the jump on the evolution of the wavevector, in

Figure 6.4 we plot the average slope in the initial scaling region as a function of ṽ for

all data sets . As ṽ increases, the value of the average slope decreases until it reaches

0 at approximately ṽ = 3. For large ṽ, the average slope has a value of roughly −0.3.

We hypothesize that the crossover in the slope of the evolution of q0 shown in Figure 6.4

occurs at ṽ = 3.0 due to changes in nature of the supported waves: for jumps such that

the final ṽ > 3.0, the layer undergoes a fluidization process, becoming dilated enough

to support sloshing hydrodynamic waves. For a final value of ṽ < 3.0, the layer does

not dilate enough to fluidize. Therefore, we propose that the evolution of q0 should be

strongly influenced by the time-fluidization of the layer and we now use the accelerometer

data to study the transient fluidization.

6.1.3 Fast fluidization of the layer after a jump

In figure 6.5, we present the accelerometer signal of an accelerometer attached to

the plate recording during the jump for fd = 33Hz for a jump from ṽ = 2.6 to ṽ = 3.5.

The accelerometer signal is almost sinusoidal but because of the finite mass of plate,

perturbations are present. When the layer impacts the plate, the collision creates a spike

in acceleration. We find that the spike can excite the high frequency modes oscillatory

“ringing” modes of the container. We discuss our interpretation of the ringing below.

In Figure 6.6, we plot the accelerometer signal for single cycles 100 cycles before

and 500 cycles after the jump in acceleration. The left column shows a jump from below

ṽ = 3.0 to above ṽ = 3.0, while the right column shows a jump from below ṽ = 3.0 to

below ṽ = 3.0. The patterns that form from the jumps are shown in Figure 6.1.

We examine the structure of the perturbation: For both cases, below the onset

of waves the perturbation signal consists of a large spike followed by a high frequency

ringing of the plate. Above onset, there is a difference. For the case where the final

ṽ > 3, the ringing is not present. When the jump is made so that the final ṽ < 3, the

ringing persists asymptotically. This is revealed in the Fourier spectra of the subtracted

signal shown in Figure 6.7. The ringing mode of the plate has frequency of roughly 1

kHz.

We propose that the compact unfluidized layer below ṽ < 3 hits in a sudden

impact, with a short collision duration. The impact is sharp enough to cause the plate
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Figure 6.5: The acceleration of the container during a jump in acceleration. fd = 33 Hz,
Initial Γ = 2.2, final Γ = 3.0
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Figure 6.6: The accelerometer signal for a cycle at two different frequencies taken 100
oscillations before the jump and 500 oscillations after. Left column:fd = 33 Hz, Γ =
2.2 → Γ = 3.0, ṽ = 2.6 → ṽ = 3.5 (fluidized layer), Right column:fd = 49 Hz, Γ = 2.2 →
Γ = 3.0, ṽ = 1.74 → ṽ = 2.4 (layer not fluidized)

to ring at its natural frequency. The impact of the more dilated fluidized layer for ṽ > 3

occurs over a longer time and may also damp the oscillations of the plate. The result is

that the fluidized layer impact does not cause the plate to ring.

Since the ringing of the plate characterizes the fluidized state of the layer, we will

use this signal to study the evolution of fluidization of the layer during the quench.

Evolution of fluidization

To make correspondence between the evolution of the wavevector and the rapid

fluidization of the layer, we plot a time series of the impact event in Figure 6.8 for

jumps above and below ṽ = 3.0. There is a marked difference in the evolution of the

perturbation. Above ṽ = 3.0, the spike quickly spreads out, and the ringing stops within
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Figure 6.7: The Fourier spectra of the insets of Figure 6.6.

a few cycles indicating that it rapidly becomes fluidized. Below ṽ = 3 the ringing never

decays. We emphasize that patterns like those in Figure 6.1 form in both experiments.

We propose to characterize the fluidization process by measuring the integrated

area under the 1 kHz peak. The evolution of the fluidization process is plotted in Fig-

ure 6.9. For the jump with ṽ > 3, the power in the 860 Hz mode quickly decays away,

reaching the noise floor. In the jump with ṽ < 3, the power decays initially and then

remains a constant value.

We have demonstrated that the layer fluidizes during the jump and we use this

idea to propose a mechanism for change in q0 as a function of time.

6.1.4 Proposed mechanisms for wavevector evolution

Here we discuss two possible explanations for the time evolution of q0 and give a

possible argument for the scaling of the wavevector as a function of time for ṽ > 3.
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Figure 6.8: Time sequences of the perturbation signal. Top panels: Space-time diagram
for 30 oscillations after the change in Γ. The amplitude of the acceleration is represented
by the grayscale, black to white. Bottom panels: Time traces of the first 15 oscillations
after the jump. The parameters of the jumps are the same as those in Figure 6.6.

Fluidization changes wavevector

We propose that the evolution of the wavevector is governed by the how the

material properties of the layer change with time. Since the properties are strongly

dependent on the state of fluidization of the layer, there should be a dramatic difference

for the evolution of q0 between jumps to ṽ > 3 and jumps to ṽ < 3 and this difference is

clear from the scaling exponent shown in Figure 6.4.

Jumps to ṽ > 3

Figure 6.10 shows a jump for ṽ > 3. The wavevector stops decreasing after the
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Figure 6.9: The integrated power in the 1 kHz ringing mode for a jump to ṽ = 3.5, ◦,
and to ṽ = 2.4 •. The parameters of the jumps are the same as those in Figure 6.6.

layer is fluidized.

Figure 6.11 shows the picture we get from the previous section. We propose

that the transient fluidization process studied in the previous section for ṽ > 3 sets the

effective hydrodynamic fluid depth as a function of time: as the amplitude of the pattern

increases, it fluidizes the rest of the layer.

Since the wavevector of the pattern is a function of the depth of the layer, h = ND

(Figure 6.3), as the depth changes, so should the wavevector. Below onset Γ = 2.5,

only the surface layer of the grains is fluidized for all ṽ and this should set the highest

wavevector in the problem. In fact, we have determined that there is a length scale for

the fluctuations in the surface layer. We return to this phenomenon when we study noise

below onset, section 6.3.

Qualitatively this argument makes sense: from the dispersion relation in Fig-

ure 6.3, for ṽ > 3, as h increases, the wavevector should decrease, in accord with data
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Figure 6.10: The changes in different layer characteristics during the jump to ṽ = 3.5 at
33 Hz. q0 (◦) decreases until the layer is fully fluidized as measured by the integrated
power in the 1 kHz ringing mode (�). A measure of the amplitude (•) of the pattern
increases and reaches a peak before the layer is fully fluidized.

for jumps where ṽ > 3.

A tentative argument for the scaling exponent in the decrease of q0, q0 ∼ t−.33

for large ṽ (see Figure 6.4) can be made if we assume that the effective depth scales

linearly in time, heff ∝ t. From the dispersion relation in Figure 6.3, above ṽ > 3, the

wavevector of the patterns scale like h1/3, where h is the depth of the layer. If we assume,

h = heff , during the fast growth stage then q0 ∝ t−1/3. Figures 6.2 and 6.4 show that for

large enough ṽ, the data is consistent with this scaling. In fact, we see from Figure 6.10,

that the amplitude of the pattern has reached its maximum before the entire layer has

fluidized. Thus, subtle changes must occur in the fluid properties of the layer in the final

few oscillations of wavevector change.

Jumps with ṽ ≈ 3
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Figure 6.11: A schematic of the process of a jump with ṽ > 3, showing how the effective
fluid depth grows in time as the amplitude of the pattern increases. The wavevector
decreases with increasing fluid depth.

Jumps close to ṽ = 3, see Figure 6.2b, are more complicated and may evolve

non-monotonically. We do not comment on them here.

Jumps with ṽ < 3

Jumps sufficiently below ṽ = 3, show a monotonic increase in q0, and we propose

the following argument to account for this behavior. When ṽ is increased to a value below

3, although the entire layer does not fluidize, there is more free volume per grain and

the layer is more compressible. This change in compressibility happens rapidly during

the initial growth stage and a more compressible layer should be able to bend on a

shorter length scale. Thus the wavevector should increase. This is not an explanation,

but we feel that viewing this phenomenon as a rapid fluidization process could lead to

interesting ideas about the nature of granular flow in the non-hydrodynamic, but agitated

region—frustrated waves.

6.1.5 Comparison with Swift-Hohenberg model

The Swift-Hohenberg model (Chapter 4, Equation 4.1) is often used to gain un-

derstanding of pattern formation. In Chapter 4, it was used to study the behavior of

the evolution of order in a pattern. The scaling observed in the experiment was in good

accord with the scaling predicted by SH equation in the linear regime. However, the be-
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havior of the changing wavevector described in this section is in contrast to the behavior

of the SH model. In this model, the wavevector selected by the pattern remains constant

in time and has a value of the wavevector with maximum growth rate (very close to q0

in Equation 4.1), see Figure 6.12, as expected for a supercritical bifurcation.

Mean flows in amplitude equations

However Cross and Meiron have shown that the behavior of q0 can be modified

by the addition of coupling between the rolls and a mean flow [37]. A different (not

SH equation–for the explicit form see [37]) model of pattern formation was developed

to include this coupling. It was found that for no coupling, the final wavevector had

the same value as wavevector of the most linearly unstable mode. Coupling produced

final wavevectors that deviated from the most linearly unstable mode; as the coupling

increased, the average wavevector deviated further.

SH model

Mean flow 
model

coupling

Figure 6.12: The behavior of the wavevector for a numerically integrated Swift-Hohenberg
model (4). � and ◦ are for a pattern formation model which couples the rolls to a mean
flow. The evolution changes as the coupling changes. Taken from [37].

In fact, this model seems to capture well the behavior of the data presented for

ṽ > 3. The bulk of the wavevector change comes after the fast initial growth of the

amplitude of the pattern both in the model and in the data. It also comes after the rapid

fluidization transition (see Figure 6.10). Perhaps the fluidization transition of the layer
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creates a mean flow, while a jump below ṽ = 3 does not fluidize and thus cannot create

a mean flow. Since the molecular dynamics simulation can easily visualize flow in the

bulk, it should be able to determine is such a flow is present.

6.2 Nucleation in the subcritical region
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Figure 6.13: Phase diagram for 4 layers showing subcritical behavior at low frequencies.
The bifurcation to hexagons for increasing Γ is drawn for reference

Pattern formation is quite different when a jump is made into the hysteretic region

for square patterns(see the phase diagram, Figure 6.13). Instead of uniform amplitude

growth throughout the entire container, the pattern forms from the growth of nucleation

events: locally, small circular regions quickly (within 2-4 cycles) nucleate and then prop-

agate, invading the rest of the flat layer, see Figure 6.14. Asymptotically, the pattern

reaches a perfect array of squares.

We have observed similar pattern formation by local nucleation in a Swift-Hohenberg

equation modified by the addition of a quintic term,

∂W

∂t
= [ε − (q2

0 + 52)2]W + aW 3 − bW 5 (6.1)

The addition of the term modifies the amplitude diagram, as shown in Figure 6.15.
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Figure 6.14: Nucleation of pattern after a jump into the subcritical region, 27 Hz and
Γ from 2.2 to 2.52. The units are in plate oscillations after the jump. 0.165µm bronze
particles with N = 4.

The bifurcation to the pattern state of rolls is now subcritical, displaying the hysteresis

seen in the shaken layer experiment for square patterns.
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Figure 6.15: The subcritical bifurcation for Equation 6.1. The solid lines indicate the
linearly stable attractors and the dashed line indicates the unstable state.

Figure 6.16 shows the integration the modified SH equation (Details of the SH
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simulation are given in Appendix A) with initial condition of spatially random noise with

amplitudes uniformly distributed over a range (−n, n). n controls the strength of the

noise. At t = 0, ε is changed to a value in the hysteretic region. As in the experiment, the

pattern nucleates local circular regions which spread to fill the entire integration domain.

In this case, the final state is a pattern of rolls.

00 0.90.9

1.91.9 3.43.4

Figure 6.16: Nucleation of pattern after a jump into the subcritical region in a Swift-
Hohenberg model. At t = 0, integration is started from a state with initial noise strength,
n = 2.0 (see text for details). Parameters for Equation 6.1: ε = −.05, b = 3.0, c = 1.0,
q0 = 1

6.2.1 Discussion

The hysteresis in a subcritical bifurcation can modify pattern formation in a non-

trivial way. Pattern formation in the hysteretic region requires finite amplitude pertur-

bation. Thus, unlike a supercritical bifurcation or a jump into the non-hysteretic region

which proceeds by the growth of the linearly most-unstable mode, the system must have

a noisy initial condition to provide local regions with amplitude greater than the unstable

attractor: these regions will rapidly amplify and reach the stable pattern branch, while

regions of with amplitude too small do not grow in time. Once the region nucleates,

the pattern grows in a front propagation like that studied in a one-dimensional Swift-

Hohenberg equation. [9]. The rate of nucleation and thus the rate at which the pattern

forms increases as the amplitude of the noise, n is increased.

As seen from these results, in the flat, featureless region of the experiment, we
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have a noisy initial condition. In the next section we examine this noisy state more

closely.
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6.3 Noise below onset

6.3.1 Introduction

Patterns form above Γ ≈ 2.5, and for ṽ > 3 some portion of the layer is fully flu-

idized throughout the cycle. It has been shown by measuring the reflectivity of light of the

granular surface that in fact the layer undergoes a fluidization transition at Γ = 2.0. The

vibrated layer is in a fluidized state, but no patterns are visible for 2.0 < Γ < 2.5 [137].

We have explored the region 2.0 < Γ < 2.5 and find that there are strong spatially in-

homogeneous fluctuations at the surface of the layer. These fluctuations appear random

in individual images, but show a well-defined ring in Fourier space, indicating a length

scale in the noise. We now describe our measurements and comment on the relevance to

hydrodynamic theories of granular materials.

6.3.2 Measurements of noise below onset

The top four panels of Figure 6.17 show images of the granular layer for increasing

values of Γ. Individual grains are clearly visible and fluctuations in the density are seen

which are roughly 10 grain diameters in size. The bottom four panels of Figure 6.17

show the corresponding structure factors for the images, computed by time-averaging

the Fourier transforms of a sequence of 100 images taken at fd/2. A ring in Fourier space

is clearly visible and grows in intensity as Γ approaches the up-onset value of 2.58.

Figure 6.18 shows the azimuthal average of the structure factors and in Fig-

ure 6.18b we plot the integrated power in the main peak as a function of Γ. The intensity

of the ring increases as Γ is increased in accord with the reflectivity measurements mea-

surements of [137] which showed that the intensity of the fluidized fluctuations increased

with Γ.

Thus, we also find that even below onset of patterns, modes of the top fluid layer

are excited by fluctuations in the local density of the patterns and we now comment on

previous studies in other fluids.

6.3.3 Comparison to convection in CO2

Convection and noise

Our study is analogous to that performed in a Rayleigh-Bénard convection experi-

ment [196], see Figure 6.19. In Rayleigh-Bénard convection where non-Boussinesq effects

are important, the primary bifurcation is subcritical and forms hexagonal patterns [17].

Swift and Hohenberg [173] showed that that the effect of thermal noise could be seen

below the bifurcation, essentially imaging the slowest decaying mode, but the effect was
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Figure 6.17: (a) Snapshots of the vibrated granular layer below onset of patterns for
increasing values of Γ at fd = 29 Hz. Each image is The layer depth N = 4 of 0.165 mm
bronze spheres. (b) The modulus of the Fourier transform averaged in Fourier space over
100 plate oscillations. Blue to red indicates increasing intensity. The image at Γ = 2.58
has been scaled in intensity by a factor of 10. The length scale is the same as that in
Figure 6.18.

predicted to be unobservable due to the small size of kBT relative to the kinetic energy

in a roll, a factor of roughly 10−9.
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Figure 6.18: (a) The azimuthally averaged structure factor for the same values of Γ in
Figure 6.17. For comparison, the curve for Γ = 2.58 has been scaled by 0.1. (b) The
integrated power in the azimuthally averaged structure power as Γ is increased to the
onset value of Γ ≈ 2.58. The value for the power at Γ = 2.58 is not shown and is 5000.

Noise size and control

The experiments on gaseous convection were a tour-de-force. Since the noise power

was so small compared to the average energy in a roll structure, to observe the predicted

effect of pattern below onset of waves, the control parameter ε = (Ra − Rac)/Rac had

to be controlled to a precision of −10−4 below the bifurcation. In our experiments,

the fluctuation induced pattern can be seen at control parameters (Γ − Γc)/Γc ≈ −10−1

below the onset of patterns. This indicates that the size of the noise compared to a typical

energy scale in the problem, mgh, is quite large. In fact, it is very clear from the images

in Figure 6.17 that individual grains can be seen, and thus can produce fluctuations in
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Figure 6.19: Shadowgraph images of gas convection in CO2. Top 4 panels: (a) Fluctu-
ating rolls, for ε = −3.0 × 10−4, (b) Square of the modulus of the Fourier transform of
the image in (a). (c) Shadowgraph image of a hexagonal pattern, for ε ' 0. (d) Square
of the modulus of the Fourier transform of the image in (c). Bottom 4 panels: Structure
factors for increasing −ε (a) ε = −4.2 × 10−3, (b) ε = −1.6 × 10−3, (c) ε = −7.1 × 10−4,
(d) ε = −3.0 × 10−4. Images taken from [196].

the height of the layer which are comparable to the depth of the layer.

Subcritical vs. supercritical

Without non-Boussinesq effects, the bifurcation in Rayleigh-Benard is supercrit-

ical, and the wavelength of the pattern slightly below onset should be the same as that

slightly above onset. In the Ahlers experiments, the primary bifurcation is subcritical

due to unavoidable non-Boussinesq effects which manifest very close to the bifurcation2.

Because the bifurcation is subcritical, there is no a priori reason that the wavevectors

below and above onset should match. In the granular layer, as seen in Figure 6.20, the

2Further above the onset where the Boussinesq approximation is valid, the hexagons lose stability to
straight rolls.
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wavelength above and below are quite different. However, this is not unexpected as the

bifurcation is subcritical, see Figure 6.13. A full understanding of the subcritical behav-

ior is not yet known, but should involve fluidization of the entire layer. As before, below

onset, the effective depth is smaller, thus the wavelength should be smaller. Above onset,

the depth is the full depth. As fd increases, the hysteresis in the bifurcation becomes

smaller and the ratio of the wavevector above onset to that below increases (Figures 6.20

and 6.21). However, there is the competing non-hydrodynamic effect of the fluidization

of the layer above ṽ. As fd increases at constant Γ, eventually ṽc < ṽ and at this point

there should no relation between the wavelengths above and below onset. Below would be

a small top fluidized layer, outside the ṽ theory while above onset the wavelength would

follow the non-hydrodynamic region of the dispersion relation. For 0.165 µm particles

and assuming onset around Γ ≈ 2.5, this sets the maximum fd for hydrodynamic waves

as roughly fd = 32 Hz. From Figure 6.21, the ratio of the pattern to noise wavevectors

is about 0.7, and from Figure 6.13, we see that the hysteresis is on the order of 1%.

These are much larger than the corresponding quantities in the convection experiment.

Since the hysteresis, and presumably the difference in wavevector, is related to the effec-

tive fluid depth, it would be interesting to study the effect in a “pre-fluidized” vibrating

layer. This could be accomplished by the addition of a high frequency forcing or by using

air to fluidize the layer.

Fluctuations and noise strength–fluctuating hydrodynamics

We speculate that these fluctuations are the analogue of thermal fluctuation

present in fluids. These fluctuations occur on timescales comparable to mean free and

length scales comparable to the mean free time, and consequently do not appear in

hydrodynamic equations, equations for the evolution of quantities which change slowly

compared to the mean free time and over length scales much longer than the mean free

path. They manifest by creating spontaneous local stresses and heat gradients in the

fluid. To study their effects, the fluctuations must be re-incorporated into Navier-Stokes

equations, and this is typically accomplished by the addition of a stochastic forcing term

to the Navier-Stokes equations [110]. Using such equations, Rayleigh-Bẽnard convection

can be analyzed around the bifurcation point and analysis shows that the effect of noise

was 10−9 and thus ε should be very small to see the effect of the noise.

It is a fascinating question how (or whether) such terms should appear in the

Jenkins-Richman equations ( Equations B.2 - B.4 in Appendix B) modified with stochas-

tic forcing terms like in ??. Since the averaging done to derive these equations occurs

on length scales which are not much larger than the particle size and/or mean free path,

are the fluctuating terms already present? If not, how should they be put in? The

type of experiment described could provide a resolution to the question of appropriate
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Figure 6.20: The azimuthally averaged Fourier spectra for images at different fd, above
and below onset of patterns, Γ = 2.40 and Γ = 2.45. q0 of the noisy state below onset
does not vary significantly with fd, while q0 of the pattern above onset changes by almost
a factor of 2. The difference in vertical scales is a result of the enhanced reflectivity at
lower frequencies due to higher amplitude patterns.

averaging and separation of scales which plagues the hydrodynamic theories of granular

materials [51, 175].
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6.4 Phase discontinuities and segregation

6.4.1 Introduction

The experiments in this section are mainly experimental verification and real-

ization of effects predicted in the hard sphere event driven molecular dynamics (MD)

simulations of Sung Joon Moon [135]. In the experiment, we examine the dynamics of

phase discontinuities (regions of the layer which oscillate out of phase with each other)

in vertically vibrated layers. For Γ < 7.5, the phase discontinuities are asymptotically

stable and form a time-independent feature of the vibrating layer called a kinks. For

Γ > 7.5 localized regions of the layer can spontaneously change phase. These regions

are called phase bubbles and for sufficiently high Γ they strongly disrupt the layer and

create spatio-temporally chaotic patterns. We will study the stability of patterns dis-

rupted by the chaotic phase bubble state. In addition, Moon has shown that a pair

of counter-rotating convection rolls exist near the kinks [134]. We have demonstrated

that this convection produces spontaneous segregation of a vibrating layer composed of

different-sized particles.

6.4.2 Kinks

Above Γ ≈ 4.5, the vibrated granular layer develops phase discontinuities in which

different portions of the layer oscillate π out of phase. These portions of the layer are

separated by an interface called a kink, examples of which are shown in Figure 6.22.

Figure 6.22: The degeneracy leads to kinks, Γ = 5.2, fd=40,57 Hz. Layer depth, N=15

The temporal dynamics of the layer can be well described by a single inelastic-ball

model [129]. This model predicts that kinks can occur when the Γ is large enough so
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that the layer collides with the plate every two oscillations as shown in Figure 6.23 for

Γ = 4.53. This allows some portions of the layer to collide with the plate while other

regions are off the plate. In small enough container, the entire layer oscillates at f/2,

but as soon as there is some imperfection in the driving, the layer will spontaneously

break into two equal mass portions and this is typically driven by the sidewalls. In fact,

the location of the interface can be controlled by additional subharmonic driving, details

have been studied in [8].

As shown in Figure 6.23, for Γ > 4.5, the layer always skips an oscillation and thus

the degeneracy necessary for kink formation is always present. In fact, most observed

patterns have phase discontinuities present in the form of stationary kinks, with patterns

of different phase occupying the continuous regions between kinks, see Figure 6.24.

Transient kink dynamics

The kinks are asymptotically stable and for a well-balanced experiment the in-

terface forms a straight line dividing equal mass sections of the layer [8]. This is due

to an effective surface tension of the interface and has been shown to be a consequence

of mass flux across the kink [135]. We can see the effects of surface tension at work

in Figure 6.25. Here the system is initially prepared in a disordered state and rapidly

jumped in the kink region. High amplitude regions are out of phase with low amplitude

regions and become kinks. The kinks straighten and merge to form a single kink after

roughly 103 oscillations.

Generally, small enclosed regions of different phase (phase bubbles) disappear over

several hundred oscillations. However they can merge if they are close, forming kinks,

and this is shown in Figure 6.26. It is important to note that these phase bubbles are

created by the initial condition. We now describe bubbles that spontaneously appear

and slowly shrink–this process plays an important role in the order of patterns at higher

Γ.

6.4.3 Phase bubbles

Kinks form due to perturbations of the collision of the layer and the plate. These

perturbations often due to poor leveling of the system and the kinks usually are initiated

at the sidewalls. We have found that kinks can be suppressed in small containers in which

the mass of the layer is much smaller than the mass of the plate. However, above a critical

Γ ≈ 7.5 the layer becomes unstable to formation of localized phase discontinuities (phase

3Trajectories calculated from the program that solves the motion of a inelastic particle falling under
gravity and colliding with an infinitely massive oscillating plate. Source code is given in Appendix D
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Figure 6.23: The calculated trajectories of a single completely inelastic ball for increasing
Γ at fixed fd. Trajectories calculated using the code in Appendix D.

bubbles) in the bulk of the layer. Phase bubbles differ from normal kinks in that they are

not only created by the boundaries or imperfections in levelling. Moon has shown that a

phase bubble forms because for large enough Γ, the layer bottom develops large length

scale undulations. The amplitude of the undulation can grow during flight of the layer

and when a portion of the layer hits the plate before another portion, a phase bubble is

nucleated. He has shown that phase bubbles are more numerous as Γ is increased and

experiments confirm this as seen in Figure 6.27. The phase bubbles nucleate with a finite
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Figure 6.24: The degeneracy leads to patterns with multiple phases, in stripes with
fd = 60 Hz, Γ = 6.2 and hexagons with fd = 67 Hz, Γ = 6.8. N = 15 in both cases.

size and as in the above section, they shrink over several oscillations [135]. However, as

Γ is increased, the rate of nucleation becomes quite large and the phase bubbles form

complicated time dependent labyrinth pattern.

Spontaneous phase changes are seen in the inelastic ball model (IEB), Figure 6.28,

in a narrow region where the temporal dynamics are chaotic. It may be coincidence that

the phase bubbles seen in the experiment begin at roughly the point where chaos begins,

around Γ ≈ 7.5. However, phase bubbles are seen well above this region, where the model

predicts non-chaotic dynamics.

In fact, in the experiment, stable patterns are never seen above the phase bubble

onset. Instead, as Γ is increased, the rate of phase bubble nucleation increases. At some

point a time-dependent, disordered state of connected kinks and phase bubbles forms,

shown in Figure 6.29. It is not yet known if there is a bifurcation between the phase

bubble states and this strongly disordered state. Either way, such complicated time-

dynamics of the layer is not present in the IEB model. Above Γ ≈ 8.0, the IEB model

predicts that the layer should oscillate at fd/3, see Figure 6.23 and Figure 6.28. If we

use lower Γ behavior as a guide, we would expect to see flat or pattern states oscillating

at fd/3. It has been proposed [135] that the disruptive spontaneous formation of phase

bubbles prevents formation of f/6 patterns Γ > 8.0: the random appearance of phase

bubbles disrupts the coherent oscillation necessary for formation of the pattern. It was

proposed that the inelastic ball model fails because it does not take into account the

dynamics of the layer due to its thickness. The IEB models the center of mass motion of

the layer and cannot account for large spatial deviations which are present at the higher

Γ [135].
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Figure 6.25: The kinks straighten and bubbles shrink. A jump from a disordered state
at Γ = 9.2 to Γ = 5.2 at fd = 57 Hz, N = 15. The numbers in each image are in units
of plate oscillations.

6.4.4 Transient fd/6 patterns

We emphasize that in the experiment in large aspect ratio containers, there is no

bistability between ordered fd/6 patterns and the chaotic phase bubble/connected kink

state. This is in contrast to the bistability between the straight roll and spatio-temporally

chaotic spiral defect chaos (SDC) states seen in Rayleigh-Benard [23]. The phase bubbles

are always seen in the granular system at sufficiently high Γ. However, we have found

that fd/6 patterns can exist as transients, which are soon destroyed by phase bubbles.

We now describe these experiments.

The following prediction was made and verified in the experiment: The fd/6

patterns are never seen due to the disruptive phase bubbles. The instability of the layer
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Figure 6.26: Phase bubbles always shrink, but if they get close enough they merge. A
jump from Γ = 9 to Γ = 4.5 at fd = 118 Hz, N = 15. The numbers in each image are in
units of plate oscillations.

which creates phase bubbles is due to the growth of local height inhomogeneities at

the bottom of the dilated layer. Thus, if these inhomogeneities can be suppressed, no

spontaneous phase jumps will occur. It was predicted that an fd/6 pattern could be

seen by the following method. Prepare the layer in a compact initial state with a very

flat bottom interface and then suddenly jump into the region where the layer should

oscillate f/6. The f/6 oscillation will occur until the undulation of the bottom of the

layer has time to grow and create phase bubbles. Thus, fd/3 pattern should persist until

the pattern is overwhelmed by phase bubbles.

This process was observed in the experiment, as seen in Figure 6.30. The layer

was prepared below the onset of patterns at fd = 83Hz and Γ = 2.2 and Γ was suddenly
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Figure 6.27: Phase bubbles destroying f/4 hexagons as Γ is increased. Γ =
6.9, 7.27, 7.29, 7.56, f = 78 Hz, N = 10 layers

increased to Γ = 9.2 keeping fd constant. An initial square pattern vibrating at f/6 grows

in amplitude from a flat layer vibrating at f/3. The pattern begins to coarsen to create

a more ordered pattern, but after several hundred oscillations, local phase disturbances

have destroyed the pattern, leaving a state of labyrinthian phase bubbles 4. A close-up

of the decay of the fd/6 pattern is shown in Figure 6.32. We note that for fd = 83,

a transient square pattern is seen. 5 To verify that the oscillation occurs at fd/3, in

Figure 6.31 we plot the variance of the image as a function of time. The variance is large

when a pattern is present and small for a flat layer. The inset shows the Fourier spectrum

of the variance, with a peak at exactly fd/6. Thus, we conclude that the predictions of

the inelastic ball model are still good, but the model fails to capture the extra dynamics

of the layer associated with dilation and thickness variations. The source of the local

long wavelength inhomogeneity which presumably triggers phase bubble formation is still

4In addition, a kink from the boundary helps to destroy the pattern
5At higher fd, we have observed the formation of transient stripe patterns analogous to the behavior

of fd/2 and fd/4 patterns.
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Figure 6.28: Time between collisions for the single inelastic ball model, calculated using
the code in Appendix D.

unknown [135].

6.4.5 Segregation in the presence of kinks

A detailed study of the dynamics of grains near an fd/4 kink has been made. This

study found that the kink interface is bounded by a pair of counter-rotating convection

rolls [134], see Figure 6.33. This convection is due to a combination of shearing of the

layer and an avalanching of particles and is described in [134].

We now demonstrate that if different size particles are added to the oscillating

layer, they are drawn into the kink by the convection roll and remain trapped along

the kink interface. Thus, the kink acts to segregate different sized particles. Other

experiments in granular materials have observed that convection can lead to segregation

of different size particles. However, the convection in each of these experiments was

either driven by frictional contact [30, 103, 105] with a boundary or due to interaction

with surrounding fluid [142] 6. In contrast, the convection in the kinks is due to the

intrinsic dynamics of the layer and can be precisely controlled by changes in Γ and fd.

6We note that segregation phenomena are fairly common in granular flows in excited granular materi-
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Figure 6.29: A snapshot of a disordered pattern at Γ = 9.2 and fd = 90 Hz, N = 15.

Consequently, the rate of segregation and the number of particles that can remained

trapped can be easily varied. We now describe our experiments.

The experimental confirmation of this prediction is shown in Figure 6.34. A

container with 10 layers of 165 µm bronze spheres is evacuated to avoid hydrodynamic

convection effects and shaken vertically with Γ ≈ 4.5, and fd = 90 Hz. We add a small

number of larger, 650 µm glass particles which have had their surfaces blackened with a

coating of graphite powder.

Initially, all particles are on one side of the kink. As the kink moves due to a slight

tilt of the cell (because the container is out of level), the large particles are attracted

and stick in the kink–they never cross the kink “barrier”. For this high frequency the

particles remain at the top of the layer in the middle of the kink. This happens by a

similar effect observed in experiments of wall driven convection [103, 105]. The large

particle is convected into the kink but is unable to squeeze through the middle due to

dense packing of the bronze spheres at high frequency.

As the frequency is decreased, the density of bronze spheres in the kink decreases

and the large particle can follow the convection roll. At this point it circulates in the

als and are not always linked to convection, for example radial and axial banding in a rotating drum [88]
and segregation into bands by pouring two-sized particles into a narrow cell [106]
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Figure 6.30: Transient growth and decay of square patterns oscillating at f/6. At t = 0,
Γ is increased from 2.2 to 9.2 at fd = 83Hz, N = 15.

kink, disappearing in the middle and popping up on the side. Thus, the dynamics of

the trapped particles can be very complicated, and depends strongly upon the mobility

of the small particles in the vibrating layer and the size ratio between the two species;

this is schematically illustrated in Figure 6.35. Once a particle is trapped in the kink,

it remains. However, there is a limit on the number of particles that can be trapped;

at some point the large particles will not all fit in the trapping zone. When this occurs,

particles leak out of the kink region.

When the frequency is decreased below a certain transition at roughly fd = 45 Hz,

the kinks develop a decoration. The trapping also works in the decorated kink state, but

here the dynamics of the large grains is much more complicated. They seem to circulate

between the the stripes in the decoration occasionally jumping from one roll to another,
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Figure 6.31: Main Figure: The variance of each images in the time series in Figure 6.30
plotted as a function of plate oscillations. Since the images were collected at fd/2, the
variance reaches a local maximum every 4 frames. As the schematic shows, this indicates
that a complete pattern oscillation occurs every 6 plate oscillations, at fd/6. The inset
is the power spectrum of the variance.

see the time trace in Figure 6.36. This motion has the effect to transport the particles

along the kink. This is in contrast to the high frequency kinks in which the particles

execute no motion along the kink. The motion of large particles in the decorated kink

occurs by long excursions and trapping events. It would be interesting to study the

diffusion of the grains in this direction.
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Figure 6.32: Close-up of the decay of a transient f/3 pattern shown. The parameter
values are the same as those in Figure 6.30. The image area is 2x2 cm2
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Figure 6.33: A projected side view of a kink created in a molecular dynamics simulation.
A pair of convection rolls is associated with the kink and the small arrows represent
displacement vectors over two plate oscillations. The inset shows the trajectory of the
local center of mass of the layer at points A and B. Courtesy S. J. Moon.
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Figure 6.34: Transport and segregation of 650 µm glass spheres into a fd/2 kink formed
in 10 layers of 165 µm bronze spheres shaken at fd = 90 Hz and Γ ≈ 4.5. Both particles
have a thin layer of graphite on their surfaces and the glass spheres appear black under
overhead illumination.

Particle circulates in 
kink

Particle trapped at 
top of kink

Figure 6.35: A schematic side-view of the behavior of large particles trapped in a kink
formed in an oscillating layer of smaller particles. The top panel shows a high frequency
kink in which the large particle remains trapped at the surface of the layer. The bottom
panel shows a low frequency kink in which the local solid density of small particles is
low, and the large particle can freely circulate within the convection roll.
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Figure 6.36: Segregation effects in decorated kinks for 650 µm glass spheres into a fd/2
kink formed in 10 layers of 165 µm bronze spheres shaken at fd = 40 Hz and Γ ≈ 4.5.
The large particle remains trapped in the kink but executes a complicated motion along
the decoration which leads to transport along the kink.
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6.5 Particle surface contaminants

The role of surface contamination was mentioned in Chapter 5 and will be briefly

discussed here. It has a strong effect on pattern formation and also plays a role in the

strength of the modes discussed in that chapter. In fact, the effect described could be a

useful check on the form of friction proposed theories of granular materials.

We found that cleaning the particle in an ultrasonic cleaner for several hours in

alternating baths of methanol-water and acetone water modify the particles so that when

shaken, patterns which look like those in Figure 6.37a are seen. The patterns develop

a haze above them. The addition of a small amount of contaminant (graphite powder,

Moly-powder) restores the patterns as seen in Figure 6.37b. The haze decreases with

increasing layer depth.

a) b)

Figure 6.37: The surface properties of the particles influence pattern formation a) Four
layers of 165 µm bronze spheres after after being cleaned in acetone and methanol. b)
The same spheres after the addition of a small amount of graphite powder and the spheres
have been shaken for 105 oscillations. In both panels, Γ = 3.0 and fd = 30 Hz.

In fact, the restoration of the patterns also seems to trigger the normal modes.

This is seen dramatically in Figure 6.38. A small amount of graphite was added to the

layer and shaking began. The graphite slowly diffuses throughout the layer, and where

it reaches, after only a few plate oscillations, the patterns crispen and modes grown in

amplitude. In fact, if FM is applied, the section with graphite wiggles wildly while the

pattern in the region without graphite do not display any normal mode oscillation.

Also, we find that particles direct from the factory (manufactured by Acupowder

International, Union, NJ) do not display modes and have very hazy patterns. A magnified

image reveals only that the factory particles are shiny and the graphite particles have a
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Figure 6.38: The addition of graphite reduces the haze around the particles and modes
of the lattice appear. Here, Γ = 3.0, fd = 29 Hz, at the top of resonance peak II. The
clean particles show no modes, but immediately after addition of graphite, the modes
appear.

dull surface. We speculate that the addition of the graphite does two things. It decreases

the coefficient of restitution and decreases the friction by adding a low-friction layer to

the particles. It would be interesting to fully characterize this as it is an experimental

way to modify friction in granular flows. Acupowder makes different types of bronze

with different materials alloyed. Since we have found that lead powder also makes crisp

patterns, it would be interesting to try other alloys.
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165 µm

Figure 6.39: The two shiny particles on the right are fresh from the Acupowder factory
and the two dull particles on the left have been shaking in graphite. The dull particles
form crisp patterns with large amplitude normal modes.
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Chapter 7

Absence of inelastic collapse in a realistic three-ball

model

The contents of this chapter have been published in [71]

In this chapter, inelastic collapse, the process in which a number of partially

inelastic balls dissipate their energy through an infinite number of collisions in a finite

amount of time, is studied for three balls on an infinite line and on a ring (i.e., a line

segment with periodic boundary conditions). Inelastic collapse has been shown to exist

for systems in which collisions occur with a coefficient of restitution r independent of the

relative velocities of the colliding particles. In the present study, a more realistic model

is assumed for r: r = 1 for relative velocity equal to zero, and r decreases monotonically

for increasing relative velocity. With this model, inelastic collapse does not occur for

three balls on a line or a ring.

7.1 Introduction

Energy loss during collisions of macroscopic particles is often described by a co-

efficient of restitution r, the ratio of the relative normal velocity of the particles after

the collision to the relative normal velocity before the collision. Analyses of particle

dynamics with constant r have shown that for r below a critical value rc, many initial

particle velocities and configurations lead to an infinite number of collisions in a finite

time [13, 31, 77, 126, 127, 200]; both the relative spacings and velocities of the balls go to

zero. Such a process is called inelastic collapse. In addition to the collapse analyses, sim-

ulations [120, 121, 123] and hydrodynamic analyses [13, 26, 49, 70, 78, 79, 165, 187, 194] of

granular media have usually assumed r to be constant, independent of the relative collision

velocity u. For real materials, however, r is not constant; rather, it increases monotoni-

cally with decreasing u and approaches unity in the limit that u → 0 [5, 75, 108, 147].

To illustrate the problem with the usual assumption of constant r, we examine the

two simplest models in which inelastic collapse has been shown to occur for constant r:

three balls confined to an infinite line[31, 126, 200] and three balls confined to a periodic

line segment (ring) [77]. For both of these models we find that if r is a physically

reasonable function of the relative collision velocity, there is no collapse state. This
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Figure 7.1: A 2D event driven molecular dynamics simulation of inelastic disks with a
constant coefficient of restitution, r = 0.6. After several hundred collisions, large clusters
have formed. The simulation was stopped when inelastic collapse was detected; C/N is
the total number of collisions per particle at the time collapse occurred. The particles
involved in the last 200 collisions are shaded black; these create the collapse state. Figure
reproduced from [128].

result builds on a conjecture of McNamara and Young that collapse is an artifact of

the idealized constant r model, and that a velocity-dependent r might eliminate this

artifact [126].

The reason for the absence of inelastic collapse with a physical model for r is

straightforward. If collapse is to occur, the relative velocities of all particles must go to

zero. If r → 1 as the relative velocity u → 0, then for u small enough, a collision will

occur for which r > rc. From the previous work, this insures that collapse cannot occur.

Thus, collapse in the line and ring geometries happens only for nonphysical coefficients

of restitution. Therefore, the results obtained in recent analyses of inelastic collapse [13,

31, 77, 126, 127, 200], as well as work on the hydrodynamics of granular materials [13, 26,

49, 70, 78, 79, 165, 187, 194], should be re-examined using a more physically accurate form

of r.
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7.2 Three balls on an infinite line

Consider three balls of unit mass and labels L, M, and R (left, middle, and right).

The balls’ velocities are vL, vM , vR, and their relative velocities are uL = vL − vM , uR =

vM − vR. Assume that the balls undergo instantaneous binary collisions and that the

relative velocities of two particles before and after their ith collision, ui and ui+1, are

related by a velocity-dependent coefficient of restitution, r(ui):

ui+1 = −r(ui)ui. (7.1)

Without loss of generality, we assume that the system is prepared such that the velocities

of the left and right balls are directed in towards the middle ball, and that the velocities

of the balls are such that the left and middle balls undergo the first collision (i.e., uL
0 >

uR
0 > 0). After the collision between the left and middle ball, the relative velocities are

(using the conservation of momentum and the definition of r):

uL
1 = −r(uL

0 )uL
0 , (7.2)

uR
1 = uR

0 +
1 + r(uL

0 )

2
uL

0 , (7.3)

The middle and right balls collide next. After the collision, the final relative velocities

can be written

uL
2 = uL

1 +
1 + r(uR

1 )

2
uR

1 , (7.4)

uR
2 = −r(uR

1 )uR
1 . (7.5)

After this collision, the system will be in a state such that the only possible collision is

between balls L and M. If these collide, then the next possible collision will be between

R and M. Thus, we can generate a map which returns the system to a potential collision

between L and M after every two collisions. This is done by substituting (7.2) and (7.3)

into (7.4) and (7.5) and generalizing to obtain

uL
n+2 = −r(uL

n)uL
n +

1

2
(1 + r(uR

n +
1 + r(uL

n)

2
uL

n))(uR
n +

1 + r(uL
n)

2
uL

n), (7.6)

uR
n+2 = −r(uR

n +
1 + r(uL

n)

2
uL

n)(uR
n +

1 + r(uL
n)

2
uL

n). (7.7)

The iteration must stop if both uL
n < 0 and uR

n < 0 because then both L and R are

moving away from M, and there can be no more collisions (i.e., the range of the map

contains points that do not lie within its domain). We now investigate the properties of

this map.

The only fixed point of the map is (uL, uR) = (0, 0), for which the three balls move

together with both relative velocities equal to zero. To show this, set uL
n+2 = uL

n ≡ uL
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and uR
n+2 = uR

n ≡ uR. Substituting into the above equations, rearranging (7.6), and

denoting b = (1 + r(uL))/2 gives

3buL = uR + r(uR + buL)(uR + buL), (7.8)

uR = −r(uR + buL)(uR + buL). (7.9)

These yield buL = 0, so that either uL = 0 or b = 0. If b = 0, the definition of b

implies that r(uL) = −1, which is unphysical. Substituting uL = 0 into (7.9) leads to

the condition uR(1 + r(uR)) = 0, giving either uR = 0 or r(uR) = −1. Again, the only

physical result is uR = 0.

To explore the long time behavior of the system, we calculate the stability of the

fixed point. Writing the map in matrix form for small relative velocities duL and duR

near the fixed point (uL, uR) = (0, 0) gives 1:

(

duL

duR

)

n+2

=

(

(1+r(0))2

4
− r(0) 1+r(0)

2

−r(0)1+r(0)
2

−r(0)

)

(

duL

duR

)

n

. (7.10)

The eigenvalues of the matrix are:

λ± =
1 − 6r(0) + r2(0) ±

√

(−1 + 6r(0) − r2(0))2 − 64r2(0)

8
. (7.11)

The linearization of our map recovers the previous result of the existence of a critical

r [31, 126, 200], and shows that for velocity dependent coefficients of restitution, the only

value which determines whether a system will collapse is r(0), the value of r at the fixed

point. Substituting r(0) = 1 into (7.11) gives the complex eigenvalues λ± = (−1±i
√

3)/2.

The complex eigenvalues have magnitude unity, which implies neutral stability; hence we

must argue further to determine the long time behavior of the linearized map around the

fixed point.

Since r(0) = 1, the analysis reduces to that for perfectly elastic collisions. If

collisions are elastic, a collision between two identical balls acts as if the balls pass

through each other. Therefore, a maximum of three collisions may occur before the

balls move away from the fixed point. As the relative velocities approach zero, the balls

act elastically, and the dynamics must result in a state where all relative velocities are

negative. Since the linearization of the map is valid for small u, inelastic collapse cannot

occur – the balls will never reach a state where all relative velocities and separations are

1Since r(u) might not be Taylor expandable near the fixed point, we linearize the map by writing it in
terms of the difference duL

n = uL
n−0 from the fixed point. We then drop terms of order (r(duL)−r(0))duL.

Such a procedure allows r(u) to be any continuous monotonic decreasing function with finite r(0)
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zero. This is because the ranges of both the full and linearized maps contain points that

do not lie within their domains.

If r(0) is not unity, but rc ≤ r(0) < 1, where rc ≡ 7 − 4
√

3 ≈ 0.0718, previous

analysis has shown that the fixed point is unstable, and collapse cannot occur. Collapse

can only occur if r(0) ≤ rc[31, 126, 200]. In experiments, such a situation can never be

observed, since for real materials, r(u) → 1 as u → 0.

7.3 Three balls on a ring

The result for balls on an infinite line says nothing about what might happen if the

balls were not allowed to go to infinity as soon as both relative velocities were negative.

Therefore, we examine a model which allows continued interaction with neighboring balls,

specifically, three balls of equal mass on a ring, i.e., confined to a line segment of unit

length with periodic boundary conditions. This geometry does not allow the balls to

escape collisions. Note that there is no radial acceleration in this model; the ring merely

imposes periodic boundary conditions. Grossman and Mungan [77] have shown that

collapse occurs in such a configuration for r < rc.

However, if collapse is to occur on a ring, the distances between the balls and

their relative velocities must go to zero, so that one of the particles collides alternately

with the other two particles, which do not collide with one another. This situation is

indistinguishable from three particles collapsing on an infinite line. Since we have already

shown that collapse does not occur on the line, collapse does not occur on the ring.

7.4 Discussion

We have shown that inelastic collapse, which was found in previous analyses with

a constant restitution coefficient, does not occur with a realistic model for the restitution

coefficient. While we have considered only three particle systems, we argue that collapse

will not occur in a N particle system. Such systems have been studied [126] for constant

coefficient of restitution with N particles on a line, and it was found that when r is

near 1, the minimum number of particles necessary to create collapse varies as −[log(1−
r)]/(1 − r). Thus, as r → 1, N → ∞.

Studies predicting inelastic collapse have assumed instantaneous collisions. More

realistic models of binary particle collisions would have to account for the duration of

collisions (particle contact time), which diverges as u−1/5 as u → 0 [75]. Since inelastic

collapse requires that the particles undergo an infinite number of collisions in a finite

time, collapse cannot occur if the collisions are not instantaneous. For small relative

velocities, the duration of the collision significantly affects the particle dynamics. The
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incorporation of the finite contact time into the analysis complicates the problem because

particles are no longer limited to binary collisions. The combined effects of a velocity

dependent coefficient of restitution and finite duration collisions make inelastic collapse

in the laboratory unlikely. We note that simulations with a velocity dependent r [169]

and experiments [107] do not produce collapse, but show particle clustering, a situation

in which variations in particle density spontaneously occur. It is possible that clustering

in granular media proceeds through frustrated collapses, situations in which the colli-

sion frequency increases rapidly until the relative normal velocities are such that collapse

ceases. However, clustering may also be due to finite duration collisions, or the inelastic-

ity of particles may cause clustering through a scenario less catastrophic than inelastic

collapse.
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Chapter 8

Dynamics of particles at the onset of fluidization

8.1 Introduction

In this chapter we present a detailed study of the dynamics of glass spheres in

a water fluidized bed near the onset of fluidization. As discussed in Chapter 2, the

response of material properties (like strain, strength of material, yield vs. consolidation)

of a collection of grains to a stress are strongly dependent on the packing density. We

will study the dynamics of grains during fluidization, the application of a stress by a fluid

flow, for different initial packings1. We find that corresponding to dramatic differences

in material behavior for different packings under stress, there are dramatic differences in

the dynamics of the grains under fluidization (stress from the fluid). Therefore, before

we discuss the main results on the fluidization process, we will describe the procedure by

which the volume fraction of the grains can be set to a repeatable value. We will then

return to the subject of fluidization. Before we begin, we list the relevant parameters

associated with the experiments described in this chapter.

Experimental parameters

We will describe the bed in terms of the voidage 1 − Φ, the average fluid volume

fraction measured from the average height of the bed. The voidages will range 0.39 <

1 − Φ < 0.5. We will study the fluidization of 335 µm glass spheres, ρp = 2.56 g/cm3

in water. The bed has a cross section 2.54x2.54 cm2, which for Random Loose Packed

(RLP), 1 − Φ ≈ 0.45, gives roughly 80x80 particles across. We typically use 60 g of

particles which for RLP pack the bed approximately 7 cm high. Typical flow rates at the

onset of fluidization are between 30-45 mL/min, depending on the initial packing fraction.

This gives typical fluidization velocities, vf , at onset between 0.08− 0.1 cm/sec. For the

335 µm spheres, the single particle sedimentation velocity, vs was measured as vs = 4.5

cm/sec. This is in accord with the Richardson-Zaki law which predicts vf/vs ≈ 0.02 for

the RLP state. The Reynolds number for the flow, using the particle as the length scale

and vf as the velocity scale gives Re ≈ 0.3. Re ≈ 15 when the vs is used. We measure

1The basic process of fluidization was discussed in Chapter 1, and the experimental apparatus was
described in Chapter 3.
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the relative collision velocity, vrel using Diffusing Wave Spectroscopy techniques and

confirming the measurement with a high speed camera. From this, we compute the

Stokes number, a measure of the importance of hydrodynamic effects during collisions,

St = ρpavrel/µ ≈ 0.6, where ρp is the particle density, a is the particle diameter, and µ is

the fluid viscosity. St ≈ 0.8 when vf is used. The size of the Froude number, Fr = v2
f/ga

has been shown to correspond to bubbling vs. non-bubbling behavior at the onset of

fluidization [193]. Fr � 1 corresponds to a fluidization with a smooth initial expansion

while fluidization in which Fr � 1 demonstrates bubbles of fluid rising through the bed.

In our experiments, Fr ≈ 3 × 10−4, well below the bubbling transition. Fr ≈ 0.6 when

vs is used.

8.2 Flow pulse experiments

Everyday experience shows that tapping a pile of grains results in a decreased

voidage–shaking the cereal box is a good example. Extensive work has been done to study

the voidage of a container of dry grains as a function of tapping rate and amplitude [104].

We study the fluid-dynamical analogy to the tapping experiment, in which short fluid

pulses act like taps.

Qmax

τ1 τ2

n=1

n=2 n=N

Qset

Q0
τwait

Time

Fluidization 
cycle begins

Pulse 
packing 
sequence

(above 
fluidzation onset)

(below 
fluidzation 
onset)

Figure 8.1: Flow pulses of amplitude Qmax and duration τ1 can be applied to the bed
after initial fluidization at Qset. N total pulses are applied after which the flow is set to
a value Q0 below the onset of fluidization.

To set 1 − Φ, we apply a series of flow pulses to the grains. This is schematically

shown in Figure 8.1. The maximum amplitude of the pulse, Qmax and duty cycle can be
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easily controlled by means of a three way valve (See schematic in Figure 3.4 in Chapter 3).

The procedure is as follows: The flow rate is set to a value Qset (Qset is always greater

than Qmax) well beyond the point of fluidization and controlled at this point until the

system equilibrates, typically 30 seconds, reaching a steady voidage. At this point, the

sequence of flow pulses is applied with maximum pulse amplitude Qmax and duty cycle

defined by τ1/(τ1 + τ2). For increasing total number of pulses, N , the voidage of the bed

decreases—the bed packs as shown in Figure 8.2. When the target voidage is achieved,

the flow is set to Q = 0 for a time τwait to allow the system to settle. Flow is then slowly

increased to value Q0 well below fluidization. This small flow does not alter the voidage

and in fact it stabilizes the packing by jamming the grains against the sidewalls. We will

discuss this point further in the section on jamming, Section 8.4. A fluidization cycle

begins at the flow rate Q0. We note that the loosest packing is obtained by stopping

the pulse sequence after the N = 1 toggle, allowing the bed to sediment for τwait with

Q = 0 and then slowly increasing the flow to Q0.

10
0

10
1

10
20.36

0.38

0.4

0.42

0.44

N

1-
Φ

RCP

RLP

Figure 8.2: The voidage of the bed decreases as the number of toggles increases. Here
duty cycle is fixed to 1/3 on 2/3 off and the entire cycle lasts 2 seconds. Qmax has values
of (◦, •, �,�, +,×, ∗,5), (0, 17.3, 27.2, 48.6, 71.3, 94.1, 116.2, 136.5) mL/min.

There are several points to notice about Figure 8.2. The first is that the rate of

decrease of 1−Φ with N is a function of Qmax for fixed duty cycle. For a range of Qmax
the average rate of decrease in voidage increases as Qmax increases. We interpret this

as stronger rearrangement pulses allow the bed to explore local crevices more efficiently.
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However, for large enough Qmax the voidage behaves non-monotonically for increasing

N . We can explain the non-monotonicity by the following argument. In a fluidized bed,

the pressure drop across the bed (which determines the fluidization) increases as voidage

decreases. Since a pulse is essentially a short fluidization event, there exists a voidage

at which Qmax becomes large enough to fully fluidize to a voidage greater than the

voidage before the pulse in the time during which the flow is on. For a given Qmax,

for further N , the voidage increases as a function of N . The value of N at which the

voidage should increase decreases as Qmax increases. A plot of the voidage of the bed

for N = 256 reveals that there is an optimal Qmax for the particular duty cycle chosen,

see Figure 8.3. The effects of changing duty cycle have not been investigated but are

expected to play a role as they influence the time during which the system can reach a

new height or relax. The question of packing optimization, by which the voidage could

be decreased to its smallest value in the most efficient way, has not been addressed. We

speculate that some recent models of energy landscapes of glasses could shed light on the

packing problem [45]. In addition, packing experiments could be useful tests of different

landscape theories.

0 50 100 150
0.38

0.39

0.4

0.41

0.42

0.43

Q
max

 (mL/min)

1-
Φ

 a
t N

=2
56



Figure 8.3: The voidage of the bed for a fixed number of pulses, N = 256 as a function
of Qmax.
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8.2.1 Sedimentation

The maximum voidage state is always obtained by simply allowing the particles

to sediment freely from a very high voidage state. This is achieved by fluidizing at Qset

and stopping the pulse sequence after N = 1. When the flow is removed, the voidage

decreases from (1−Φ)initial and after sedimentation, reaches a stationary loosely packed

state, (1 − Φ)final. This final voidage depends upon the initial voidage as shown in

Figure 8.4. The curve appears to asymptote to a value of 1−Φ ≈ 0.445. This value is in

good agreement with the results of Onoda and Liniger [139] who measured the volume

fraction of grains sedimenting in fluids of varying particle-fluid density difference. As the

density difference approached 0, the sedimentation rate approached 0 and they found

that the volume fraction reached the limiting value of 1−Φ = 0.445 They identify this as

the Random Loose Packed (RLP) state and define it as the highest voidage state which

is mechanically stable in the limit that g → 0. This state will play a very important role

in the dynamics of fluidization and we will refer to it again later. In practice, we find

that it is almost impossible to maintain a bed in the true RLP state, due to its fragile

nature.
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Figure 8.4: The final voidage of the bed after flow is suddenly turned off as a function of
initial voidage of the bed. The initial voidage increases with increasing Qset

Our sedimentation experiment differs from that of Onoda and Liniger as the den-

sity difference is kept fixed while the initial packing is varied. Thus, our experiment is
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analogous to the sedimentation experiments performed on much smaller colloidal parti-

cles [1]. As the particles sediment, the voidage decreases. The net result is that the final

volume fraction approaches RLP as the initial voidage increases. We note that the sedi-

mentation behavior in water is much different from that of grains sedimenting (falling) in

air. We when pour grains into the system without water present, we observe that grains

almost immediately pack into a state near a voidage of 1−Φ ≈ 0.37, the Random Close

Packed (RCP) state.

8.3 Fluidization

We now discuss the fluidization process and the dynamics of the grains at fluidiza-

tion. We will refer to an experiment in which the flow is increased and then decreased to

the initial point as a fluidization cycle. The goal of this section will be to investigate the

behavior of a bed during a fluidization cycle as a function of the initial condition. The

initial condition will be set by the pulsing procedure described above. All experiments

used the mesh flow distributor arrangement shown in Figure 3.5 in Chapter 3.

8.3.1 Fluidization and initial conditions

In this section we describe the dynamics of the glass spheres upon increase of

flow rate from an initial packing of the 335 µm particles. Other particle sizes showed

similar qualitative behavior. The techniques we will use to characterize the average

properties of the bed have been discussed in Chapter 3. Two complete fluidization

cycles for different initial conditions are shown in Figure 8.5. The plot shows both

fluidization and defluidization, but in this section, we will only discuss the fluidization

branch. We postpone the discussion of the defluidization branch until the next section,

subsection 8.3.2.

To take these curves, we use the following protocol: starting from Q0 = 0 mL/min,

we slowly increase the flow for 30 seconds until a particular Q is reached. At Q, the flow is

controlled while the system equilibrates, typically 30 seconds. After equilibration, various

measurements are made. These include voidage, pressure drop, and light scattering

measurements. When the measurements are complete, we ramp slowly to the next Q and

repeat. The increment in Q between measurement points is fixed during an experiment.

For a given path, as Q is increased, ∆P , the pressure drop across the bed normal-

ized by the buoyant weight of the grains per unit area increases. ∆P increases past the

point of force balance for the weight of the grains, ∆P = 1, until it reaches a maximum

value. At this point, it begins to decrease. At the point where ∆P begins to decrease,

the voidage of the bed begins to increase—the system becomes fluidized. The tightly

packed state displays complicated paths during which ∆P begins to increase again as Q
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Figure 8.5: Fluidization cycles for increasing flow for two different initial voidages 0.440
(◦), 0.403 (�) (a) Voidage vs. flow rate (b) Pressure drop vs. flow rate. Particles are
335 µm glass spheres with total mass 60 g. The curve with • symbol is for defluidization
and is independent of the initial voidage. Protocol: 30 sec ramp between each point with
30 second equilibration time.

increases. During this range of Q, the voidage remains roughly constant. We believe this

behavior is a consequence of poor flow distribution and will be discussed later. The dif-

ferent packings fluidize at different values of Q. This is a consequence of Darcy’s law–the

tighter packed bed has a lower permeability and thus develops a larger ∆P for the same

Q. The fluidization curves intersect at a certain value of Q, close to the value of RLP,

1 − Φ ≈ 0.44. From this point, the voidage continues to increase while ∆P remains at a

value of unity.

We now examine the dynamics of the grains during these two fluidization cycles
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by measuring the autocorrelation of multiply scattered light, g(2)(τ) (see Chapter 3 for

details). Examples of g(2)(τ) at different Q along the loosely packed fluidization branch

are shown in Figure 8.6. For each Q, 10 correlation curves, each sampled for 30 seconds,

were taken at 1 second intervals. This is done so that we can study repeatability of

the measurements. In addition, it allows us to capture changes which might occur on a

timescale longer than 30 seconds. To achieve 10% accuracy in the curves, it is necessary

to sample on a timescale roughly 102 longer than any timescale of interest. Thus, we

expect that decays of g(2) as long 0.3 seconds should be measurable with some reliability.

Later in the chapter, we will use the multispeckle techniques described in Chapter 3 to

extend the range of accessible timescales by another factor of 10. We note that even

for completely motionless particles, measurements of correlation curves over long times

decay with a characteristic time of roughly 3 seconds. We believe that this is due to either

slow movements in the apparatus or heating from the laser. This sets the fundamental

decay time limit for the correlation measurements.
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Figure 8.6: Correlation curves, g(2)(τ) along the loosely packed fluidization branch, show-
ing no decay below onset and a rapid decay above onset. Flow rates A-C, 37 mL/min
(�), 45 mL/min (×), 56 mL/min (O)

For the point A below fluidization, g(2)(τ) does not decay significantly. This

indicates that the particles remain motionless below fluidization. Above fluidization

(points B and C), g(2)(τ) decays with a timescale which decreases as the system becomes
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more fluidized. We will denote this decay time as τd, defined as the time at which

g(2)(τ) − 1 reaches the 1/e point. The intercepts of the g(2)(τ) for the fluidized states

are close to 1.5, the expected value for depolarized light [119]. This value indicates that

we are imaging one coherence area and that enough decorrelation cycles have been taken

to ensure good statistics. The intercept for the motionless particles is close to 1, the

value predicted for a signal of constant intensity [119]. Using the theory of DWS from

Chapter 3, we can extract the ensemble averaged mean square displacement, 〈∆r(τ)2〉, of

the particles from these curves. However, to gain understanding, we first use the inverse

time-scale of decay of g(2)(τ), 1/τd, to analyze the motion of the grains at onset.

Figure 8.7 shows a comparison of the inverse decay time 1/τd as a function of flow

rate for the two fluidization cases discussed. For each curve in (a), the mean value of

10 correlation curves taken after equilibration is shown and the error bars indicate the

spread in the decay times. For the two different initial packings, we see a remarkable

difference in the dynamics of the grains at the point at which the voidage of the bed

begins to increase. In both cases, well below fluidization, 1/τd is close to zero, indicating

a motionless state. For the loosely packed state, at the point where the bed height

begins to increase, g(2)(τ) immediately decays with a timescale of about 1 msec. The

transition point is marked by the dashed line. This indicates that the grains begin to move

immediately at the onset of fluidization, as might be expected. However, the behavior

of the grains on the tightly packed state is quite different. Here the system reaches a

point where the voidage begins to increase, near 30 mL/min but g(2)(τ) does not decay.

In fact, no decay of the correlation occurs until a higher flow rate, around 33 mL/min.

At this flow rate, g(2)(τ) decays in a finite time, but there is a large variation in 1/τd

for the different measurements. This indicates that the system is experiencing transient

behavior. As flow is increased, 1/τd continues to increase until the curves for the loosely

and tightly packed states intersect.

It is instructive to examine the pressure drop across the grains during these

changes in grain dynamics. As discussed above, the voidage begins to increase when

∆P reaches a maximum above 1. For the tightly packed case, once ∆P reaches the max-

imum pressure, further increases in Q result in a decrease of ∆P . When ∆P reaches a

value close to 1, the grains begin to move2. Thus, there exists a range of Q for which the

bed temporarily fluidizes and the voidage increases, but after some time, the bed settles

into a motionless state. Such behavior has also been observed in air-fluidized beds [130].

In the loosely packed state, the overshoot in ∆P is much smaller. For this case, the step

size in Q is presumably too small to resolve the motionless regime. In both cases, when

2We note that the behavior of ∆P once the grains have begun to move is complicated. For increasing
Q, ∆P increases until it reaches a maximum, after which it begins to decrease. We will discuss this
behavior later in the chapter.
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Figure 8.7: Top panels: The decay times of the correlation function, 1/τd, for fluidization
from loosely (◦) and tightly (�) packed initial conditions. The corresponding pressure
and voidage curves are included for reference. Loosely packed: the dashed line denotes
where motion begins as indicated by a finite value of 1/τd. The point where the material
yields and the point where motion begin are separated by a single flow increment in this
experiment. Tightly packed: the leftmost dashed line denotes the value of Q where ∆P
reaches a maximum and 1 − Φ begins to increase. The dashed line to the right denotes
the Q on the tightly packed branch where particle motion begins. Protocol: 30 second
ramp with 30 second equilibration time.

Q is large enough all curves intersect, and ∆P = 1. At high enough Q, the system can

be considered truly fluidized. At this point all grains are continuously in motion and in

contact only during very short collision times3

We interpret these experiments using the results of Onoda and Liniger [139] and

the theories of Jackson discussed in Chapter 2 as guides. According to the theory of

3As will be discussed, for St � 1, lubrication layers may prevent true particle contact during collisions.
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dilation [151], any applied stress (like the pressure drop due to the flowing fluid) causes a

granular material to dilate. If there are confining sidewalls, the dilation is frustrated, and

a pressure against the sidewalls develops. This is the source of the yield stress in tightly

packed granular materials (see Chapter 2 for details). As the shear stress increases, the

force from the boundary will increase until the material yields. We see this behavior for

the tightly packed bed. ∆P increases to a maximum almost 5% past the force balance

necessary to move the grains. Once the material has yielded, ∆P displays non-Darcian

behavior, decreasing for increasing Q. In addition, since ∆P is smaller than the maximum

overshoot value, the bed has becomes weaker and a smaller amount of stress is needed

to continue the yield process and further increase the bed height4. While the material

is yielding, the 1/τd data show that the grains are motionless. Eventually, the system

reaches a state where there is no more extra stress to overcome. Now, the force balance

can now move the grains.

We contrast this to the behavior in the loosely packed state. As shown by Onoda

and Liniger, in the RLP state, 1−Φ ≈ 0.45, in stress does not promote dilation. Roughly

put, at this voidage, the grains do not need to expand an extra amount in order to shear,

slipping past each other. Thus, in fluidization of such a state, a shear will not have to

overcome any extra contact forces, and the grains will move as soon as there is a force

balance. The loosely packed data is in accord with picture—the overshoot is much less

and the grains begin to move at onset5.

The results described deviate slightly from the schematic of fluidization sketched

in Chapter 1 due to the presence of extra contact forces. In summary, due to pressure

drop developed across the resistive medium, a stress is created on a collection of grains.

This stress seeks to dilate the grains, but the walls and frictional contacts prevent this

dilation. Thus, an extra stress is developed, and this must be overcome before true

fluidization can occur; the stress overshoot is larger for the tighter packing. In Figure 8.8

we plot the % overshoot of the pressure for fluidization from different initial packings.

In the limit of RLP, the overshoot approaches zero, indicating that the stress required to

yield this material approaches zero.

Short-time dynamics

We now examine the short-time dynamics of the grains during these processes.

The ensemble mean square displacement, 〈∆r(τ)2〉 of the grains at short times is mea-

sured using the multiple scattering Diffusing Wave Spectroscopy described in Chapter 3.

4Equivalently, the material has a lower strength, as predicted in Chapter 2. Thus, further stress will
cause the material to yield more easily.

5However, we never fluidize from the RLP state, as it is unstable to infinitesimal perturbation. There
would be no overshoot at such a state.
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Figure 8.8: The % overshoot over ∆P = 1 in the fluidization pressure curves as a function
of initial packing for the fluidization cycle.

Figure 8.9 plots 〈∆r(τ)2〉 for the correlation curves shown in Figure 8.6. These curves

are found by the inversion techniques described in Chapter 3. Below onset the grains do

not move, but far enough above onset, 〈∆r(τ)2〉 ∼ τα, with α ≈ 2.0. This indicates the

the motion of the grains is ballistic at short times. Note, however, the scale over which

the grains execute the ballistic motion. g(2)(τ) decays to close to 1 at roughly 0.1 msec.

At this time, the particles have displaced roughly 10−2 µm, a factor of roughly 30000

times smaller than their diameters. Thus, for short times, the grains are free to undergo

small displacements in the fluid.

Figure 8.10 plots the average exponent, α of the short time behavior during flu-

idization for the two packing cases. In both cases, below onset α ≈ 0.2. This is a

consequence of the slow decay of g(2). At onset in the loosely packed state, as was shown

in Figure 8.7, motion is detected immediately. Figure 8.10 reveals that α quickly rises to

α ≈ 2. Thus, in the loosely packed state, there is enough free volume for all particles to

immediately establish collisional dynamics. The tightly packed case displays complicated

dynamics after the material has initially yielded. In this case, α slowly (compared to the

increase in α for the loosely packed state) increases until sufficiently far above onset, it

reaches a value of 2.

We propose that α < 2 indicates that the behavior of the grains is not homo-
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Figure 8.9: 〈∆r(τ)2〉 shows that when the system is fluidized, the particles move ballis-
tically during short times. These curves correspond to the curves in Figure 8.6: A-C, 37
mL/min (�), 45 mL/min (×), 56 mL/min (O). The intercepts have been normalized to
the minimum detectable displacement, roughly 1 Å.

geneous throughout the bed. Recall that we are visualizing extremely small trajectory

times and displacements. Since the multiply scattered signal for DWS samples all par-

ticles in the bed, 〈∆r(τ)2〉 will contain contributions from motion averaged over many

regions. This is shown schematically in Figure 8.11. In some regions, the grains are

executing ballistic trajectories between collisions, and α ≈ 2. In other regions of the

bed, the particles are in contact for times long compared to a mean free time between

collisions. Thus, α ≈ 0 in these regions6. Presumably, these regions are not static, but

change on timescales much shorter than the sampling time (we will further examine this

assumption when we discuss multispeckle techniques). Thus, we propose that the value

of α is directly related to the average fraction of completely mobile grains. Below onset,

all grains are immobile and α stays at the baseline noise value of α ≈ 0.2. As Q is

increased above fluidization, the fraction of mobile grains increases until all grains are

mobile and α ≈ 2.

The results above demonstrate that the contact forces between particles can play

6Recall that due to the slow decay of g(2) presumably due to heating effects, α is never identically
zero. We will assume that the baseline of α ≈ 0.2 indicates the lack of motion at short times.
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Figure 8.10: Top panel: α as a function of flow rate for fluidization from two different
initial packings, tightly packed (�) and loosely packed ◦. Note the baseline value of
α ≈ 0.2 below fluidization. This is due to a slow drift in the system and is discussed in
the text. The voidage and pressure data is included for reference in the bottom panel.
The dashed lines indicating transitions in bed behavior and protocol for fluidization are
the same as those in Figure 8.7.

a major role in the motion of particles at onset. We now study a case in which contact

forces do not play a role, defluidization from a fluidized state.
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Figure 8.11: A schematic of the different regions of particle dynamics. The multiply
scattered light follows paths which sample all regions. Note that this diagram is not to
scale, nor is it intended to represent the actual size or shape of the regions.

8.3.2 Defluidization

Hindered motion

When the system is in a fluidized state, well above RLP, the contact network

is not established. Consequently, defluidization from such a state will not be subject

to sustained contact forces. We then expect that the behavior of the bed should be

different. This is seen in Figure 8.12. The defluidization branch follows the fluidization

branch until it reaches a point near RLP. From this point 1 − Φ continues to decrease

as Q is decreased. As some point, the condition for force balance, ∆P = 1 is no longer

satisfied. As Q is decreased from this point, the voidage continues to decreases, but at

much slower rate. Note that this path is independent of the initial state, provided that

the initial state is sufficiently fluidized. We will return to this point in the section on

jamming.

Figure 8.12 shows the behavior of α during defluidization. For Q such that 1−Φ >

0.45, α ≈ 2. Thus, the particles undergo ballistic collisional dynamics when the voidage
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Figure 8.12: Top panel: α as a function of Q for defluidization. Bottom panel: The
pressure and voidage are given for reference. The dashed lines indicate the hindered
region in which α 6= 2, but ∆P ≈ 1.

is greater than RLP. For values of Q such that 1−Φ < 0.45, α decreases with decreasing

Q. As argued above, this is due to particle contact. Although the force balance, ∆P = 1

is still maintained, the system does not have enough free volume to maintain a state in

which all particles undergo ballistic trajectories. As Q decreases, the fraction of immobile

particles increases; motion has become hindered. At some point lower than RLP, both

α and τd begin to change rapidly. We believe that the bed is now approaching a glass

transition, and this will be discussed in Chapter 9.
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Volcanos in the hindered region

At flow rates in the hindered region, the side of the bed reveals small transient

worm-like jets; they occur for increasing and decreasing Q. These reach the surface

and break through, forming spouting volcanos. Locally, a volcano will spout for some

time, then subside. This process repeats at different points over the surface. As Q is

increased, they appear over larger areas until the entire surface is boiling. Images of the

top of the bed showing the volcanos are shown in Figure 8.13. Such volcanos and worms

have been observed slightly above onset, but not studied carefully. The observation of

volcanos were reported in [177] and the existence of a worming region has been observed

in [53] and [124]. In [124], they were called channels and described as “Channelling spots

flitted from one point to another on the bed surface and at the lateral surface.” We

believe that these localized worms and volcanos are a consequence of the local mobile

and immobile regions, and will be further discussed in Chapter 9. The local worm regions

might be analogous to the “weak spots” discussed in molecular dynamics simulations of

Lennard-Jones fluids [157]. These weak spots were proposed to play a role in bubbling

or nucleation in true liquids.

∆P < 1: wiggling motions

For low enough Q, ∆P decreases sufficiently below 1 and the pressure can no

longer drive bulk fluidized dynamics. However, we observe that the voidage continues

to decrease, although much slower than in the ∆P = 1 state. In this regime, due

to the loss of the force balance, the system has lost the ability to translate the grains.

However, locally, the particles are still acted on by a drag force. From the Richardson-Zaki

relation, Equation 1.2, the drag force on a given particle near onset due to fluidization

flow velocities is about 50-100 times smaller than the drag force due to sedimentation.

We propose that if the grains are not locked into place by frictional contacts (jammed),

these small forces can promote local re-organizations. If Q is decreased sufficiently slowly,

these small changes in flow will cause a continued decrease in voidage.

In this region, rearrangements can occur on timescales which are on the order of

or greater than to the DWS sampling time (30 seconds for the data discussed). This

is shown in Figure 8.14. The top panel shows τd for decreasing Q. As the motion of

the system becomes increasingly frustrated (see the plot of α in the bottom panel), the

dynamics slow considerably. At some point they reach the limit of the time-resolution of

the measurement that, roughly 0.3 seconds. Also plotted in the top panel is the intercept

value of g(2) for the corresponding correlation measurements. When ∆P first decreases

from ∆P = 1 (denoted by the dashed line), g(2)(0) suddenly drops from the value of 1.5 to

a value slightly greater than 1. As Q continues to decrease, g(2)(0) remain near 1. Recall

that g(2)(0) = 1.5 is obtained for a system which undergoes a sufficient number decay
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Figure 8.13: Top panel: Time sequences of the top of the bed for different flow rates in
the hindered region. Each image is computed as the difference between two frames taken
200 msec apart. The surface of the bed shows small spouting events (volcanos) which
increase in frequency and intensity as the flow rate increases. The images represent the
central 1/4 × 1/4 of the bed surface.

periods during the sampling time. Also recall that if the scattering signal is constant,

g(2)(0) = 1. Intermediate cases will have 1 < g(2)(0) < 1.5. Thus, the sharp drop

corresponds to the point at which the pressure driving has disappeared. In this regime,

the dynamics of the grains drastically changes character. At this point, the baseline

value of α (bottom panel of Figure 8.14) indicates that all particles are in contact. For

decreasing flow rate, any further dynamics can only come from local rotational “wiggling”

of the grains following the decrease in stress. A schematic of a possible packing by small

constrained motion is shown in Figure 8.15. When the stress is reduced, there is less force

on the particles, and they seek to move to the lower energy state in the gravitational
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Figure 8.14: Top panel: The characteristic decay time of g(2)(τ) (•) for for 30 second
DWS measurements. The intercept (x) g(2)(0) gives a measure of the ergodicity of the
sample. It rapidly drops when the decay time becomes comparable to the sampling time;
this is indicated by the leftmost dashed line. The dashed line to the right indicates
the point at which α begins to deviate from α ≈ 2. Bottom panel: ∆P (•), α (–)for
defluidization are shown for reference.

field. Contrast this to the efficient packing by fluid pulses, discussed in Section 8.2. Flow

pulses locally increase the free volume by quick fluidization events; the grains can then

sediment to find a tighter packing.

Multispeckle correlation measurements

We have used multispeckle techniques to extend the time range of τd measurements

by a factor of 10, see Figure 8.16. The multispeckle measurement of τd matches the τd
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decreasing flow

Figure 8.15: A schematic of the packing produced by local constrained motions. The
grains are always in contact, but the system is not jammed. Thus, slight perturbations
will induce small local rearrangements.

in the timescales over which they overlap. This gives us confidence that the technique

is working. We find that τd actually reaches the 3 second limiting time-scale—thus the

grains become almost completely motionless as Q → 0.

8.4 Interpretation of results as jamming

We now use the concept of jamming to describe the dynamics of the bed below

onset. Recall from Chapter 2, that a definition of a jammed state is a state that has

developed a yield stress and in which all particle motion has stopped. As will we study

slow transient processes, we will use the multispeckle techniques to image the motions

of the bed. These spectroscopy techniques were described in Chapter 3. Recall that

scattered laser light is imaged onto a CCD such that each CCD element (pixel) images

a single coherence area. If the intensity in a pixel changes, this means that some motion

occurred in the bed. Since each coherence area is statistically independent, this allows

averaging over the image and the statistics improve. This technique allows detection of

motions as small as 1 nm. Thus we have a very sensitive technique to determine if a

state is motionless. We note that observing a motionless state doesn’t necessarily mean

that the state has developed a yield stress, and we will comment on this.

Above RLP, the system is un-jammable. This means that any applied stress can

be accommodated by a dilation. For voidages greater than RLP, there is free volume

enough for the dilation to occur. Below, RLP there is not enough free volume, and

increased stress will cause an attempted dilation. This dilation will cause particles to

push into each other and into the walls and can effectively jam the grains. This will

occur as long as ∆P remains less than 1.
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Figure 8.16: Top panel: The characteristic decay time of g(2)(τ). • is for 2 second DWS
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8.4.1 Jamming as a function of the sign of dQ
dt

We now present the fundamental observation of jamming in our system—the wig-

gling motion of the grains depends strongly on the sign of dQ
dt

. We have observed that

after a decrease in Q to below onset, the speckle in the images takes a long time to

become motionless. However, a small increase in flow will quickly cause the motion of

the speckle to arrest. This is illustrated in Figure 8.17. The top panels in Figure 8.17

show a time trace of a row of pixels in the CCD for two different flow protocols. The

bottom panels show a measure of decoherence of speckles. This measure allows us to
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study the transient speckle motion: after normalization and subtraction of a background

due to camera noise, each time-trace of a pixel is differentiated with respect to time, and

the absolute value of this quantity is averaged over all pixels. This is denoted 〈 dI
dt
〉, where

I is the intensity of a single pixel. If there is no intensity change in a coherence area,

this quantity would be zero for all time. Recall that any motion of the grains changes

path lengths and this contributes to a change in phase of the scattered light and thus a

change in intensity of photons at each pixel.

In the first column, the flow is slowly increased from below onset, 6 mL/min, to

a larger flow rate still below onset, 17 mL/min. t = 0 is when the flow has reached the

target flow rate. The speckle rearranges during a short (30-60 seconds) transient period

and then becomes motionless. This indicates that the system is locked into place. This

is in accord with our observation that below onset, motionless speckle can be created

by slight increases in flow rate. Contrast this to the second column. Here we show a

sequence in which the flow is slowly decreased from above fluidization to below onset, 17

mL/min. In this case, the speckle continues to move for several hundred seconds after

the target flow rate has been reached, despite no obvious change in bed height after the

initial defluidization. This asymmetry is remarkable, and we propose that it is due to

jamming of the system.

We propose that the increasing flow jams the system, creating a yield stress which

then must be overcome to change the voidage. The decreasing flow does not jam the

system, and since the material started with no yield stress, none is created. This explains

how the voidage can decrease for decreasing Q during defluidization: when Q is increased

during fluidization, the increased stress dilates the grains. Thus, they are forced against

each other and the walls. In this case, the stress network is immediately created, locking

the grains into place. In the case for slowly decreasing flow, no stress network was present

in the initial fluidized state. Upon defluidization, the stress on each grain becomes

smaller and the effective weight of the grain becomes larger. At some point, the grains

press against each other under the force of gravity. To jam, the weight will have to

balance the force due to hydrodynamic drag on each particle. It is not clear whether

just the weight can develop a yield stress. This reorganization can only take place by

the minute wiggling motions that can be excited by the small flows. Our data shows

that this can take a long time; we have observed speckle motion in a defluidized state

after one hour. It is an interesting question whether after the speckle has completely

stopped, the system has jammed. We observe that when the flow is slowly ramped down

to Q = 0, speckle motion persists for even longer times. This effect is greater for smaller

sized particles. In fact, 100µm sphere always show residual motion, even after many

hours. This indicates that the absence of a counterflow, the minute wiggling persists

due to local, thermally induced flow fluctuations. Since the system is not jammed, these

can induce small wiggling motions. Presumably the lubrication layer surrounding each
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Figure 8.17: Speckle pattern movement for two different approaches to Q = 17 mL/min,
which is below the onset of fluidization. The top panels show a row of pixels in the CCD
as a function of time. The colormap is low intensity (blue) to high intensity (red). The
bottom panels measure 〈dI

dt
〉 of the corresponding image. The protocols are given above

the images. t = 0 refers to the time at which the target flow is achieved.

particle plays a role in this process [24]. It would be an interesting experiment to measure

the typical decay time of 〈 dI
dt
〉 after defluidization for different final Q.

8.4.2 Jamming and fluidization cycles

The behavior of 1−Φ and ∆P during fluidization cycles can be understood from

the jamming picture. Figure 8.18 studies the effect on 1−Φ and ∆P of varying the point

at which the flow reaches a maximum and begins to decrease, the turnaround point. Two

cases are shown: the top two rows show 1−Φ and ∆P for fluidization cycles starting from

a loosely packed state. The bottom two rows show the corresponding plots for a tightly

packed initial condition. In fluidization cycles that do not pass the yield point of the

material, the voidage for the defluidization branch re-traces the fluidization branch. This
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Figure 8.18: Top two rows: voidage and pressure data for fluidization cycles with ap-
proximately the same loosely packed initial condition. The panels from left to right show
fluidization cycles for increasing turnaround points. Bottom two rows: same as the top
two rows, but for a tightly packed initial condition. Increasing flow denoted as ◦, while
decreasing flow as •. If the yield stress is not broken, the paths are reversible for slow
changes in Q. Once the material has yielded, defluidization follows a different path. The
solid black lines in the voidage plots indicate the voidage obtained for slow defluidization
from above RLP. The solid black line in the pressure plot denotes ∆P = 1.

indicates that we have not un-jammed the system, and the force chains can accommodate

the small changes in stress. On the branches where the voidage remains the same, the

changes in the speckle look like Figure 8.19. These measurements are taken immediately

after the ramps. However, even during the ramps, no motion occurs, indicating that

once jammed, the system can accommodate small slow changes, independent of the sign

of dQ
dt

. This is because the yield stress is stronger than any counter stress induced by a

small change in flow.

Contrast this to the case when the yield stress is broken. If the turnaround point

reaches the value of Q where the material yields, 1 − Φ decreases with decreasing Q
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Figure 8.19: For small enough changes in Q below onset, regardless of the sign of dQ
dt

the
speckle does not change when stress chains are not broken.

during defluidization. This indicates that the system has become un-jammed, and lost

the stress chain backbone (a yield stress). Decreases in flow remove stresses from the

particles, allowing them to wiggle into new more dense packings. Once the yield stress is

relieved, the system is no longer jammed, and will wiggle to a new state for decreasing

Q. It is important to note that the final defluidization state is not unique. The initial

rapid decay of 1−Φ occurs in the regime of growing regions of motionless particles. This

decay must depend on the average volume fraction at that flow. Like in Section 8.3.2,

the very slow decrease in 1 − Φ begins when ∆P is sufficiently below 1. Here only the

local wiggling motions of the particles can cause rearrangement. However, as long as the

system is not jammed, the wiggling motions will have the ability to pack the system.

Many factors influence the timescale of the rearrangement of the speckle during

defluidization. For example, we find that that initial fluidized state (in a full cycle, the

turnaround point) for the defluidization branch affects the duration of persistent speckle

fluctuation. Figure 8.20 shows two defluidization events, each starting from a different

initial condition. The ramp rate is kept constant for both experiments. The final voidage
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for both cases is the same, but for the ramp from the more fluidized state, the speckle

fluctuates for a longer time. At a given time after the target flow is achieved, the speckle

fluctuation is smaller in the ramp from the less fluidized, more dense state.
P
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Figure 8.20: The speckle dynamics following defluidization sequences from different initial
flow rates above fluidization. t = 0 indicates the time at which the target flow is achieved.
The ramp rate is the same for the two runs.

As discussed in Chapter 2, it has been speculated that force chains play a large

role in jammed systems [138]. In fact, Onoda and Liniger proposed that for packings with

1 − Φ < .45, the stress should be carried by a “rigid, continuous network” [139]. Thus,

the chains should appear when a yield stress is developed. We briefly present evidence

for the existence of force chains in the fluidized bed.

8.4.3 Probing force chains by local heat pulses

We have indirect evidence that force chains exist in the system. We perform

experiments similar to those described in Chapter 2, in which a localized pulse of heat is

applied to the grains. However, instead of monitoring the transmission of sound through
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Figure 8.21: A heat pulse is applied at t = 12 seconds by applying current in a small
(1 mm diameter x 2 mm length) 1/8 Watt, 16 Ohm resistor buried in the bed for 1
second with a 12 V pulse. Q is maintained constant at 17 mL/min for the duration of
the experiment.

the medium, we study the time evolution of the speckle pattern. This process is shown in

Figure 8.21 and should be compared to Figure 2.9 in Chapter 2. The heat pulse from a

12 V pulse to 1/8 Watt 16 Ohm resistor buried in th bed is applied for 1 second, and the

effects are seen for over 30 seconds. Upon application of the pulse, the resistor expands

and also locally heats the fluid and grains. The initial expansion of the resistor and

the subsequent expansion of the grains due to thermal expansion (estimated for radial

expansion as roughly 3 nm per degree C–easily detectable in speckle) disrupts the local

force chains. The heat propagates throughout the network rearranging particles. We have
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verified that convection of the water through heating is not important by performing the

experiments without water.

In fact, if the current to the resistor is maintained, the speckle fluctuates initially

but after roughly 100 seconds, it becomes stationary. The same effect is seen when the

current is shut off. This indicates that the during the time it takes for the heater to

establish a steady temperature profile, the changing temperature causes expansion of the

beads. During this time, we see the effects of the heat modifying the force network by

rearranging, wiggling and deforming beads. Once the temperature profile is established,

the system is free establish a new stable network. Thus, it jams, and speckle fluctuation

ceases. We have found that a similar effect can be induced by suddenly applying the 2

mm diameter laser beam to a face of the bed. After the beam is applied, the speckle

fluctuates for roughly 30 seconds. If the power is reduced to less than 30 mWatt , no

speckle motion occurs. Also, if we decrease the power density by expanding the beam

spot to the size of the cell at constant power, a sudden application of the beam causes no

speckle motion. We interpret this in the following way: As the power density is increased,

the local heating becomes large enough to disrupt the chains. We believe that further

experiments of local heating, combined with speckle imaging, should produce insights on

the dynamics of force chains, and their sensitivity to perturbation.

8.4.4 Ramp rate effects

We now discuss the role of rate effects on the fluidization cycles. We will be

interested in how the magnitude of dQ
dt

effects the fluidization process for increasing or

decreasing Q. We first examine behavior for dQ
dt

> 0.

Increasing flow rate

We have proposed a picture of a jammed system in which force chains dominate

the static behavior of the grains. Presumably, there is a time-scale for the chains to

set. Thus, fluidization at different rates should behave differently. In Figure 8.22, we

present fluidization for tightly packed case taken with a much finer step size than the

fluidization measurements taken in previous sections. Here, the ramptime is 30 seconds

and the equilibration time is 30 seconds while the step size is almost a factor of 10 smaller

than that in Figure 8.5. We see that under such slow fluidization, the behavior is very

complicated. In the yield region, ∆P is no longer always decreasing, but occasionally

increases. This is accompanied by no change in the voidage. Thus the system has re-

jammed at a lower volume fraction and consequently must yield again. However, since

it is at a lower voidage, it will yield at a lower stress. Eventually we reach RLP and no

jamming can occur.
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Figure 8.22: Fluidization of the bed at a different rate leads to different re-packing events.
A slow enough rate allows for the system to re-pack at different points along the branch.
Once re-packing occurs, the system must unlock, and thus the pressure will rise. The
ramptime between measurements is 30 seconds and equilibration time is 30 seconds. The
step size in flow rate is a factor of 10 smaller than in Figure 8.5

For increasing flow, below RLP, the system can always jam, as the increases in

flow produce increases in stress which seek to dilate the system. The ramp rate should

affect the fluidization, as it allows the chains to set, giving the material sufficient time

to develop of a yield stress. As discussed, for a tightly packed state, once the material

initially yields some particles are free to move and others are hindered. Since the voidage

is lower than RLP, the system has the ability to jam if given sufficient time. All of this

occurs when ∆P ≥ 1 where there is sufficient energy to translate grains. Thus, we can

study jamming at an effective finite temperature. In fact, we speculate the the void cracks

seen in Figure 8.13 are responsible for the jamming when the system is close to ∆P = 1,
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at the edge of fluidization. We have observed that in this region, the system can jam

given sufficient time due to a dynamic process of spouts popping up and re-healing, with

motion stopping in the healed region. At some point, the entire system may abruptly

lock into place and all speckle motion can stop. At this point, the spouts have created a

yield stress.

Defluidization

We now discuss the effect of decreasing the magnitude of dQ
dt

to defluidize a fully

fluidized state. We find that the fully fluidized system responds differently as the mag-

nitude of dQ
dt

is changed.

The history of the bed for different flow rate decrease rates dQ
dt

is shown in Fig-

ure 8.23. For a rapid shut off in the flow rate, the system gently sediments to a state

close to RLP (the solid black line in Figure 8.23) as described in Section 8.2.1. We see

that as the ramp time increases, the bed reaches a lower voidage state. We interpret this

as the system is given more time to explore all configurations and does not get stuck in

a high voidage state when ∆P becomes less than 1. Once ∆P < 1, the voidage can only

decrease through the wiggle packing described earlier.
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Figure 8.23: 1−Φ as a function of Q for different ramptimes, (◦, •, �,�), (11, 23, 35, 63)
seconds. This gives the ramprate − dQ

dt
as (0.12, 0.06, 0.04, 0.02) mL/sec/sec. The black

line denotes the state reached when the flow is rapidly shut-off.
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In fact, this has consequences in the dynamics of the grains. In Figure 8.24, we

show two CCD speckle traces for defluidization from Q = 48 mL/min to Q = 17 mL/min

for different ramp rates, 30 seconds and 300 seconds. The speckle moves much more in the

slow ramp indicating that the system is dynamically finding the optimal locking, while

the fast ramp has had time to find its place. We propose that the fast decrease in flow

rate could even jam the system by the fast shock-like impulse. We note that the speckle

can truly be locked by a slight increase in flow rate as this dilates the sample, jamming it,

as seen from Figure 8.17. It is an interesting and unanswered question whether a system

that has been very slowly defluidized will spontaneously develop a yield stress.
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Figure 8.24: The speckle fluctuates for a longer time for the slower ramp time. 30 second
ramp and 300 second ramp. t = 0 indicates the time at which the target flow rate is
achieved.

In Figure 8.25, we plot the final voidage when Q reaches zero as a function of

the inverse ramp rate. We see that it reaches a limiting value of roughly 0.42. Values

close to this have been observed for different particle sizes and fluidization in air and

the value may have something to do with the glass transition in hard spheres [145, 146],

1−Φ ≈ 0.42. However, since we have shown in Figure 8.18 that the defluidization branch
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is not unique, and locks up when ∆P < 1, this could be only coincidence. We will discuss

this further in Chapter 9.
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Figure 8.25: The voidage after defluidization to Q = 0 plotted as a function of the inverse
ramp time for defluidization.

Now we begin to see supercooled liquid-like behavior, (eg dramatic change in

timescale, rate dependent effects, jamming), and we postulate that this system can be

used to study glasses. We will discuss this in the next chapter.

8.5 Conclusion and summary of results

In this section I summarize our proposed picture to account for the phenomena

observed in fluidization cycles near onset. Consider a defluidization cycle. Above RLP,

the system is fully fluidized and grains move for short times with ballistic trajectories.

This is the freely colliding regime. When Q decreases such that the system becomes more

packed than RLP, and the short time dynamics aren’t ballistic. Our interpretation is that

in this frustrated state, the bed has as a mixture of freely moving grains, while other

regions contain grains which are packed together. This state can be jammed (CAN IT?)

whereas states above RLP cannot. As Q decreases, eventually ∆P decreases enough and

cannot translate grains through fluidization. When ∆P < 1, only slight rotational modes

(wiggling) are excited. Any forces due to flow can only effect the small rotations of grains

(wiggling). If the flow is decreased slowly into this regime, the system is maintained away

from a jammed state and small rotations still persist. These rotations can manage to
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Figure 8.26: Schematics of the ideas discussed in this chapter.

wiggle the system into a new volume fraction–thus the voidage continues to decrease as

the flow is decreased by the slight in-contact adjustments of the grains. We claim that

unless the flow is increased slightly, the system will never jam in the wiggling region–no

force chains will be established. Thus the system is fragile.

Contrast this to the case for increasing flow. Increasing flow jams the system,

creating a yield stress. For particle motion, to occur, this yield stress must be broken.

However, the material does not yield all at once. As Q is increased beyond the maximum

yield stress, the voidage decreases and the yield stress decreases. However, since ∆P

is still greater than unity, the system is still jammed, and no sustained grain motion

occurs. Thus there will exist a range in Q where fluidization is not accompanied by grain

motion. Only when the material has fully yielded and ∆P = 1, will sustained particle

motion begin. At this point the system cannot be fully jammed. The size of the range
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of jammed fluidization will depend on the yield stress in the initial jammed state. For a

loosely packed state, the yield stress is very small, and grains begin motion immediately

at onset.

We also give some insight into the flow pulse experiments. This is a different

way to pack the bed. Instead of in-contact wiggling adjustments which squeeze out free

volume during defluidization, the pulses actually push the grains apart. This provides

them with paths to squeeze out free volume. This is a much more efficient process, as

the grains are not required to remain in contact. Thus we have pulse packing vs. wiggle

packing.

In a sense, the continued decrease of the grains well below onset is the answer

to how the grains can remain in contact and continue to decrease voidage–they wiggle

into it. If the system is jammed, only the spectator particles will wiggle and these don’t

control the voidage–the stress chains do.

8.6 Comparison to previous work

Several studies have been made of Geldart A air fluidized beds which expand

uniformly near onset (see [97] and references therein) These studies have revealed the

existence of an apparently motionless state immediately after fluidization. Menon and

Durian [130] used DWS techniques who found that the particles remained motionless

until the onset of bubbling. Their work was done in air and for very tight packings and

we show the comparison between our studies in water and their air fluidization studies

in Figure 8.27. The results are in agreement in that we both see regions of increasing

voidage without particle motion. However, they can observe a much longer transient

regime, as their initial packing is close to RCP (1 − Φ ≈ 0.37), obtained by pouring

grains into the container and lightly tapping). We are usually working at higher voidage

where transient effects can dominate the path. Better tapping schemes should allow us

to reach the voidage range in the air fluidized case.

However, there is a fundamental difference between the two experiments. This is

the role of hydrodynamic interaction between the grains when they are close to contact.

This effect is characterized by the size of the Stokes number, St = ρpavrel/µ, where ρp is

the particle density, vrel is the relative collision velocity, a is the particle diameter, and

µ is the fluid viscosity [97, 99]. St measures the relative importance of particle inertia to

viscous fluid forces. St can be thought of as roughly a measure of the distance in particle

diameters it takes a particle moving with a velocity v to stop when an applied force

is removed. For large collisions at St, St � 1, the lubrication layers near the particle

break down, and the surfaces of the approaching grains contact during collision [97]. In
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Figure 8.27: Comparison of our results with those in [130]. The two left panels are the
results for air fluidization of spheres of different sizes at the same initial packing. The
small arrows indicate where motion of the grains begins. The two right panels are our
measurements in a water fluidized bed for different packings of 335 µm spheres. The
arrows indicate where grain motions begin.

the small St limit, St � 1, the lubrication layer prevents surface contact7. For typical

collisional velocities of 0.1 cm/sec found in both experiments, this yields St ≈ 0.6 in

water and St ≈ 50 in air. Thus, the behavior of the contact network of the grains in

water should be significantly different. In air fluidization the pressure overshoot almost

immediately reaches the value of ∆P = 1 once the material has yielded [177]. This is

in contrast for the gradual decrease in pressure that we observe in water. Perhaps this

is an effect of the extra lubrication for grains in water. This could be tested by varying

particle density. We also observe that images of speckle always show fluctuation for the

smallest particles (100µm), even after a jamming procedure. This is in accord with the

idea of a permanent lubrication layer surrounding the particles and preventing the full

frictional jamming forces. Further studies are necessary to distinguish all of these cases.

7For measurements of coefficient of restitution of particle-wall collisions and the role of St, see [76, 99].
For discussion of elastohydrodynamics of collisions of particles in fluids see [10, 167].
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8.7 Higher flow rates
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Figure 8.28: The fit to the Richardson-Zaki relation for 335 µm spheres for increasing
flow rate. The data was taken for a tight initial packing and only the fluidization branch
is shown.

We have briefly examined the behavior of the bed well above the fluidization

onset. We attempt to fit to the Richardson-Zaki relation, Equation 1.2 for data at higher

flow rates, see Figure 8.28. To measure the exponent n in the equation, we measured

the single spheres sedimentation velocity, vt = 4.46 cm/sec (Re = 16), giving n = 4.5.

The fit works well in the hindered region and slightly above onset. However, far enough

above onset, significant deviation is observed. We observe that the deviation from the fit

occurs close to a point where the bed height has a small dip. A magnified view of the dip

region for a different fluidization cycle from a loose initial packing is shown in Figure 8.29.

The dip displays a complicated hysteresis for increasing and decreasing Q. A dip in the

voidage-flow rate curve has been observed in gas fluidized beds, and has been shown to

coincide with the onset of bubbling [156]. As Equation 1.2 only applies to non-bubbling

beds, we expect deviation here [42]. Interestingly, above the dip in Figure 8.28, the data

seems to have the same scaling exponent, but is slightly offset.
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Figure 8.29: A close-in on the dip region for a full fluidization cycle from a loose initial
packing. The dip region indicates that the bed is bubbling, and shows a complicated
hysteresis. Note that this plot is not a magnification of Figure 8.28.
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Chapter 9

Fluidized bed dynamics and supercooled liquids

Note to reader: This chapter deals with possible analogies between our experiments on

fluidized beds and supercooled liquids and glasses. This is preliminary work, and the bulk

of the chapter reviews the basic phenomena in this very complicated subject. Although the

analogy between the systems is still quite tentative, we feel that the questions it raises can

lead to fruitful directions in the study of fluidized beds. Therefore, we will try to point

out possible common points between the systems and lay the groundwork for future studies.

9.1 Introduction

In Chapter 8, we studied fluidization cycles. In this chapter, we concentrate on the

defluidization of the bed and the relation of this process to the supercooling of a liquid.

In our studies of defluidization, we have found that when ∆P < 1, the bed is defluidized.

For further decreases in Q, motion proceeds through small wiggling rearrangements;

however, if the system is jammed, it will be stable to small flow changes. When ∆P = 1,

and 1 − Φ > 0.45 (RLP), the bed is fully fluidized and all particles undergo ballistic

trajectories between collisions. When ∆P = 1 and 1−Φ < 0.45, the bed is still fluidized

but timescales for the decay of intensity correlation in the scattering experiments become

very long. From light scattering data, we were able to measure the short-time exponent,

α for the MSD of the particles. In this region we found α < 2. Our interpretation was

that the motion of the particles was becoming increasingly hindered in regions which

grew in size Q decreased. We now discuss analogies between these observations and the

canonical system which slows dramatically as a parameter is changed: a supercooled

liquid cooled near its glass temperature. An analogy between a fluidized bed and a glass

could result in increased understanding of a fluidized bed. In addition, we believe that

since the fluidized bed can be well controlled and studied, the analogy could help to

further understanding of glasses.

In this chapter, we begin with a short review of the salient features of a fluidized

bed upon defluidization that have analogies to the characteristic behavior of supercooled

liquids. We will then discuss the physics of supercooled liquids and glasses. Finally, we

will provide a re-interpretation of the features of the bed in the supercooled liquid/glass
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picture. The main sources for the review are [6, 7, 44, 45, 54, 55, 158, 170, 171, 191, 198]. I

will reference specific results when appropriate.

9.2 Main features of defluidization

Listed below are the main features on which we will build the analogy to super-

cooled liquids. The reference plots are found in Chapter 8.

• Defluidization rate effects

Figure 8.23-Figure 8.25

For defluidization, the final 1 − Φ depends on the cooling rate, dQ/dt. A rapidly

defluidized bed settles into a higher voidage state than that reached by a slowly defluidized

bed. Furthermore, structural motion (wiggling) continues for a longer time in the slowly

defluidized state.

• Slow dynamics and hindered motion

Figure 8.14, top panel, Figure 8.12

As measured by τd, the timescale of the decay of g(2)(τ), when 1−Φ < 0.45 (below

RLP) and while ∆P = 1, the dynamics of the bed slow dramatically. For example, τd

changes by almost 104 for a 10% change in Q. Associated with the increase in τd is a

corresponding rapid decrease in the exponent for the short time MSD, α. α decreases

from α ≈ 2 as the bed goes below RLP. As argued in Chapter 8, our interpretation

of α < 2 is that system has become too crowded and the bed contains regions that

execute free ballistic trajectories and regions in which the particles are in contact. We

call this the hindered region of defluidization. Here we propose that the bed is spatially

heterogeneous; different regions having different dynamics. We argue that these regions

are not static, but the average fraction of mobile particles remains constant for a fixed Q.

Note that α begins to deviate from the value of α = 2 when the RLP voidage is crossed.

Interestingly, the slope of τd vs. Q does not change at this point. As α decreases, the

slope of τd remains constant until at a lower Q, α begins to drop rapidly; at this point

τd changes by three orders of magnitude. At this point, ∆P displays a small glitch, but

is still very close to ∆P = 1. We currently have no explanation for this behavior. For

slow defluidization, after ∆P < 1, the dynamics essentially stop except for small wiggling

motions of particles induced by further decreases in Q.

• Worms and volcanos

Figure 8.13

Visually, in the hindered region, the side of the bed is seen to contain worm-like

structures. These are fast moving regions of flow which locally appear in the bed (we see
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them at the side and the top, but presumably they exist in the interior), exist for some

time, then disappear. The spouts then appear in another region. When the spouts reach

the top, they eject particles and resemble small volcanos. Above RLP, all particles are

moving and individual volcanos cannot be distinguished. As Q is decreased below RLP,

they decrease in frequency and intensity until they disappear when ∆P < 1. Thus, the

spatiotemporal dynamics of the bed on longer timescales than those probed by DWS are

visually seen to be heterogeneous in the hindered region.

These are the main features that characterize the bed upon defluidization. As will

be seen, they are analogous to features of supercooled liquids. We now review the basic

phenomena of supercooled liquids and glasses. We will return to the the fluidized bed

after the review.

9.3 Glass basics

9.3.1 Metastable states and the glass temperature

Upon cooling, the molecular motion in a liquid slows down. If the liquid is cooled

below its crystallization transition (freezing) at a rate which is faster than the crystal

nucleation rate, it is called a supercooled liquid. As the temperature continues to cool, the

timescale for molecular rearrangements will become longer than the timescale set by the

cooling rate. At this temperature, Tg, the liquid appears frozen on laboratory timescales

and is called a glass. The most striking feature associated with this change to a glass state

is that near Tg, the tremendous slowdown occurs over a very small temperature change.

Associated with the slowdown in molecular motion, is a corresponding dramatic increase

in viscosity. In fact, Tg is often defined as the temperature at which the viscosity reaches

1013 poise. This change typically occurs as T changes by a few degrees C. However, Tg is

not the temperature of a phase transition. Its value (and thus the temperature at which

the viscosity reaches 1013 poise) depends weakly on the rate at which the liquid is cooled.

This behavior is illustrated in Figure 9.1. Typically, the volume of a liquid de-

creases as the temperature decreases. If the liquid is cooled sufficiently slowly in contact

with a heat bath, the system will crystallize, condensing to its thermodynamically stable

equilibrium state of lowest volume and minimum disorder. Further cooling will result in

a continued change in volume with a much lower rate of change of volume with temper-

ature, denoted −dV
dT

. In the supercooled regime above Tg, −dV
dT

has the same value of

the liquid state and the liquid has a greater volume than the crystalline state. At Tg,

the dynamics become so slow that the system does not have time to rearrange to find its

supercooled equilibrium volume for that temperature. At this point the system becomes

a glass and −dV
dT

takes on a value close to the value in the crystal state. Note that we

speak of supercooled equilibrium. Actually, the supercooled state is metastable and must
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Figure 9.1: The specific volume (cm3/g) of a liquid as a function of temperature for
different cooling rates. The fast and slow cooling rates for the glasses are separated by
a factor of 5000 (0.02 hours and 100 hours) and the Tg differ by about 8 degrees K. The
values of Tg are obtained by the intersection of the extrapolation of the V vs. T branches
above and below the transition. The supercooled regime extends from T < Tm < Tg.
Crystallization is obtained for a very slow cooling rate. Adapted from [55, 198].

eventually relax to the lowest thermodynamically stable state, that of the lowest free en-

ergy. The supercooled liquid or glass may be mechanically stable on a long enough time

so that the thermodynamic transition is not seen. This is what we mean by supercooled

equilibrium.

Thus Tg can also be defined by the point at which − dV
dT

decreases suddenly (but

continuously). From Figure 9.1, we see that Tg is dependent on the cooling rate. For

a fast cooling rate, the system falls out of supercooled equilibrium at a higher volume

than a system which is slowly cooled and given more time to find its lower volume, more

“stable”, supercooled equilibrium state. Note that a change in the cooling rate by a

factor of 104 changes Tg by only a few percent. A very interesting point about glasses is

that unlike crystallization, the slowdown is not accompanied by any obvious structural

change above and below the glass transition: the molecular structure of a glass cannot

be distinguished from that of its liquid above Tg.
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9.3.2 Thermodynamics of the glass transition

Although not directly relevant to the experiments discussed below, the thermody-

namics of this transition are very intriguing. We will discuss this subject briefly. Ther-

modynamics would argue that if the system is cooled infinitely slowly, the liquid must

always freeze, forming the most stable-crystalline state. If crystallization is avoided, the

liquid reaches a metastable state. At a given temperature and given enough time, the

metastable state will eventually relax to the thermodynamically stable crystalline state.

For a glass, since molecular motion is so slow, this may take the age of the universe. Sup-

pose, however, that crystallization could be prevented for any T . Could a non-crystalline

state remain at T = 0? This proposed state has been called the ideal glass state. The

evidence for an ideal glass state is given by the entropy considerations from specific heat

data, and was first discussed by Kauzmann.

supercooled
liquid

glass 1

glass 2

crystal

S

TTg1
Tg2

Tm

liquid

from latent heat

TK

Figure 9.2: Entropy of a liquid as a function of temperature. Note that the entropy
curves do not break sharply, but display a continuous change as T decreases. This is not
shown on the schematic.

The behavior of the entropy is schematically represented in Figure 9.2. As T de-

creases, so does the entropy. If the system is cooled slowly enough, at the melting (freez-

ing) point, Tm, the liquid undergoes a first order phase transition. Here, the volume of the

crystal (see Figure 9.1) rapidly decreases, and the entropy will drop discontinuously to a

lower value, with the size of the drop specified by the latent heat released. The entropy

then continues to decrease as T is decreased until, by the third law of thermodynamics,

S = 0 at T = 0. Now, suppose that the system does not crystallize at Tm because the
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system is cooled too rapidly. Then, a glass transition will occur at a temperature Tg.

Here, due to a change in the specific heat, the entropy begins to decrease more slowly,

remaining above the value of S for the crystal. Since this is a metastable disordered

state in contact with a heat bath, it will seek to find a lower entropy state. However the

crystal is a lower entropy state with a lower free energy. Thermodynamics says system

will eventually find the crystal, but it may take the age of the universe.

For a slower cooling rate, Tg is smaller and the entropy begins its slow change at

a lower value of the entropy. Suppose that the liquid is cooled so slowly that the entropy

of the amorphous liquid does not deviate from its curve. Eventually, it will intersect the

crystal entropy branch. At this point, the amorphous liquid has the same entropy as

the crystal. This temperature is called the Kauzmann temperature and it sets the lower

bound on Tg. For a slightly lower temperature, the disordered state would have a lower

entropy than the crystal state. This seems odd, but since the process is occurring at fixed

T and pressure, it is the Helmholtz free energy for the liquid or solid phases that must

be minimized; the entropy difference between the phases may be positive or negative.

The main problem would occur if the slope of the liquid entropy curve did not deviate

at the Kauzmann temperature. Eventually, S would reach zero at a finite temperature,

in contradiction to the third law of thermodynamics. Thus, one argument that says the

slope of the entropy vs temperature must deviate at Tk and this is called the ideal glass

transition. The ideal glass state would have the same entropy as the crystalline state and

the glass transition at this point would be a thermodynamic transition at a well defined

temperature.

Another viewpoint says that given enough time at a fixed temperature below Tg,

local nucleation of crystal will occur and system will crystallize. This would prevent the

negative entropy state, as for a given temperature, the metastable state would always

relax to the entropically favored crystalline state. However, estimates of nucleation rates

vs. molecular motion timescales are not in favor of such a process [44]. Thus the fasci-

nating thermodynamic issues of the glass transition raised by the Kauzmann argument

are still not resolved.

9.3.3 Viscosity and time-scales of dynamics

The most noticeable effect that occurs for a glass is the tremendous change viscos-

ity as Tg is approached. Angell has proposed a classification scheme based on the form of

the viscosity vs T, and this is shown in Figure 9.3. Here Tg is defined as the point where

the viscosity reaches 1013 poise. Liquids that show an almost linear dependence of the

log of the viscosity on 1/T are called strong liquids, while fragile liquids show quite non-

linear dependence. Fragile liquids have large thermal expansion coefficients at Tg. The

viscosity of these liquids is extremely sensitive to T , as seen. As mentioned above, the
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Figure 9.3: Left ordinate: Viscosity vs. temperature for different glass-forming materials.
Right ordinate: corresponding molecular relaxation timescales for OTP.

viscosity increase is accompanied by a corresponding increase in characteristic relaxation

times1. The right-side axis in Figure 9.3 shows the time-scale for molecular rotation of

the o-terphenyl molecules (OTP). These display a tremendous change from the typical

nanosecond relaxation timescales above Tm. The dependence of the relaxation time-scales

(or equivalently viscosity) on the temperature can be fit to the Vogel-Fulcher-Tammann

equation,

τ = τ0 exp (
B

T − T0

) (9.1)

When T0 = 0, and B = Eact/kB, the equation takes the Arrhenius form for kinetics

determined by constant activation energy barriers of energy Eact. For T0 > 0, the

temperature dependence is non-Arrenhius, and the relaxation time becomes infinite at

a finite T . The value of this equation is that changing B creates viscosity temperature

curves that mimic the strong-fragile plot in Figure 9.3. Thus fragile liquids have small B

values and strong liquids have large B values. The value of B is proportional to the ratio

Tg/TK , where TK is the extrapolated Kauzmann temperature discussed in the section on

1Viscosity is the response of a liquid to shear and is related to the relaxation time the system needs
to respond to the shear stress by the Maxwell equation, η = Gτ , where G is the high frequency shear
modulus.
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thermodynamics of the glass transition2

In fact, supercooled liquids usually display two typical time scales as Tg is ap-

proached. These are denoted the α and the β processes. In OTP, it is thought that α

corresponds to full rotations of the polymer molecules and is the timescale which is seen

in the response of the liquid to shear. β is related to the timescale for a sidegroup to

rotate. Therefore, α can be thought of as a structural relaxation time and is thus related

to the viscosity; this is plotted in Figure 9.3. β corresponds to small re-orientations.

Above Tg, these timescales are the same, but below Tg in fragile liquids, the α timescale

displays non-Arrenhius behavior while the β timescale continues to display Arrenhius

behavior.

9.3.4 Nonexponential relaxation

A characteristic feature of supercooled liquids is that they generally do not relax

exponentially is response to a perturbation. For example, if the temperature of a fragile

supercooled liquid is dropped by a small amount, the volume will not approach the new

equilibrium volume exponentially. Relaxation functions of a quantity C(t) are often fit

to the Kohlrausch-Williams-Watts (KWW), stretched exponential forms,

C(t) = exp ((− t

τ
)β) (9.2)

There are two different explanations for how the dynamics could relax nonexpo-

nentially. The first is attributed to what is known as heterogeneous dynamics: different

regions of the liquid can have dynamics with timescales that are orders of magnitude

faster than other regions. Molecules in each region relax exponentially to a perturbation,

but the regions have different relaxation timescales. Measurements of the dynamics of

the entire sample in response to a perturbation would effectively average over the vastly

different response timescales from different regions; this leads to a β 6= 1. The second

explanation postulates that supercooled liquids are homogeneous and that each molecule

relaxes in a nonexponential manner due to interaction effects with its neighbors. Here

β would measure the degree of interaction. Much effort has been put into determining

the correct mechanisms, and it now appears that the heterogeneous picture is the cor-

rect one [54]. Thus the picture that emerges is one that was postulated by Adam and

Gibbs [2]. They postulated that the flow of the supercooled liquid proceeds though large

regions moving cooperatively. As Tg is approached, the size of the regions diverges, and

2In some liquids, the VFT fits are usually very good below Tg but can show deviation close to Tg. In
other liquids, VFT works well for the entire range up to Tg [44].
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the dynamics must arrest, as it is increasingly difficult to move all of the particles in the

regions as opposed to movement of single molecules.

Relaxation in the glass state is even more complicated. Here the system can

display aging: relaxation to a different state after reaching the glass, by slow changes of

material properties. We will not discuss this point here.

9.4 Hard spheres, colloidal glasses and MD simulations

Φ


Pressure

Freeze

Melt

Glass

RCP
FCC

1−Φ

Metastable branch

0.58

0.260.4550.506

0.64 0.740.5450.494

0.42 0.36

Figure 9.4: The hard sphere phase diagram in the pressure-volume fraction plane.
Adapted from [153]

Hard sphere models, with particles that only interact repulsively at contact, have

been used extensively to study the statistical mechanics and thermodynamics of simple

liquids. Since there is no energy scale, temperature sets the timescale. The volume

fraction Φ becomes the thermodynamic variable which is controlled. Hard sphere models

were first studied by Alder and Wainwright [3], and there has been much simulation work

to understand the phase diagram, equation of state and motion of particles. The phase
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diagram in Figure 9.4 shows a phase transition as volume fraction is changed and has

been used as a model to understand phase transitions in more complex fluids [3]. If Φ

in a hard sphere system is increased sufficiently slowly, the system will crystallize and

proceed along the FCC branch. If the volume is changed too rapidly, the system will fall

along the amorphous branch. There is much debate whether a glass transition occurs in

this system. Some results have shown that compression of the hard sphere fluid always

yields an amorphous glass state with Φg ≈ 0.64[170]. Other results [153] have shown that

if one waits long enough, crystallization always occurs.

Colloids at high densities have been shown to display the features of the hard

sphere phase diagram [145]. Furthermore a glass transition at Φ ≈ 0.58 was observed by

Pusey and van Megan [146]. This was observed by light scattering measurements which

revealed a loss of ergodicity and decay of the correlation functions at the glass volume

fraction. Since then, a large number of experiments have been done to characterize

this transition and compare to Mode Coupling Theories [184, 185]. Specifically, the light

scattering experiments have studied the relaxation of colloids near the glass transition and

found that near Φg, the relaxation proceeds under two timescales, and these correspond

to the α and β relaxation discussed earlier.

Recently confocal microscopy has been used to directly image glass forming col-

loids [62, 191]. This has shown the existence of growing cooperative regions [191] near

Φ ≈ 0.58. These growing cooperative regions allow a nice interpretation of the α process

in the hard sphere and colloidal system. The spheres are trapped in transient cages of

their neighbors. βF processes refer to motions of a sphere inside a cage and differ from

the β processes described above. This is the fast process as it is just rattling around. The

α process refers to structural rearrangements when the spheres break out of the cages.

As things get more crowded, the size of the cooperatively rearranging region becomes

larger, and it takes longer for a sphere to escape from a cage. As Φg is approached, this

process requires the participation of more particles. It thus becomes slower and may

eventually arrest at the glass volume fraction. The confocal experiments showed that

the supercooled liquid was characterized by large regions of correlated fast moving par-

ticles surrounded by regions of slower particles, demonstrating the spatial heterogeneity

discussed above. Thus, α relaxation occurs through cooperative particle motion; move-

ment of a particle in a cluster results in movement of another particle in the cluster.

Since all particles must move together in the cluster, relaxations require rearrangement

of progressively larger groups of particles3.

3The cooperatively arranging region is thought of as a subsystem of the sample that can rearrange into
another configuration independently of its surrounding environment. In [2], the cooperatively rearranging
region is defined as ”the smallest region that can undergo a transition to a new configuration without a
requisite simultaneous configurational change on or outside the boundary.”
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However, due to space shuttle experiments showing an eventual nucleation [201],

the debate on the glass transition continues. However, colloids still are a nice way to

study possible glass transitions in a simple controllable system.

In addition, recent studies of molecular dynamics of soft spheres, with Lennard-

Jones potential have proven useful in visualizing some of the processes discussed above [46].

The simulations observe a similar slowdown and also reveal that the cooperative regions

of fast-moving particles are linear string-like structures [46]. The particles in these string-

like clusters are more mobile and are able to break out of their cages earlier. However,

these studies are limited in the range of temperatures by the prohibitively long compu-

tation times required to observe effects near glass transitions.

9.5 Theories of glass transitions

9.5.1 Mode Coupling Theory

This theory has been successfully applied to colloidal glasses and could prove

useful for granular matter. It has had some success explaining the two stage relaxation

that occurs in glasses. However, as it deals the coupling of slow Fourier modes, it is very

difficult to understand in a physical way. However, it does predict a power-law variation

of the timescale for relaxation time (or viscosity) as a temperature Tc is approached,

with Tg < Tc < Tm. Power law behavior for the viscosity of supercooled liquids has been

observed in a wide variety of liquids. While mode coupling may be a good theory in the

supercooled regime T > Tc, it does not do a good job at predicting the exponents of the

power laws. Mode coupling also makes the prediction that the relaxation of perturbations

should occur in a two step process close to Tc. These different time-scales for decay seem

to correspond to the βF and α processes. Extensive comparison between MCT and colloid

light scattering experiments has been made [185].

9.5.2 Free volume theory

The free volume picture of supercooled liquids4 postulates that the glass transition

in a system will occur when “free volume is sufficiently squeezed out of the system” [198].

At this point, particles are confined to local cages; thus diffusion over length scales

larger than a particle diameter becomes impossible. The theory proposes that clusters of

particles in the fluid have different amounts of free volume. Clusters with sufficient free

volume are termed liquid-like while clusters in which the free volume is below a critical

value are called solid-like. As the system is supercooled, the solid-like clusters grow in

4For a non-mathematical discussion of this theory, see [198]
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size until a percolation threshold is reached and the system becomes a glass. The notion

of liquid-like and solid-like regions is appealing in light of our observation of ballistic and

hindered regions in the fluidized bed.

9.5.3 Energy landscape picture

Ideal glass
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Liquid -- free diffusion
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Figure 9.5: The energy landscape picture may be useful, adapted from [45]

A much more physical picture of glass formation is provided by the energy land-

scape picture. The energy landscape picture of glass transition was developed by Still-

inger [171] and the essential diagram is illustrated in Figure 9.5. This is potential energy

for every configuration of particles and only depends on the density of the molecules.

At a given temperature, the system explores the local minima of the landscape for that

temperature. The dynamics are governed by the number of minima of a given depth at

the given temperature and the ability of the system to jump over landscape (or tunnel

around, as this is many-dimensional). The dynamics of supercooled liquids can be inter-

preted in this picture. For high temperature, the most of the minima are very shallow
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and the energy from the temperature is sufficient to allow the system to explore the min-

ima and not get trapped. Here the system displays Arrenhius behavior. However, as the

temperature is decreased, the system cannot surmount the larger barriers and has the

ability to get trapped in local minima. These correspond to the non-thermodynamically

stable states which may have long lifetimes. The system will thus show behavior that

deviates from Arrenhius. There is one global minimum corresponding to the crystalline

state. The lowest non-crystalline state is the ideal glass. In the energy landscape picture,

the alpha process is associated with the exploration between different deep minima and

the fast beta process is associated with the exploration of a single alpha minimum.

The landscape picture also helps to interpret the behavior of supercooled liquids

as a function of cooling rates. If the system is cooled too rapidly, it may be stuck in a

higher minimum. The faster it is cooled, the higher the volume. This is because if it

starts from a high volume state, it will spend most time near high volume basins. If the

temperature is quickly removed, it becomes stuck in these basins. Cooling slowly enough

allows the system to always find the lowest minimum. The ideal glass state is the lowest

non-crystalline minimum.

Workers have studied models of MD systems to determine whether this is a useful

picture and we reproduce one particular plot in Figure 9.6. This is a MD Lennard-Jones

simulation which was quenched at different rates and at each time step, the average poten-

tial energy of the atoms was measured. The free diffusion corresponds to a temperature

high enough so that the system sees no energy barriers. This resembles the defluidiza-

tion plot in Figure 8.23. The interpretation given is that the slower cooling rates allow

the system to more efficiently explore the local minima, finding the correct set for each

temperature. If the system is cooled too quickly, it becomes trapped in the minima is

was exploring when the temperature was suddenly decreased. It is a glass at these low

temperatures. In the intermediate region, below T = 1 and above Tg ≈ 0.45, the time

scale for relaxation no longer follows an extrapolated Arrenhius law and the relaxation

functions describing the response to a perturbation become stretched exponentials. The

authors in [158] call this the landscape influenced or dominated region.

9.6 Supercooled liquids, glasses, and fluidized beds

Below RLP, the defluidized state displays behavior and particle dynamics that are

remarkably similar to those found in supercooled liquids and glasses. Here we discuss the

main points in common. To make the analogy as suggestive as possible, we will refer to

defluidization as cooling. We now provide a point-by-point comparison and then make

some concluding remarks.

The bed has dynamics driven by effective temperature and volume fraction frus-
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Figure 9.6: An MD simulation of Lennard-Jones molecules shows the exploration of lower
parts of the energy landscape as a function of cooling rate as measured by the potential
energy per atom after a quench. From [158].

tration dynamics. A liquid changes into a glass when the temperature decreases by a

little bit. A fluidized bed effectively loses temperature when ∆P = 1. Thus, a fluidized

bed is like a supercooled liquid that reaches a temperature (or volume fraction) near but

above Tg (or Φg) at which point the temperature is suddenly quenched near T = 0. At

this point temperature can no longer drive the dynamics and any motion is due to the

lack of jamming–the bed is still not at the lowest possible energy and will try to get

there, but only through local wiggling motions. This is the deceptive glass analogy, as a

glass below Tg is also frozen, but still has a finite temperature.

This said, there is still a regime in the bed where the dynamics rapidly slow,

α < 2, but ∆P = 1. This is in the hindered regime, below RLP and here is where we

believe the analogy to supercooled can be exploited. Here, it is our contention that the

dynamics slow due to frustration effects–the system has run out of free volume and some

particles are constrained to touch. This creates regions of immobile particles which grow

in size as the flow is decreased. We should point out that this range of hindered motion

can be seen even below the volume fraction reached upon very slow defluidization, as
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seen in Figure 8.18. This indicates that the wiggle packing is effective until RCP.

This concludes our review on the basics of supercooled liquids and glasses. We

now discuss the analogies from Section 9.2 with the previous ideas in mind.

9.6.1 List of analogies

• Dependence of state on cooling rate

We have shown that the rate at which a bed is cooled determines the final volume

fraction and the dynamics of the wiggling motions. For example, Figure 8.23 resembles

Figure 9.1 and Figure 9.6. The value for slow fluidization is 1 − Φ ≈ 0.425, very close

to Φg ≈ 0.58. However, this could be coincidence as we have argued that any true glass

transition will be pre-empted by the loss of fluidization.

• Slow dynamics upon supercooling
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Figure 9.7: The fit for relaxation times from DWS to VFT form. We obtain τ0 = 10 µsec,
B = 26, and T0 = 32 ml/min. This plot resembles the fragile glass-former in Figure 9.3.

All timescales in the bed slow dramatically as a point in the the frustrated region

is approached. Using Q for T , we have fit the τd data for which ∆P = 1 and this is

presented in Figure 9.7 and should be compared to Figure 9.3. We note that the fit does

not do well in the high Q regime; in fact we have found that it can be better approximated

with a power law fit in this region with an exponent around 2.5, close to MCT prediction.
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Thus, before the fluidization is lost, the bed resembles a very fragile glass. We

note that the point at which the dramatic slowdown begins is at a lower Q than the

point at which α begins to slowly decrease from 2. It corresponds to the point at which

α begins to decrease rapidly from 2. We currently have no explanation for this.

• Cooperatively growing regions and spatial heterogeneity

Our evidence for hindered dynamics is seen with α < 2. We interpret this as

immobile regions and the connection to cooperative heterogeneous regions could be very

strong. As the system becomes more frustrated, the immobile regions grow in size. We

must be seeing the short time picture of a cooperative region. In the supercooled state,

some regions are moving rapidly while others are immobile. Thus we see the average.

It would be useful to try to relate the stretching factor in Equation 9.2 to the value of

α. We argued that α 6= 2 results from the DWS sampling many regions of different

dynamics. This is the same argument that accounts for the stretched exponential. Can

they be related?

In addition, there is an intriguing correspondence between α < 2 and the disap-

pearance of the spouting volcanos, see Figure 8.13. Above RLP, the system is completely

fluidized and the surface of the bed is quite agitated. Below RLP, in the hindered region,

the surface of the bed is often broken by a local spout. Viewed from the side, these

appear as small worm-like structure that are longer than they are wide. The frequency

and spatial density of these spouts decreases as α decreases. Are these the manifestation

of the string-like cooperative regions seen in [46, 47]? In this region, they appear and

disappear all over the bed, locally spouting and then stopping. This needs to be stud-

ied carefully as it would provide an explanation of a fluidized bed using a feature of a

supercooled liquid.

• Nonexponential relaxation

If the spatial heterogeneity in the bed corresponds to spatial heterogeneity in

supercooled liquids, we should see nonexponential relaxation. This is something to study.

For example, make a small change in Q and watch how various properties relax: volume,

dynamics as measured by a series of short 1 second DWS measurements. There should

be a difference in response for the fluidized and the hindered regions. We predict that

the fluidized region should relax exponentially, while the hindered region should show

nonexponential relaxation.

• Aging

In the wiggling regime, corresponding to a glass near T = 0, the non-jammed bed

can display very slow changes in speckle motion for long times after a decrease in Q (see

Figure 8.17). Is this an example of aging in the system?

• Nonergodicity in light scattering measurements
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Our light scattering curves (see Figure 8.14, top panel) show a change in the in-

tercept of g(2) just as seen in DLS measurements near glass transition.

• Force chains

Are force chains set up at glass transition upon defluidization, or is an extra jam-

ming necessary? The existence of force chains also points favorably to the glass analogy.

It has been proposed in the jamming picture that force chains form at a jamming tran-

sition [138]. If a glass can be thought of as a jammed state, this would be a useful concept.

9.7 Interpretation in energy landscape picture

We propose that the energy landscape picture is a useful way to interpret our

results and a schematics are shown in Figure 9.8-9.10. The fundamental difference is

that we postulate that the energy landscape is a function of Q. This is reasonable as the

potential energy of the system must account for the presence of all forces, and Q creates

a force through drag. We now separate the pressure in the bed into a pressure due to

fluid flow ∆Pf and a pressure due to frictional contact forces ∆Pc. We also postulate

the the temperature in the system is proportional to Q when ∆Pf = 1 and effectively

0, when ∆P < 1. The landscape must change as the voidage changes and should be

taken into account. However, we will not speculate on its shape and distribution of local

minima as a function of density here [45].

Hindered state, 1-Φ<0.45
∆Pf=1 ∆Pc=0

Fluidized state, 1-Φ>0.45



Figure 9.8: A proposed landscape picture for fluidized beds above onset in the completely
fluidized and hindered regimes. ∆Pf is the pressure drop due to the fluid and ∆Pc is the
pressure drop due to contact forces.

In the fluidized region, the system moves freely over low barriers, and the lowest

point explored in the landscape is set by the balance of the fluid pressure (temperature).
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The landscape is not changed with Q because ∆Pf = 1 and there is no static component

of ∆P . When Q is decreased, but still fluidized, the temperature decreases. However,

there is still enough temperature to rearrange. When the system enters the frustrated

regime, the landscape remains fixed, but the system is stuck in local barriers. The most

probable state is always a balance between temperature and weight, but now there is

considerable activation to overcome barriers.

∆Pf<1Wiggle packing:
static landscape

∆Pc=0

Metastable 
states

Figure 9.9: In the wiggling regime, each local minimum must have a collection metastable
states.

As Q is decreased, the system becomes localized in a local minimum which is lower

as the ramp rate is made slower due to exploration of the landscape. When ∆Pf < 1,

whichever minimum the system is it stays and the system will now begin slow annealing.

The local wiggle motions then pack it further by annealing. We present an energy-

landscape pictures which could account for this. In this case the relaxation would be due

to local metastable inflection points on which the system can remain until perturbed by

a decrease in flow, or a slight tap. These are illustrated in Figure 9.9. 5

We propose that jamming changes the landscape by creating sudden activation

barriers. Jamming creates a ∆Pc > 1 with only a small change in Q (∆Pf ). Thus,

when jamming occurs, the walls of the potential well suddenly become very steep and

the system is well-localized to the minimum. Before, the system could wiggle around

in the bottom of the relatively wide well, moving between. Now, to move at all, the

system must move over the high barriers, breaking the yield stress. These barriers are

the force chains in the system. Thus, jamming freezes in the system–no longer can the

fluid produce wiggle packing. Any decrease in flow in the jammed state must provide

5This is one explanation, but perhaps the landscape actually changes with changing flow rate for
∆P < 1. A decrease in flow would make local minima deeper and the system would evolve by always
staying at the changing minimum.
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Figure 9.10: Jamming modifies the landscape by suddenly changing barrier heights,
effectively locking the system into a narrow local minimum.

enough of a perturbation to unlock the system. This should be tested by examining the

stability of jammed states to different size flow decreases. As the system is more jammed,

the barriers are higher. When the grains yield, we have seen that the bed height increases

to accommodate, but then the particles jam. This must occur in the following way. At

yield, the high barriers are suddenly removed and the system can reach a higher local

minimum. However, if the stress is applied slowly, the system will jam again, and the

barriers will go back up. Presumably they won’t be as high, as the system is now in a

higher voidage. We have observed that if the stress is quickly applied by rapid increase

in Q, the system will not have time to set up barriers (force chains), and the overshoot

will be lower.

9.8 Conclusions

The fluidized bed displays many of the features associated with a supercooled liq-

uid. The hydrodynamics drives the system as does loss of free volume. We believe that

the bed is a supercooled liquid in the hindered regime and exhibits the familiar heteroge-

neous dynamics associated with such a liquid. However, this state becomes nearly frozen

due to lack of driving when ∆P < 1. At this point, it is stuck in whichever minimum

it was in and the only dynamics are wiggling motions moving between inflection points.

Thus, the true glass state is pre-empted by the rapid freeze due to loss of “thermal” driv-

ing. It is important to study things like relaxation in the frustrated region to understand

supercooled fluidization and it is important to study wiggling in ∆P < 1 to understand

static jamming. Furthermore, can the worms and volcanos be explained by the same
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mechanism of heterogeneity in supercooled liquids?
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Chapter 10

Conclusions and future work

In this dissertation, we have described experiments on several different problems

in granular materials. To gain understanding, we have used concepts from many branches

of physics, including lattice dynamics and melting criteria, glasses and solid mechanics,

fluctuating hydrodynamics, and local stress chains. This is the beauty of studying gran-

ular materials. In a small work area, and for little money, many different behaviors

of matter can be interrogated in a precise way. Central to the work described, is the

concept of fluidization in granular materials. As seen, fluidization, in both the fluidized

bed and in the vibrated layer, strongly influences the grain dynamics. However, despite

the fundamental role that fluidization transitions play in the flow of granular materials,

there have been very few detailed experimental studies. Our initial detailed studies of

fluidization transitions have raised as many questions as they have answered. We now

discuss questions which are natural extensions to the work described in Chapters 1-9.

10.1 Vibrated layer

Due to its simplicity, the vertically vibrated system remains a very useful geome-

try to study granular flows. However, improvements can still be made to decrease lateral

acceleration. Improved stability should prove useful for study of patterns at higher fre-

quencies, or near the onset of waves. Using air-bearings with larger cross section, systems

can be designed to significantly reduce the effects of lateral vibration1. In addition, with

a more powerful shaker, the container mass could be increased, decreasing the effect of

the layer collision. With sufficient improvements, it might be possible to study the vi-

brated layer with the same precision that has been developed for gas convection [196].

Even without this stability, there are many questions that can be addressed:

•Fluidization transition in a vibrated layer

The basic fluidization process in the vibrated layer is not fully understood. As we have

1Such a system has been designed and built by P. Umbanhowar, and suffers from no frequency
dependent leveling effects.
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shown, fluidization has consequences on the evolution of pattern, and determines the

types of waves that are seen. Studying the grain dynamics near Γ = 2 with techniques

like Diffusing Acoustic Wave Spectroscopy or Diffusing Wave Spectroscopy would yield

important information about the grain dynamics.

Fluidization in dry grains raises important questions about the role of continuum

modeling of granular materials. Hydrodynamic equations have been shown to well de-

scribe the flow of very fluidized grains [19, 150]. Can such equations equations capture

the transition from solid to liquid behavior around the fluidization transition? Although

hydrodynamic theory has been used to describe slowly deforming solids [89], this ap-

proach is in its infancy. In fact, there is no consensus on the correct equation of state to

use at high volume fractions (see Appendix 2). Careful experiments in 3D would provide

tests of such theories.

• Noise below onset and hydrodynamic theory

Our measurements on the noise induced patterns below the onset of patterns suggest

the need for modification of the Jenkins-Richman equations. The noise induced patterns

are produced by fluctuations which are of the order of energy scales in the pattern, but

have been averaged over in the continuum limit. In thermal convection experiments, the

effect has been studied for supercritical (or very slightly subcritical bifurcations). Thus,

to make contact with theory, it would be interesting to study the noise below onset when

the bifurcation in the vibrated layer is only slightly supercritical. This requires going

to higher frequencies. However, ṽ decreases for increasing frequency. Thus, care must

be taken, as the best place to study this effect should be in the fluidized case, ṽ > 3.

Perhaps it would be useful to pre-fluidize the grains, using a flow of gas or an additive

high frequency excitation.

• 2D melting transitions

Melting in the square lattice should be studied in a more controlled way. We have reported

on a type of shear melting, in which the lattice is heated by a single growing mode. To

make contact with theories of 2D melting, it is necessary to create a more uniform type

of heating. Preliminary attempts using a random frequency modulation have proven

unsuccessful. Once developed, this technique would allow control of the temperature of

the lattice. Perhaps the well-known Kosterlitz-Thouless-Halperin-Nelson-Young melting

scenario [85] would be observed.

Additional work could be done to understand the motion of defects and grains

boundaries in the lattice patterns. Can theories of defect dynamics [166] in equilibrium

crystal lattices be used to predict the speed of propagation of point defects in a nonequi-

librium pattern? Do line defects act like a collection of point defects? What types of
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dynamics do they display? Results from such a study would be very useful for under-

standing ordering of patterns like those discussed in Chapter 4. Theories for ordering

are based on amplitude equations, and do not yet predict the correct time dependence

of the structure factor (the ordering of the pattern). Could a lattice dynamics approach

predict the rate of ordering or ”crystallization”?

It would be interesting to see if other patterns display coupled lattice type dy-

namics and thus be described by a set of ODEs. We have some indication that spring

constants decrease with increasing layer depth. Thus, in sufficiently deep layers the

presumably higher frequency compressional modes could become excited. We have indi-

cation that stripe patterns can display one dimensional dynamics. It would be interesting

to study the behavior of more rigidly bound hexagonal patterns for which there is no

“weak” direction.

•Segregation near phase discontinuities

Studies of segregation in vibrated layers due to effects other than boundaries or intersti-

tial gas are just beginning. We have shown that segregation of different sized particles

occurs near naturally occurring phase discontinuities. However, no systematic study of

the dependence of the segregation rate and size of region of segregation on control param-

eters has been made. Perhaps a regime could be found in which the segregation process

becomes useful in an industrial process? We envision a large scale sorting process in

which grains of different size are placed in container vibrating in the kink regime. A kink

would be then moved across the container by adding a slight subharmonic to the drive.

The kink would act like a windshield wiper, removing large particles from the bulk as it

swept through. The large particles could then be picked off the top, or the system could

be slightly inclined to let them move along the kink into a reservoir.

10.2 Fluidized bed

The studies presented in Chapters 8 and 9 are a first step toward precision flu-

idized bed experiments. The fluidized bed geometry is an ideal way to study the dynamics

of multiphase flows. However, precision experiments are hampered by lack of precision

flow distribution elements for grains between 0.1 − 5 mm. We believe that the design

described in Chapter 3 should produce a distributor free from the extra channeling that

complicates study of steady states. The proposed design in Figure 3.9 would maintain

a stiff surface while allowing for different pressure drops through the distributor. The

role of pressure drop has been studied theoretically, but quantitative experiments are

lacking [97].
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Once a good flow distributor is created, many interesting questions can be ad-

dressed. For example, how does the Geldart diagram change with changes in fluid pa-

rameters? It is not clear what appropriate nondimensional parameters characterize the

transitions between stable and unstable fluidization, Geldart A and B. For that matter,

it is not clear that there are clear transitions. The fluidized state is rarely dull–particles

don’t just bang around randomly. For example, as briefly discussed, in the frustrated

regions, the side of the bed reveals small transient worm-like jets. If flow is increased

enough, we observe a rapid drop in the bed height. This indicates that the system has

begun to bubble as shown in Figure 8.29 in Chapter ??. Is there a bifurcation to these

states? transition between these states should be studied. What kind of bubbling is it?

Qualitatively it looks like ill-defined voidage waves near 1Hz. Techniques like Diffusing

Acoustic Wave Spectroscopy should prove useful in understanding the long time and long

length scale behavior.

In addition, the analogy to supercooled liquids should be pursued. The many

similarities between the two systems could yield insights into the behavior of both. For

example, the role of spatial heterogeneity has only recently been studied in colloids and

MD simulations. It is clear that the bed is spatially heterogeneous in the supercooled

regime. Can the different systems be understood in the same way?

10.3 Conclusion

These projects have been fascinating and enjoyable to work on. The range in

phenomena has kept it interesting and I look forward to hearing about (and possibly

completing) some of the projects outlined above.
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Appendix A

Swift-Hohenberg equation solver

The code listing for the 2-d Swift-Hohenberg equation solver, written in Matlab,
based on pseduo-spectral integration scheme taken from [36].

figure(1);clf;figure(3);clf;figure(2);clf;figure(4);clf

clear rato;

clear M;

clear raw;

clear stmat;

clear width;

clear max_k;

clear mm;

flag=1;

PLOTTIMES=1;

% Solves the 2-D Swift-Hohenberg equation %

N=128; %% number of NxN grid points

n=8;

xmax=N/2;

wind=15; %% fitting window for Gaussians

%a=-1.505;b=3.0;c=1.0;d=16;q0=.5; % oscillons

%a=.1;b=-1.0;c=0.0;d=1;q0=1;

a=-.05;b=3;c=1;d=1;q0=1; % Subcritical

dx=2*xmax/N;

dq=2*pi/(2*xmax);

DT=.1

timesolve=0;

%setup grid in xy and q spaces

[x,y]=meshgrid(-xmax+dx:dx:xmax);

[qx qy]=meshgrid(-dq*N/2:dq:dq*N/2-dq);
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% Initial condition stuff

%% fil matrix is initial condition

[th,r]=cart2pol(x,y);

%ffil=.05*randn(N,N).*(exp(-((r-20)/5).^2));

%ffil=ffil-mean(mean(ffil));

%fil=abs(ifftshift(fft2(ifftshift(ffil))))/N^2;

%fil=2*real(exp(i*th*n)).*(abs(r-20)<3); % central ring

%% This sets random noise with mean 0

fil= 2*rand(N,N);

fil=fil-mean(mean(fil));

W=fil;

W=W-mean(mean(W));

ffil=fft2(fil);

r=xy2rt(abs(fftshift(ffil)),N/2+1,N/2+1,0:N,2*pi*(0:255)/256);

st=sum(r’)/100000;

stmat(1,:)=st/max(st);

figure(1)

colormap gray

simage(W);

% Set up linear stuff

lins=a-d*(q0^2-(qx.^2+qy.^2)).^2;

lins=fftshift(lins);

F=exp(DT*lins);

G=(F-1)./lins;

H=(F-(1+DT*lins))./(lins.^2);

k=0

ll=0;

Wf=fft2(W);

t0=clock;
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while timesolve<20

W3=W.^3;

N0f=fft2(W3.*(b-c*W.^2));

N1f=0;

Wtmpf=F.*Wf+N0f.*G; % first guess

Wtmp=real(ifft2(Wtmpf));

Wtmp3=Wtmp.^3;

Wtmp35f=fft2(Wtmp3.*(b-c*Wtmp.^2));

N1f=(Wtmp35f-N0f)/DT;

Wnf=Wtmpf+N1f.*H;

% back to real space

W=real(ifft2(Wnf));

WLin=real(ifft2(F.*Wf));

WNon=b*W.^3-c*W.^5;

dif=max(max(W-(WLin+WNon)))

Wf=Wnf;

timesolve=timesolve+DT

k=k+1;

if rem(k,PLOTTIMES)==0

disp(etime(clock,t0))

ll=ll+1;

figure(1)

simage(W);

colormap gray

%% Can store images here %%%

%raw(:,:,ll)=W;

%M(:,ll)=getframe;

mm(ll)=max(max(W));

%fwork=(abs(fftshift(Wnf))).^2;

rato(ll)=max(max(WLin))./max(max(WNon));

% Divide by initital pattern for good

% linear stage fitting %

if rato(ll)>100 & flag==1

fwork=(abs(fftshift(Wnf./ffil)));
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%fwork=(abs(fftshift(Wnf)));

else

fwork=(abs(fftshift(Wnf)));

flag=0;

end

figure(4)

simage(fwork);drawnow;

colormap jet

%% Take azimuthal average and do fitting %%%

r=xy2rt(fwork.^2,N/2+1,N/2+1,0:N,2*pi*(0:255)/256);

st=sum(r’)/100000;

% stmat(ll+1,:)=st;

stmat(ll+1,:)=st/max(st);

[gg hh]=max(st)

hhmin=hh-wind;

if hhmin<=0

hhmin=10;

end

hhmax=hh+wind;

if hhmax>=max(size(st))

hhmax=max(size(st));

end

hhmin=1;

hhmax=N/2;

ttt=max(size(hhmin:hhmax));

stsm=st(hhmin:hhmax);

%p=[20 16 1 0]; lorentz fit

%p=[100/timesolve^.25 hh-hhmin gg 0]; %gauss

p=[100/timesolve^.25 hh-hhmin gg]; %gauss2

hold off;

q=1:ttt;

pout=fmins(’fiterr’,p,[],[],’gauss2’,q,stsm);

width(ll)=4*pout(1); %gauss

%width(ll)=.3*pout(3)/sqrt(pout(2)); lorentz

max_k(ll)=pout(2)+hhmin-1;

pp=polyfit(log10(PLOTTIMES*DT*(7:ll)),

log10(width(7:ll)),1);
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%%% Various useful quantities plotted here %%%

figure(2)

subplot(4,1,1);

plot(log10(PLOTTIMES*DT*(1:ll)),log10(width));

hold on;

plot(log10(PLOTTIMES*DT*(1:ll)),

polyval(pp,log10(PLOTTIMES*DT*(1:ll))),’r’);drawnow

hold off

title(’width’);

subplot(4,1,2);

plot(log10(PLOTTIMES*DT*(1:ll)),mm);drawnow

title(’max’);

subplot(4,1,3);

plot(log10(PLOTTIMES*DT*(1:ll)),log10(rato));drawnow;

rato(ll)

title(’ratio’);

subplot(4,1,4);

plot(log10(PLOTTIMES*DT*(1:ll)),max_k);drawnow;

title(’max k’);

figure(3)

subplot(2,1,1);

plot(q,stsm,’go’);

hold on

plot([1:.1:ttt],gauss2(pout,[1:.1:ttt]));

hold off;

subplot(2,1,2);

imagesc(stmat(:,1:end));drawnow

end

end
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Appendix B

Hydrodynamic equations of granular materials

For reference, with permission from the authors, we have reproduced the Jenkins-

Richman equations used in [19]. The granular temperature is written,

T (r, t) =
1

3
〈|u − 〈u〉|2〉 (B.1)

From this definitions, plugging into a Boltzman equation and expanding to lowest

order yields hydrodynamic equations for number density (or equivalently, volume fraction

ν = π
6
nσ3), momentum, and granular temperature.

∂n

∂t
+ ∇ · (nu) = 0, (B.2)

n

(

∂u

∂t
+ u · ∇u

)

= ∇ · P − ngẑ, (B.3)

3

2
n

(

∂T

∂t
+ u · ∇T

)

= −∇ · q + P : E − γ, (B.4)

where the components of the symmetrized velocity gradient tensor E are given by:

Eij = 1
2
(∂jui + ∂iuj) . The components of the stress tensor P are given by the constitutive

relation:

Pij =

[

−p + (λ − 2

3
µ)Ekk

]

δij + 2µEkk, (B.5)

and the heat flux is calculated from Fourier’s law:

q = −κ∇T. (B.6)

To calculate the pressure, the equation of state and radial distribution function at

contact proposed by Goldshtein et al. [74] to include both dense gas and inelastic effects:
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p = nT [1 + 2(1 + e)G(ν)] , (B.7)

G(ν) = νg0(ν), (B.8)

and the radial distribution function at contact, g0, is:

g0(ν) =

[

1 −
(

ν

νmax

)
4

3
νmax

]−1

, (B.9)

where νmax = 0.65 is the 3D random close-packed volume fraction.

We note that g0(ν) is essentially a fit to reproduce a branch on the phase diagram

for hard-spheres (Figure 9.4). As such, many different forms have been proposed. The

standard Carnahan and Starling form [25] for well below onset is,

g0(ν) =
2 − ν

2(1 − ν)3
(B.10)

while recent authors [16] have used a form from Speedy [170] which works well near RCP,

g0(ν) =
1

1 − ν
νRCP

(B.11)

Equations B.2–B.4 differ from those for a compressible, dense gas of elastic parti-

cles by the energy loss term,

γ =
12√
π

(1 − e2)
nT 3/2

σ
G(ν), (B.12)

which arises from the inelasticity of collisions between particles. The bulk viscosity is

given by

λ =
8

3
√

π
nσT 1/2G(ν), (B.13)

the shear viscosity by

µ =

√
π

6
nσT 1/2

[

5

16

1

G(ν)
+ 1 +

4

5

(

1 +
12

π

)

G(ν)

]

, (B.14)

and the thermal conductivity by

κ =
15
√

π

16
nσT 1/2

[

5

24

1

G(ν)
+ 1 +

6

5

(

1 +
32

9π

)

G(ν)

]

. (B.15)
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Appendix C

Dispersion relation calculation

In this appendix we give details on the calculation of the dispersion relation for

the normal modes found in Chapter 5.

un

un+1

un-1

[10][01]

[11]

C

a
u0

uN

Figure C.1: The diagram showing the spring model used to calculate the (1, 1)T normal
modes.

We begin with a model for coupling of (1, 1) rows of the lattice in the same spirit

of coupling planes in a crystal [102]. We will assume harmonic potential for coupling

between the rows. The equation of motion describing the transverse motion of the dis-

placement of a (1, 1) row from its equilibrium position can be written,

m
dun

dt
= CT (un+1 + un−1 − 2un) (C.1)

Plugging in a trial wave solution,

un = e
−ı(kan√

2
+ 2πfLt)

(C.2)
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with wavevector k in the (1, 1) direction, and fL the frequency of the wave, yields the

dispersion relation,

fL =
1

2π

√

4CT

m
sin(

ka

2
√

2
) (C.3)

where k = π
√

2/a is the maximum wavevector on the lattice in the (1, 1) direction,

the wavevector at the edge of the Brillouin zone.

Assuming free boundary conditions gives the condition k = nπ
√

2
aN

with 0 ≤ n ≤ N .

This sets the number of allowed modes.
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Appendix D

Single inelastic ball model solver

The code listing for the single inelastic ball model solver. This code calculates
the trajectory of a single completely inelastic ball boucing on an oscillating plate. This
method was inspired by a similar code in [182].

#include <stdio.h>

#include <math.h>

#define PI 3.1415926

#define G 981.0

#define GAMMIN ((float)6.9)

#define GAMSTEP ((float).1)

#define GAMMAX ((float)6.9)

//#define F ((float)30)

#define BOUNCES 200

#define CUTOFF .01

#define PL .25

#define YACC .00000001

#define REST 0.0

#define YINIT ((float)1)

#define IMAX 10

#define PRINTBOUNCE 20

/* 0 printing to disk off. 1 printing on */

#define POSPRINT ((int)1)

#define TIMEPRINT ((int)1)

#define VELPRINT ((int)0)

main()

{

int i,j,k,bounce;
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double e(double,double);

double yplate(double,double,double);

double vplate(double,double,double);

double aplate(double,double,double);

double yball(double,double,double);

double vball(double,double);

double sign(double);

double temp;

double sg,sl,sr;

int pflag;

int rtflag;

int aflag;

int changeflag; // wont change when =1

FILE *out_dat1;

FILE *out_dat2;

FILE *out_dat3;

double F;

double gam,w,yio,yin,y,yp,yl,ypl,yr,ypr,ap;

double vio,vin,v,vb,vp,t,tglobal;

double tl,tr,tm;

double vrel;

double rl,rr,rm;

double DT;

out_dat1=fopen("positout.dat","wb");

out_dat2=fopen("timesout.dat","wb");

out_dat3=fopen("velsout.dat","wb");

//for (F=20.0; F <= 34.0+.01 ;F+=1)

for (F=30.0;F<=30;F++)

{

fprintf(stderr,"freq=%f\n",F);

for (gam=GAMMIN;gam<=GAMMAX;gam+=GAMSTEP)

{

/* Initial conditions */

DT=1/(50*F);

yio=YINIT;

vio=0;

t=0;
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tglobal=0;

w=2*PI*F;

pflag=0;

rtflag=0;

aflag=0;

changeflag=1;

fprintf(stderr,"gamma=%f\n",gam);

for (bounce=0;bounce<=BOUNCES && aflag==0;bounce++)

{

/*printf("bounce=%d\n",bounce);*/

/* Calculate time to next hit */

/* Bound root*/

t=DT;

rtflag=0;

pflag=0;

/* Now we see where to see initial increment from t=0 */

for (i=0;i<IMAX && rtflag==0;i++)

{

/*

printf("tstart=%-.16f\n",t);

printf("i=%d\n",i);

*/

yl=yball(t,vio,yio);

ypl=yplate(gam,w,t+tglobal);

rl=yl-ypl;

if (rl<0.0) /* Still no bound, decrease initial step */

{

/*

printf("rl=%-.16f\n",rl);

*/

t=t/2;

}

else /* we have found a good initial step,

break out of loop */
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{

/*

printf("rl=%-.16f\n",rl);

*/

rtflag=1;

}

}

if (i==IMAX) /* Ball is stuck on plate for all

intents and purposes */

{

pflag=1;

/*

printf("Ball is resting comfortably on plate\n");

*/

/* Check to see if ball will ever leave the plate again */

if (gam<=1.0)

{

printf("Ball is stuck on plate forever at this gamma\n");

aflag=1;

}

else

{

/* Track ball on plate until it is ready to leave */

tglobal=tglobal+t;

while (aplate(gam,w,tglobal)>-G)

{

yp=yplate(gam,w,tglobal);

if ((BOUNCES-bounce)<PRINTBOUNCE && POSPRINT==1)

{

fprintf(out_dat1,"%f %f %f\n",tglobal,yp,yp);

/*printf("printing to disk\n");*/

}

tglobal=tglobal+DT/10;

}

yio=yplate(gam,w,tglobal);

vio=vplate(gam,w,tglobal);
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}

}

/* Ball isn’t stuck on plate, so let’s

find the next hit position */

if (pflag==0)

{

/*

printf("Ball will undergo another collision\n");

*/

rtflag=0;

while (rtflag==0)

{

yl=yball(t,vio,yio);

ypl=yplate(gam,w,t+tglobal);

rl=yl-ypl;

yr=yball(t+DT,vio,yio);

ypr=yplate(gam,w,t+tglobal+DT);

rr=yr-ypr;

sl=sign(rl);

sr=sign(rr);

if (yl>ypl && yr<ypr) { rtflag=1;}

else

{

/*

printf("%f %f %f %f\n",yl,ypl,rl,rr);

*/

/* Can change plate accelertion suddenly here */

if (changeflag==0 && bounce>=5 && fabs(ypl)<.01)

{printf("Changed accel\n");

gam=3.3; changeflag=1;}

if ((BOUNCES-bounce)<PRINTBOUNCE && POSPRINT==1)

{

fprintf(out_dat1,"%f %f %f\n",t+tglobal,yl,ypl);

}
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t=t+DT;

}

}

/*

printf("Bounded root lies between t=%f and t=%f\n",t,t+DT);

printf("With root values of %f and %f\n",rl,rr);

*/

/* Now that we have a bound, narrow it down */

/* Initialize */

tl=t;

tr=t+DT;

tm=.5*(tl+tr);

rl=yball(tl,vio,yio)-yplate(gam,w,tl+tglobal);

rr=yball(tr,vio,yio)-yplate(gam,w,tr+tglobal);

rm=yball(tm,vio,yio)-yplate(gam,w,tm+tglobal);

/* Start testing */

while (fabs(rm)>YACC)

{

if (rl*rm>0)

{

tl=tm;

}

else

{

tr=tm;

}

tm=.5*(tl+tr);

rl=yball(tl,vio,yio)-yplate(gam,w,tl+tglobal);

rr=yball(tr,vio,yio)-yplate(gam,w,tr+tglobal);

rm=yball(tm,vio,yio)-yplate(gam,w,tm+tglobal);

/*

printf("tm=%f rm=%f\n",tm,rm);

*/

}

/* Update final values */
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t=tm;

y=yball(t,vio,yio);

yp=yplate(gam,w,t+tglobal);

/*

printf("%f %f %f\n",t,y,yp);

*/

if ((BOUNCES-bounce)<PRINTBOUNCE && POSPRINT==1)

{

fprintf(out_dat1,"%f %f %f\n",t+tglobal,y,yp);

/*printf("printing to disk\n");*/

}

/* Printing for collision time */

if ((BOUNCES-bounce)<PRINTBOUNCE && TIMEPRINT==1)

{

fprintf(out_dat2,"%f %f\n",gam,t);

}

/* Found intersection time and point, or takeoff point */

/* Make a rebound */

yio=y;

vb=vball(t,vio);

ap=aplate(gam,w,t+tglobal);

/*

printf("t+tglobal=%f\n",t+tglobal);

*/

vp=vplate(gam,w,t+tglobal);

/*

printf("vb=%f vp=%f\n",vb,vp);

*/

vrel=vb-vp;

if ((BOUNCES-bounce)<PRINTBOUNCE && VELPRINT==1){

fprintf(out_dat3,"%f %f %f %f\n",gam,vb,vp,vrel);

}
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vio=vp-e(vrel,REST)*vrel;

/*

printf("vrel=%f\n",vrel);

printf("New vb=%f\n",vio);

printf("takeoff y=%f\n",yio);

getchar();

*/

tglobal=tglobal+t;

}

pflag=0;

}

/* Prints final velocities */

vrel=vb-vp;

fprintf(out_dat3,"%f %f %f %f\n",gam,vb,vp,vrel);

fprintf(stderr,"%f %f %f %f\n",gam,vb,vp,vrel);

} /* End Gamma loop */

} /* End Freq loop */

fclose(out_dat1);

fclose(out_dat2);

fclose(out_dat3);

}

/* functions*/

/* coefficient of restitution, flag=-1 for variable */

double yplate(double gam,double w,double t)

{

return ((gam*G)/(w*w)*sin(w*t));

}

double vplate(double gam,double w,double t)

{

return ((gam*G)/w*cos(w*t));

}

double aplate(double gam,double w,double t)
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{

return (-gam*G*sin(w*t));

}

double yball(double t,double vi,double yi)

{

return (-.5*G*t*t+vi*t+yi);

}

double vball(double t,double vi)

{

return (-G*t+vi);

}

double e(double vrel, double corflag)

{

double er;

if (corflag==-1.0)

{

if (fabs(vrel) < CUTOFF)

{

er=1.0;

/*

printf("e=%-.16f",er);

*/

return er;

}

else

{

er=pow(CUTOFF,PL)*pow(fabs(vrel),-PL);

/*

printf("e=%-.16f\n",er);

*/

return er;

}

}

else

{

er=corflag;

/*

printf("e=%-.16f\n",er);

*/

return er;
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}

}

double sign(double num)

{

if (num>=0.0){ return 1.0;}

else {return -1.0;}

}
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