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Abstract— Bipedal robotic locomotion in granular media
presents a unique set of challenges at the intersection of
granular physics and robotic locomotion. In this paper, we
perform a systematic experimental study in which biped robotic
gaits for traversing a sandy slope are empirically designed using
Zero Moment Point (ZMP) methods. We are able to implement
gaits that allow our 7 degree-of-freedom planar walking robot
to ascend slopes with inclines up to 10◦. Firstly, we identify a
given set of kinematic parameters that meet the ZMP stability
criterion for uphill walking at a given angle. We then find that
further relating the step lengths and center of mass heights
to specific slope angles through an interpolated fit allows for
significantly improved success rates when ascending a sandy
slope. Our results provide increased insight into the design,
sensitivity and robustness of gaits on granular material, and the
kinematic changes necessary for stable locomotion on complex
media.

I. INTRODUCTION

Enabling humanoid machines to walk wherever humans
can go is an ongoing robotics challenge. This challenge is es-
pecially apparent when walking on the complex and dynamic
terrain present in the natural world, such as a sand dune – a
sloped surface of granular material. Every footfall will sink
into the non-rigid terrain exhibiting variable dynamics with
respect to time and space. Additionally, an intruding foot can
cause the loose material to yield, thereby slipping backward
and deviating significantly from the planned walking dynam-
ics. Further, the sand grains themselves may avalanche down
the slope under pressure, creating unanticipated changes in
the ground reaction forces. All of these factors can contribute
to robot falls. In this paper, we experimentally investigate
the control problem of robotic walking up a sandy slope by
systematically adjusting the free design parameters present
in established Zero Moment Point (ZMP) techniques [1, 2].
In the past, many walking robots have made use of control
methods such as Hybrid Zero Dynamics (HZD) [3, 4], Zero
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Fig. 1: (a) A picture of the 7 degree of freedom planar biped robotic
walker used during the experimental trials. (b) Staircase tracks
made in the poppyseed bed used, reflecting the type of gait design
methods used. Poppy seeds were used to simulate coarse sand in
order to avoid excess wear on the biped walker. (c) Microcontroller
and leveling system for the testbed that controls slope angle. (d)
The robot constrained to the sagittal plane during an experimental
trial on the bed.

Moment Point (ZMP) [1], and other methods of keeping the
body upright [5], to ensure quasistatic or dynamic stability
of the system. These methods can be then used to generate
predetermined planar, or even three-dimensional paths for
the biped system to follow [6]. Many of these schemes
have been implemented across a variety of environments,
and are typically augmented by position and acceleration
feedback [1, 3, 7–15]. Methods which further employ force-
based feedback can accommodate deformable terrain [16–
21]. However, granular terrain poses a particular challenge
given its highly nonlinear dynamics and ability to both act
like a solid and flow in a fluid-like regime (yielding or
avalanching) during foot contact [22, 23]. As a consequence,
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if the terrain transitions from a solid-like material to flowing
material as a result of the foot fall [24, 25], then traditional
force control for gait recovery may not accommodate such a
drastic dynamical shift in the interaction of the foot surface
and the ground.

This paper builds on previous work using a 7 degree of
freedom planar walking robot [2], in which we developed
a stability region criterion for generating ZMP-based flat-
footed walking on granular terrain, and applies the approach
to the additional complexity of sloped granular terrain (Fig.
2, Section III). This work systematically varies gait param-
eters and experimentally assesses which adjustments yield
effective gaits for planar locomotion on sandy slopes (Section
IV). We generalize these effective gait parameters into a
slope-dependent fitted function (in essence, a parameter
lookup table) which results in ascending our experimental
granular slope, shown in Fig. 1. Further, we perform a
sensitivity study to show these generated gaits are robust to
misestimation of the slope angle (Section IVC). For future
work, this array of generated gaits can provide a baseline
open loop scheme for higher-level feedback from inertial
measurement units and force-sensing in the feet (Section VI).

II. BACKGROUND
A. Balancing of Bipeds on Flat Surfaces

Perhaps one of the most intuitive and widely implemented
methods to balance a biped robotic system, and account for
environmental disturbances, is through position and acceler-
ation feedback, achieved by installing inertial measurement
units (IMU’s) at strategic points on the head or body of the
system. Much like human reflexes, this sensory data is fed
into a control center that then signals motion or repositioning
of the torso or appendages as necessary. However [9], the
idea of using this information to modify our open loop
gait kinematics on granular material by taking advantage
of the material properties of the substrate itself, has yet
to be explored. This provides context for the experiments
presented in this paper.

Typical bipedal walking has an alternating single and
double support phase (SSP and DSP) [2], which is well
studied for ground where a robot's feet do not have complex
interactions, such as penetration or slip on the boundary of
the surface. For biological systems, these complex surfaces
are typically accounted for through sensing and processing
of the resulting forces on the plantar surface of the foot,
using input as a feed-forward into a complex, proprioceptive
feedback system. In fact, it is difficult to enable and optimize
walking in a robotic system over sand without estimation
of the complex force interactions that occur at the surface
[22, 23]; a phenomenon which was built upon in our previous
work [2]. However, one of the key biological corrections that
bipeds make using this force feedback is that of kinematic
repositioning [26]. This supports the idea that adjusting
the gait kinematics can allow slope climbing on complex
terrain for biped robots. This was previously investigated for
simulated human gait through variation of the parameters of
step height, center of mass (CoM) height and step length
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Fig. 2: A flow diagram outlining the experimental process for
developing the ZMP gait design scheme that enables the planar
biped walker to traverse a sandy slope.

[10]. These use simulated vestibular IMU input to control
torso position, as well as a simulated kinesthetic sense
through force and torque sensors to govern joint positions.
The focus was a kinesthetic augmentation of the vestibular
sense to provide stability when walking over complex terrain,
and served as a good indicator of gait adjustments for uphill
gait design.

B. Balancing of Bipeds on Staircases

in order to traverse a slope or inclined surface, the regular
ZMP equation must be modified. This is because of the need
to accommodate the fact that in any given phase where both
feet make contact with the surface, one leg will be higher
than the other [11]. Since traditional ZMP trajectories assume
the contact point of both feet must be coplanar [11, 12], we
considered the uphill trajectories of the robot to be along a
virtual slope.

III. CONTROL AND EXPERIMENTAL METHODS
A. Walking on Flat Surfaces

ZMP Walking is based on the idea of the Linear Inverted
Pendulum Model (LIPM) of bipedal walking, built upon the
concept of a stability region in which stable gaits can be gen-
erated. One main characteristic of ZMP is that at any given
moment, the trajectory of the gait places the biped within
the stable region of the LIPM. Because the background work
for ZMP walking assumes a constant vertical center of mass
(CoM) height and constant foot position, for flat ground this
position is determined using the following equations [1]:

Px−zmp =
−τy

mg
(1)

Py−zmp =
τy

mg
(2)

Where τx and τy are the torques on the ankle of the biped
walker due to inertial effects of the biped, g is acceleration
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Fig. 3: Picture of the experimental setup showing placement of
the walker on the bed. The sand bed that was used for testing
constrains failure to a pitching axis, and can be set at angles between
0 and 25◦. As stated, a specialized fluidizing bed was built that
allows for uniform loose packing of the granular material that was
used for our trials, in this instance poppy seeds. The robot was
constructed using 6 Dynamixel MX-64A Servos and a 3D printed
torso and leg links. A high torque torso servo was also used to
support a counterweight which made up 0.23 kg of the 1.86 kg
mass. Most of the heavy computing for the biped was done on a
remote PC, connected through the wiring harness, with an small
on-board micro-controller handling any intermediate processing of
inertial and force feedback, and individual controllers on each servo
governing position control of that particular motor.

due to gravity, and m is the robot mass. However, once we
consider any deviation from walking on regular flat ground
with constant center of mass, for instance, walking uphill
on soft ground, we need to modify this equation in order to
remain within a stability region. Since our biped system is
constrained about the x-axis, this system can be simplified
to:

Pzmp = Py−zmp =
τ

mg
(3)

However, if we consider that the acceleration in the y -
direction is given by:

ÿ =
g
z

y− 1
mz

τx (4)

where z is the intersection distance from the contact point
of the robot with the CoM plane. We can then use this
information and substitute (2) into (4), resulting in:

Pzmp = Py−zmp = y− z
g

ÿ (5)

This is the governing equation for our planar ZMP walker,
and the primary basis on which we begin to modify our gaits.

B. Zero Moment Point Walking on Sand - Stability Criterion
Due to Sinkage and Slip

Our previous work demonstrated that the static placement
of the foot allowed for the reactive terrain forces to balance
the ankle torques. As such, the estimated stability region of
the granular material needed to be equivalent to the stability
region of the LIPM ZMP model. It is necessary to design
trajectories such that that stability criterion is satisfied for all
time [2] When we factor in the approximate sinkage of the
granular matter to be traversed, we arrive at the model to

calculate the trajectory of the robot joints TZMP, which can
be given as a function, and is explored further in [2]:

TZMP = f (CoM,L,h,S,g,B f ront ,Bback) (6)

Where CoM is the center of mass height, L is the biped step
length, h is the step height, S is the sinkage of the biped,
and B f ront and Bback are the stability conditions of the biped
for its given mass and size constraints.

To quantify our foot size, and thus B f ront and Bback [2], we
adapted the idea of the ”polygon of stability” for locomotion
on hard ground for use on granular media [2]:

dc =
L
2
(1− 1

γ
) (7)

where we consider relationship of the planar foot length,
L, to intrusion depth dc and γ is the force overshoot ratio,
which factors in force and velocity of the intrusion into the
granular material, and can be obtained from literature [2].

C. Challenges of Walking on a Slope of Granular Terrain

Because the surface of the slope is that of granular mate-
rial, a gait that addresses uphill climbing must be used with
the same accommodations made for sinkage and equivalence
of the stability regions. When designing our approach to this
problem, the following were considered:

1) Slippage and uniform compaction: To provide a model
of constant sinkage which could be estimated and
eventually fed into a ZMP trajectory equation, it is
necessary to have predictability of the behavior of the
bed. A fluidized bed was built, as shown in Fig. 3, that
allows for the repeatable preparation of uniform and
loosely packed granular material, in this case poppy
seeds [23]. Blowing air up through the base of the
bed fluidizes the substrate when turned on, and after
deactivating the blowers and letting the grains settle, a
loosely packed and uniform granular surface remains.
To accurately feed sinkage information into our ZMP
trajectory generation algorithm, we first needed to
know what the sinkage of the robot would be at a
given weight. to address this, a simple measurement
of parameters was conducted, as seen in Table 1. If
the sinkage is not properly accounted for, we find that
the robot gait will not compensate for the extra sink
distance, and thus, the gait will fail and the robot will
tip over.

2) Failure of the substrate itself : Another key challenge
that we face when walking uphill on granular material
is the failure of the surface itself, due to the effects

TABLE I: Robot and bed sinkage parameters for the 7 degree of
freedom planar walker

Quantity Value
Robot Mass 1.86 kg

Plantar Surface Area 100 cm3
Intrusion Depth 1.8 cm

Foot Length 20 cm
Foot Height 5 cm
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of gravity, frictional forces, and lateral forces applied
by the surface of the robot foot [24]. These complex
interactions have been found to occur in slopes as low
as 6◦ for the robot, and will be further discussed in
Section V.

D. Developing a Staircase Gait

Staircase gaits have been studied with respect to ZMP
trajectories for many years [11, 12]. Similarly, ZMP tra-
jectories over uneven or complex terrain have also been
very thoroughly explored, due to the fact that biped robots
rarely operate in perfectly ideal situations [2, 10]. We seek
to combine much of the work that has been done in order to
allow for robust uphill walking uphill over granular material.

Because of inconsistencies in the ZMP trajectory formu-
lation during the DSP of the walker, we use a virtual slope
model [12]. Thus, we are left with an expression for stair
climbing up a virtual slope that was implemented as our
ZMP staircase equation [12]:

Pzmp
kÿ+g

g
= y− z

g
ÿ (8)

This equation allows the trajectory of the foot to follow
a staircase pattern, while allowing it's CoM to ascend the
slope in a linear manner. However, implementation of a
staircase gait by itself is not sufficient to implement on a
slope with sinkage. Two major modifications were made
to the trajectory generation to provide a novel, robust, and
stable gait. Because the differences in slope angles are
trigonometrically related to the ”height of the stairs”, the
slope angle and intrusion angle of the foot were necessary
augmentations of (6), such that the function to generate TZMP

must include θ and φ as inputs:

TZMP = f (CoM,L,H,S,g,B f ront ,Bback,θ ,φ) (9)

Where θ is the slope angle of the sand,and φ is the intrusion
angle of the foot, and φ/2 the offset of the hip joints. Once
this gait was developed, it was found that a traditional spline
fit [2] of the ZMP trajectory path was sufficient only up to the
point in the gait cycle that the robot seeks to compensate for
sinkage (at the end of two full steps, or one full gait cycle).
Because of this, a Savitsky Golay [15] criteria, or piecewise
spline with history, was designed and used to generate a
smoothed staircase trajectory for the robot to follow.

TABLE II: Joint trajectory generation for the planar walker

Algorithm for Joint Trajectory generation
1) Slope angle read in; L and CoM computed:

L, CoM = (θ )
2) ZMP Trajectory Reference computed:

ZMP Ref = (sDSP0, sDSP, sSSP, nsteps,B f ront , Bback , L)
3) ZMP Ref used to calculate CoM trajectory from Preview Control:

CoM Traj = (ZMP Ref, H, CoM, T, g, θ )
4) CoM Traj used to plug into the robot inverse kinematics

In general:
Q = (CoM Traj, backgoal position, f rontgoal position)
Qinitial = (CoM Traj, 0, 0)
QSSP1 = (CoM Traj, 0, sink+(L/2)tan(θ ))
QDSP1 = (CoM Traj, 0, sink+(L/2)tan(θ ))
QSSP2 = (CoM Traj, sink+(L/2)tan(θ ), sink+(L)tan(θ ))
QDSP2 = (CoM Traj, sink+(L/2)tan(θ ), sink+(L)tan(θ ))

5) Repeat for nsteps
if nsteps is complete:
QSSPFinal = (CoM Traj, sink+(L)tan(θ ), sink+(L)tan(θ ))
QDSPFinal = (CoM Traj, sink+(L)tan(θ ), sink+(L)tan(θ ))

6) Applying smoothing and adjustments:
Qintermediate = (Qinitial+ nsteps(QSSP1+QDSP1+QSSP2
+QDSP2)+QSSPFinal+QDSPFinal )
QFinal = Savitsky-Golay(Qintermediate, φ )

0.00 s 3.00 s2.00 s1.00 s

4.00 s 7.00 s6.00 s5.00 s

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Frame capture for the biped walker ascending a 4 degree incline. The robot begins ascending the slope by starting in the initial
DSP (a), and continues to the first SSP (b), (c) until it arrives at the first intermediate DSP (d). From here, it switches feet, and the enters
into the second SSP (e), (f), before arriving at the second DSP (g). The cycle then repeats (h) with the same SSP from (b), until the robot
completes the commanded number of steps. From (a) to (h), the red line indicates the position of the center of mass at a given time. The
true center of mass was used instead of the at the hip due to the low mass of the system.
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E. Joint Angle Methods

Table 2 outlines the algorithm for the calculation of the
joint trajectories. The process of Preview Control [1, 2, 11,
12] was used to generate ZMP references, which are then
converted to joint angles through inverse kinematics. The
necessary intrusion angle of the foot is represented by φ ,
and the forward hip posturing can be given as φ /2. sDSP0
is the set number of initial double support samples, sDSP, is
the number of double support samples, sSSP is the number of
single support samples, nsteps is the number of steps, Qinitial
is the initial joint position matrix, QSSP1 is the first SSP joint
position matrix, QDSP1 is the first DSP joint position matrix,
QSSP2 is the second SSP joint position matrix, QDSP2 is the
second DSP joint position matrix, QSSPFinal is the final SSP
joint position matrix, QDSPFinal is the final DSP joint position
matrix, Qintermediate is the pre-processed joint position matrix,
Q f inal is the final joint position matrix, and H is the preview
horizon. An example of the implementation of this algorithm
can be seen in Fig. 4.

IV. EXPERIMENTAL TRIALS AND RESULTS
A. Relation of Intrusion Angle and Sinkage to Slope Angle

We first sought to experimentally determine the ideal
angle of foot intrusion for our system. From a systematic
experimental sweep of foot angles, we found that the optimal
foot angle was:

θ = φ . (10)

The results of this experiment can be seen in Fig. 5, and was
conducted as following:

1) Establishing of Reference Frames: The lab frame was
used as reference, with the floor being 0◦. The bed of
poppy seeds was elevated to 5◦.

2) Sweep of Angles of Intrusion: For N=5 trials for each
slope angle, the walker was run for n= 4 steps, and a
success was defined as the walker standing upright on
two feet at the end of the trial, else a failure. This gave
an experimental data set size of 96 total trials.

We hypothesize that a “placing” instead of a “digging” foot
motion was more successful due to the relatively low mass
and plantar pressure of the walker, compared to the “digging”
behavior of humans which are significantly heavier [26].

B. Step Length, CoM and Angle Parameterization

Initially, the relationship in (8) was considered, and
through systematic experimentation, a set of parameters
(CoM, L, H, S and B f ront and Bback being taken from our
previous work) was identified that allowed for a stable gait
at θ = 5◦. The gait was then tested for a sweep of slope
angles from θ = 0 to θ = 10 to test the general effectiveness
of these parameters. The method used was:

1) Parameters that allowed for successful trials at θ=5
were used to generate a trajectories for n = 4 steps.
A success was defined as the walker completing all 4
steps and returning to an initial DSP position. The bed
was leveled and the ground was re-fluidized and reset
before each trial.
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Fig. 5: Results of varying the intrusion angle of the foot on the
slope surface where θ = 5 is the slope angle, and φ is the absolute
angle of the foot. Both θ and φ were measured in the lab frame.
The highest rate of success was found to be tangent to the surface
of the slope. We hypothesize that this is due to the low mass of the
robot walker.

2) A sweep of trials from θ=0 to θ=10◦ with the modified
staircase code was then run, with φ= θ and n= 10 trials.
This gave an experimental control data set size of 100
total trials.

3) Failure modes were analyzed and processed. After this,
through systematically incrementing and decrementing
our values at each angle, a set of parameters CoM, L,
H were also established for θ=0◦ to θ=10◦, with a
success being defined as the largest values of L and
CoM to allow for at least 50% success for N = 10 gait
trials at a given θ . This metric of success was chosen
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Fig. 6: Manually tuned gaits for specific slopes. These were then
used to formulate a parameterized policy through the use of a linear
fit. In (a), we see the results for Vertical CoM height, and in (b) we
see the same experiment for step length. In order to accommodate
increasing slope angles, we found that decreasing the Step Length
and CoM height was necessary.

998

Authorized licensed use limited to: Texas A M University. Downloaded on October 02,2020 at 12:14:44 UTC from IEEE Xplore.  Restrictions apply. 



0 2 4 6 8 10
Absolute Slope Angle (degrees)

0

20

40

60

80
Pe

rc
en

ta
ge

 S
uc

ce
ss

 f
or

 N
 =

 1
0 

T
ri

al
s

Set Parameters

Interpolated
Parameters

Fig. 7: Results of trials for set (L = 15cm, CoM = 20.5cm) and
interpolated parameters using the staircase gait. When the same set
parameters of L and CoM were used, there was a higher failure
rate than when interpolated (connected) parameters were used. The
similarity in the curves at angles lower than 6◦ is likely due to the
fact that the gait was designed around a 5 degree incline, and then
adapted to other slope angles accordingly.

due to the fact that we are primarily concerned with
the locomotion of the robot on a granular incline, and
as such, a larger L and CoM were favored.

4) The successful parameters from θ = 0◦ to θ = 10◦

were then fit with a linear regression, and equations
that related all parameters to slope angle were identi-
fied for the planar walker. (Fig. 6).

5) Step 2) was then re-run, this time using the linear
fit to select parameters. This gave an experimentally
manipulated data set size of 100 total trials.

At this point, because the step length, CoM and step height
were all related through a system of continuous linear equa-
tions, the robot had a specific gait for each slope angle within
the limits of the hardware setup (angles of 0− 10◦, with a
resolution of 0.01◦). Once this parametrization was applied,
we found that the robot was significantly more successful
at traversing the sandy slope, due to the specificity of each
gait to a particular incline. The results of this can be seen in
Fig. 7. These results are encouraging, since we were able to
improve our success rates at θ = 9◦ and θ = 10◦from 0% to
60% and 50% respectively; a substantial improvement over
our initial trial.

C. Sensitivity Trials for Slope Angle

Once the gait was parameterized to be slope-specific, we
tested the robustness of the parameterized gaits of the walker
[27]. This served as a practical test of our method to mis-
estimations of the slope angle. In order to do this, a second
experiment was designed:

1) A slope angle of θ = 2◦ was input into the gait code,
for n = 6 steps. A success was defined as the walker
completing all 6 steps and returning to an initial DSP
position. The bed was leveled and the granular terrain
was reset through the air fluidized before each trial.

2) The bed was raised to the θ input into the code, and
the robot was run N = 3 times, each time recording the

distance, and at the end of the third trial, establishing
an average distance.

3) The bed was lowered to an angle of (θ–1◦), while
keeping an input angle of θ in the code, and the robot
was run N = 3 times, each time recording the distance,
and at the end of the third trial, establishing an average
distance. This distance was then divided by the average
distance at θ to obtain a relative distance traveled. This
is important due to failure and slippage of the robot.

4) The bed was again lowered to (θ–2◦) and the robot was
run N = 3 times, each time recording the distance, and
at the end of the third trial, establishing an average
distance. This distance was once again divided by the
distance traveled at slope θ in order to obtain a relative
distance traveled. This process was further repeated at
bed angles of (θ +1◦) and (θ +2◦).

5) The entire process was then repeated for θ=4◦, 6◦, 8◦

and 10◦, giving a total of 150 experimental trials.
For low angles, (θ< 6◦) we find that there is a reasonable
level of robustness to perturbation in the open loop gait (Fig.
8). This is indicated by the high relative distances(fraction of
distance covered at a particular offset angle, compared to the
distance traveled when the slope angle is accurate to the gait)
at lower inclines. However, at higher granular inclines, we
observe large drop-off on either side of the sensitivity curve,
once the gait is not specifically designed for that particular
incline. It is this key fact that frames our current and future
work.

V. DISCUSSION

A. Theoretical Basis For Experimental Success

As seen in 7 and 8, through the use of a simple linear
fit, we were able to increase success rates from from 0% at
θ = 9 and θ = 10 to 60% and 50% respectively. We theorize
that this is due to the significant re-posturing of the 7- DOF
system according to slope angle to remain within the polygon
of stability. Similarly, this explains why the sensitivities drop
off quite sharply at higher angles. If we consider that the
support length normal to the lab frame is given by Lcos(θ)
(5), we find that the polygon of stability becomes smaller as
θ increases, thereby leading to more sensitive gaits.

B. Improving Sensitivity

As we examine the sensitivity curves, it becomes evident
that the given scheme of gait generation is effective when the
walker receives an accurate slope angle as input. However,
for smaller perturbations, modeled as small offsets in slope
angle from expected angle, we see that the gait effectiveness
falls significantly – as much as 100% for 2 degree per-
turbations. Because of the nonlinear properties of granular
material [24], we need to understand the force profiles at
the foot-material boundary [23]. Unlike conventional balance
control, to optimize biped walking over granular material it
is necessary to characterize how the substrate itself actually
yields. Once this is done, we hypothesize that through simple
inertial control, for instance, in-the-loop torso repositioning,
we can begin to improve sensitivity by combining the IMU
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Fig. 8: Gait sensitivity plots for biped staircase ZMP gait from 2 to 10◦. relative distance was used instead of absolute distance because
of varying step lengths when climbing the slope. We see that as we deviate from the expected distance, we observe a significant decline
in performance. This is especially apparent at steeper inclines. For a slope angle of 2◦, the plan biped was still able to achieve a relative
distance of over 0.6 for a perturbation of 2◦ in either direction. However, at 10◦, this falls to 0.0.

and force feedback as a more biomimetic approach to biped
walking on complex media.

C. Future Work

to expand upon the idea of using force profiles, future
work will focus on using force sensing in the feet to inform
real-time feedback control for the biped. We have installed
both heel and toe force-moment sensors with the goal of
detecting, in real time, if the gait is not progressing as
planned. This force-based method of feedback also has the
added advantage of distinguishing not only whether the
machine is falling, but also the cause of the failure on
complex terrain. Specifically, force feedback could be used
to determine if the foot is slipping, avalanching the material,
or hitting an unexpected bump, and then the robot adjust the
joint kinematics accordingly in order to recover.

Another aspect that we are currently exploring is that
the actual commanded distance does not always equate to
traveled distance on a slope of granular material (Fig. 9).
After inspection of videos of the foot-substrate interaction
and flow, we hypothesize that this is due to slippage during
the DSP, in which the robot is stable, but still slides incre-
mentally backward as it positions its second foot. This is
seen in Fig. 10.

VI. CONCLUSION

Through this study, we have examined the process of
design, implementation and testing of a gait generation
approach in which biped robots can be made to walk up
a sandy slope. We introduced a robotic walking system
and tested it using systematically determined parameters
that successfully walked for a certain slope angle. We then
related the kinematic parameters, particularly step length and
CoM height, as an interpolated function of the slope angle

itself, in order to traverse an uphill path of granular terrain.
We found that the biped robot had the most success with
the interpolated gait parameters being used as a result of
sensing the slope angle. We further observed that as the
slope intensity increases, the robustness of these gaits to
perturbations significantly decreases. We hope to build upon
these findings to improve the gait sensitivity through the use

2 4 6 8 10
Slope Angle (degrees)

0

5

10

D
is

ta
nc

e 
pe

r 
ga

it 
cy

cl
e 

(c
m

)

2 4 6 8 10
Slope Angle (degrees)

0

20

40

60

80

100

%
 o

f 
St

ep
 L

 L
os

t t
o 

Sl
ip

Actual Distance (cm)

Expected Distance (cm)

Percentage Slip

Fig. 9: Graph showing the actual and commanded distance for slope
angles between 2◦ and 10◦.This allows us to better understand and
characterize the slipping (backward motion of the robot foot due to
sliding on the granular surface) of the robot for each slope angle.
As can be seen, the robot slips more as the slope becomes steeper
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(a)

(d)

(c)

(b)

t = 0s

Δt = 0.134s

Δt = 0.268s

Δt = 0.402s

Fig. 10: A zoomed in profile of the foot slip during walking on a
slope of granular material, where the dashed lines signify the back
of the robot foot, the orange circles mark the current position of
the ankle joint, and the white circles mark the cumulative positions
for the displayed frames. In (a), the foot makes initial contact for
a DSP with the sandy slope. In (b), the back foot begins to slide
backward, instead of staying fixed on the ground as expected. in
(c), the foot has arrived at its furthest position, and the robot begins
another SSP as seen in (d).

of real-time feedback control and plantar force sensing.

APPENDIX

Supplementary footage for this experimental study may be
found on the CRAB Lab Biped Walking Channel
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