
Supplementary Materials1

S1. Vehicle Dynamics2

The dynamics of the vehicle on an incline with slope γ, which is a localized representation3

of substrate under the vehicle helps explain the acceleration’s dependence on the head-4

ing θ and local tilting angle γ (Fig. S1a) in experiments. On the incline, we denote the5

direction along the gravity as ∥ and the direction perpendicular to it as ⊥ so that the6

acceleration from the gravity field is ag⊥ = 0,∼ ag∥ = g sin γ (Fig. S1b). Considering this7

incline as a localized picture of the vehicle’s immediate substrate, here ⊥̂ direction stands8

for the φ̂ and ∥̂ direction stands for the r̂.9
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Figure S1: Vehicle dynamics of the robotic vehicle. (a) Modelling the dynamics of the vehicle on a slope with incline
angle equalled to its current tilt γ. (b) The magnitude of the acceleration changes with the heading angle θ and vanishes
when going along the gradient of the incline. (c) The force diagram of the vehicle.

Since the friction on the rolling caster is much smaller than the other friction forces, the11

vehicle rotates about the middle point of the wheel axis, M . The torque about M consists12
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of the frictions on the two wheels and the caster, as well as the gravity component in the13

plane. Since the two wheels are connected to a differential drive, the torques generated14

by the friction parallel to the wheel fL∥, fR∥ are of same magnitude and opposite signs15

and therefore cancelled out. The torques generated by the friction perpendicular to the16

wheel are zero since the forces pass through M .17

The non-zero torques left with us are the one generated by the gravity component in18

the plane and the friction from the caster fc:19

τ =
(
∆B î+ Lc ĵ

)
×

mg sin γ(− sin θ î− cos θ ĵ) + L ĵ × fc⊥ î (1)

= (mg sin γ (−∆B cos θ + Lc sin θ)− fc⊥L) k̂ (2)

where ∆B ≡ 1
2
(B2 −B1).20

The moment of inertia of the vehicle with respect to M is I = Ivehicle +m(L2 +∆B2)21

where we approximate Ivehicle = 1
2
mR2

v with Rv being the radius of the vehicle since22

the mass distribution is quite homogeneous. Therefore the magnitude of the angular23

acceleration (β = τ · k̂/I) and the acceleration of the center of mass on the incline is24

aincline =
∣∣∣Lc ĵ +∆B î

∣∣∣ · β (3)

≈ Lc ·
τ · k̂
I

(4)

=
mg sin γ(Lc sin θ −∆B cos θ)− fcL

1
2
mR2

v +mL2
c +m∆B2

Lc (5)

For the ideal case that the center of mass is not biased to the left or right so that25

B1 = B2, the acceleration is26

aincline =
mgLc sin γ sin θ − fcL

1
2
mR2

v +mL2
c

Lc

=
L2
c

1
2
R2

v + L2
c

g sin γ sin θ − fcL
1
2
mR2

v +mL2
c

(6)
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When θ = π/2 and fc being very small since this is a rolling friction, the acceleration27

projected onto the horizontal plane is28

a(θ = π/2) = aincline(θ = π/2) cos γ

≈ L2
c

1
2
R2

v + L2
c

g sin γ cos γ (7)

The actual numbers in the experiment Rv = 5 cm, Lc ≈ 1 cm give the theoretical29

prediction30

atheo(θ = π/2) ≈ 0.074 g sin γ cos γ (8)

which is quite close to the experimental measurement31

aexpt(θ = π/2) = (0.073± 0.001) g sin γ cos γ (9)

@ 𝑟 = 0.3m @ 𝑟 = 0.5m
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Figure S2: Acceleration at different radii. The shading colored in yellow, red and blue are the magnitude a, and
the azimuthal, radial components aφ, ar of the acceleration respectively. The solid lines and shading in the figures denote
the mean and standard deviation over 238 experiments. The black lines are the theory a = k(r) · sin θ, ar = −a sin θ, and
aφ = a cos θ where k(r) takes the mean value shown in Fig.3c in the main text.
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In reality, there is always a small bias between B1 and B2, this small correction from32

the CoM (center of mass) offset that breaks the symmetry of acceleration with respect to33

the heading gives the attraction to the circular orbit and will is discussed in Section S3.34

This bias is35

abias = −g sin γ cos θ
Lc∆B

1
2
R2 + L2

c +∆B2
(10)

where ∆B can be measured by weighing the normal force on the left and right wheels36

and given by37

∆B =
Lw

2

NR −NL

NR +NL

(11)

where NL, NR are the normal forces on the two wheels and Lw = 6 cm. For an imbalance38

of (NR − NL)/(NR + NL) ≈ 20 % measured from experiment, it can be inferred that39

∆B ≈ 0.6 cm. Thus, the maximum bias (θ = 0◦, 180◦) when driving on a typical local40

slope of γ = 10◦ is abias = 0.074 m/s2, which is about 40 % of the maximum magnitude of41

the acceleration in the system. Fig.S3 shows how this bias causes the slight dependence42

on θ.43
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Figure S3: Plots of k as a function of r for various values of θ using a/ sin θ. The gray shaded regions refer to regions
which are forbidden due to steric exclusion.
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S2. Transient Dynamics of a Vehicle with Slight Chirality44

S2.1 Result45

The transient behavior of some trajectories that decay into circular orbits is caused by46

the slight asymmetry in the mechanical structure that the center of mass (CoM) deviates47

slightly from the center-line. As shown in Section S1, the acceleration magnitude |a| for48

a vehicle with slight asymmetry with respect to the heading is given by49

|a| = k(r) · (sin θ + ϵ · cos θ) (12)

where ϵ = −∆B
Lc

increases with the CoM’s deviation from the center-line being ∆B.50

This leads to the polar equation of the trajectory51

r,φφ =
2r2,φ
r

+ r − k̃(r) · (r2 + r2,φ)

−ϵ · k̃(r) · (r,φr +
r3,φ
r
) (13)

where k̃ ≡ k/v2. Detailed derivation can be found in S2.2.52

Let r = rc + ρ where ρ is the perturbation and rc is the radius of the circular orbit53

that k(rc) = v2/rc. After discarding the O(ρ2) terms, the differential equation is reduced54

to55

ρ,φφ = −(1 + rck
′
c/kc)ρ− ϵρ,φ (14)

where kc ≡ k(rc), k
′
c ≡ k′(rc).56

The solution to this damped oscillator gives the solution as57

ρ(φ) = ρ(0) cos
(√

1 + rck′
c/kc − (ϵ/2)2φ

)
e−ϵφ/2 (15)

with an exponentially decaying envelope with a half-life (2 log 2)/ϵ that degrades with the58

bias; that is, the larger the imperfection is, the faster the trajectory is attracted a circular59

orbit.60
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On the other hand, when the vehicle has an acceleration bias towards the orbit di-61

rection, ϵ will be negative, then ρ will expand and leads the orbit to either crash to the62

center or escape from the membrane. From this example with clockwise trajectory, we see63

that the orbit is attracted to a circular orbit when ϵ ∝ (B2 − B1) > 0, that is when the64

CoM is biased to the left wheel. The data listed in Section S1 shows an estimate ϵ ≈ 0.5,65

indicating a half life of (2 log 2)/0.5 ≈ 3. This qualitatively matches with our experimen-66

tal observation of the transient orbits when the vehicle tested on a leveled ground does67

not drive sufficiently straight. We posit the quantitative difference may come from the68

inaccuracy of the ∆B and Lc estimate.69

In summary, a counterclockwise (clockwise) orbit will get attracted to a circular orbit70

when the CoM is biased to the right (left) while the eccentricity increases to escape or71

crash when the CoM is biased to the left (right).72

73

2.2 Derivation74

We consider a slightly simpler case where the membrane is rather flat that Ψ2 = 1 +

(∂z/∂r)2 ≈ 1. The acceleration components in radial and azimuthal directions are given

by Eqs.1, 2 in the main text as{
rφ̈+ 2ṙφ̇ = aφ = f (16a)

r̈ − rφ̇2 = ar = −f · tan θ (16b)

where f = k(r) · (sin θ + ϵ cos θ) cos θ for a vehicle with bias ϵ.75

The definition of the heading θ gives76

tan θ ≡ vφ
vr

=
rφ̇

ṙ
. (17)

Using φ̇ = ṙ tan θ/r, we get the time derivatives of azimuth φ as77

φ̇ =
ṙ tan θ

r
, φ̈ =

r̈ tan θ

r
+

ṙθ̇ sec2 θ

r
− ṙ2 tan θ

r2
. (18)
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Substitute the φ̇ and φ̈ in (16) with (18) and eliminate r̈ by (16a)-(16b)· tan θ, we have78

79

ṙθ̇ +
ṙ2

r
tan θ = f. (19)

Consider the radial speed as the velocity’s projection on the radial direction ṙ = v·cos θ,

we arrive at the vector field description:
ṙ = v · cos θ (20a)

θ̇ =
f(r, θ)

v · cos θ
− v · sin θ

r
. (20b)

Plug in f = k(r) · (sin θ + ϵ cos θ) cos θ, we have{
ṙ = v · cos θ (21a)

θ̇ = (k/v − v/r) sin θ + (k/v)ϵ cos θ. (21b)

Divide (21a) by (21b), we have80

dr

dθ
=

v · cos θ
(k(r)/v − v/r + (k(r)/v)ϵ cos θ) · sin θ

. (22)

As we want r to be a function of the azimuth φ, we convert all θ to φ. We use81

the definition of heading again tan θ = rφ̇/ṙ = (rdφ/dt)/(dr/dt) = rdφ/dr = r/r,φ,82

sin θ = r/
√
r2 + r2,φ, and cos θ = r,φ/

√
r2 + r2,φ. The left hand side of (22) can thus be83

converted to84

LHS =
dr

dθ
=

1

θr
=

1
d(arctan (r/r,φ))

d(r/r,φ)
· d(r/r,φ)

dr

=
1

[1 + (r/r,φ)2]
−1 ·

[
1
r,φ

− r·r,φφ

r3,φ

] (23)

The right hand side can be converted to85

RHS =
r,φ

(k̃ − 1/r) · r + ϵk̃r,φ
. (24)

where k̃(r) ≡ k(r)/v2.86

Equate the LHS (23) and the RHS (24), we finally arrive at87

r,φφ =
2r2,φ
r

+ r − k̃(r) · (r2 + r2,φ)− ϵ · k̃(r) · (r,φr +
r3,φ
r
). (25)

88
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S3. Trajectory resulting from active vehicle deviates from spatial-89

only geodesics90

To measure the spatial-only trajectory, we let the left and right wheel speed of the vehicle91

be the same. The spatial-only trajectory (blue) enabled by the same left and right wheel92

speeds is much straighter than that of an active vehicle responding the local gradient93

(red).94

Figure S4: Comparison of the trajectories of the vehicle on the membrane when differential mechanism is applied and
disabled. To disable the differential mechanism so that the two wheels are rigidly connected, the gears in the differential
are glued.
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S4. Conserved quantities95

The metric ds2 = −α2dt2 + Φ2(Ψ2dr2 + r2dφ2) gives96

−1 = −α2̊t2 + Φ2(Ψ2r̊2 + r2φ̊2) (26)

where dq/dλ ≡ q̊ and we specify the affine parameter λ to be s. To convert the q̊ to q̇,97

we use t̊ = E/α2 and φ̊ = L/Φ2r2 from the conserved quantities in geodesic equations (see98

‘Robophysical modeling of spacetime dynamics (arXiv:2202.04835)’ for details). Using99

t̊ = E/α2 again in r̊, we have r̊ = dr/dλ = (dr/dt)(dt/dλ) = ṙ̊t = (E/α2)ṙ. Plug these100

into Eq.26, we have101

−1 = −E2

α2
+ Φ2Ψ2E

2ṙ2

α4
+

L2

Φ2r2
(27)

Multiply both sides with −α2/E2 and rearrange the terms, we arrive at102

1 =
Φ2

α2
Ψ2ṙ2 +

1

r2
α2

Φ2

L2

E2
+

α2

E2
(28)

which leads to Eq.4 in the main text.103

To show the maximum of ℓ is obtained at r0, we plug the derived metric into Eq.??,??,104

ℓ ≡ L

E
= e−K(r0)/v2r0 · v (29)

The maximum of ℓ is obtained at r0 that105

∂ℓ

∂r0
= e−K(r0)/v2

(
1− r0k(r0)

v2

)
= 0, (30)

showing r0 coincides with the circular orbit radius rc such that k(rc) = v2/rc.106
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S5. Generalization from axi-symmetric substrate to general sub-107

strate108

We construct the general model by viewing the terrain gradient in the axi-symmetric case109

as an arbitrary terrain gradient. The following table shows the comparison between the110

special case with axi-symmetry and the general case.111

𝜃
𝒗

𝒂
Ƹ𝑟ො𝜑 𝛾

𝑎𝜑 = 𝑎 cos 𝜃

𝑎𝑟 = −𝑎 sin 𝜃
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sin 𝜃 = ො𝒓 × ෝ𝒗 ⋅ Ƹ𝑧
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𝒂 ො𝑥
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𝒗

𝒗 = 𝑣 (sin 𝜃 , cos 𝜃)′ 𝒗 = ( ሶ𝑥, ሶ𝑦)′

where where

Axi-symmetric General

Figure S5: Generalization of the vehicle dynamics on an arbitrary terrain.

We construct the general dynamics by making analogy such that the axi-symmetric112

case is a special case of the general case. The analogies can be found in Fig.S5.113

If we plug the generalized direction and magnitude into the acceleration components,114

we get115
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ẍ = −a
ẏ

v
(31)

= k sin θ
ẏ

v
(32)

= k(d̂× v̂) · ẑ ẏ

v
(33)

= Cg|∇z|
(

∇z

|∇z|
× v̂

)
· ẑ ẏ

v
(34)

= Cg(∇z × v

v
) · ẑ ẏ

v
(35)

=
Cg

v2
(z,xẏ − z,yẋ)ẏ (36)

= C g ẏ (dxẏ − dyẋ)/v
2 (37)

Similarly, we have ÿ = −C g ẋ (dxẏ − dyẋ)/v
2.116

In both cases, the acceleration magnitude vanishes when the velocity us along the117

radial (gradient) direction and the acceleration direction is perpendicular to the velocity.118
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S6. Membrane Measurement119

S6.1 Membrane constant120

To model the membrane deformation, we consider a free circular membrane with radius R121

only deformed by its self weight and pressed by a cap in the center with depth D and cap122

radius R0 < R. When the load from self weight is uniform, the height of the membrane123

z follows124

∆Z = λ−1 (38)

where λ absorbed the elasticity and the mass density.125

Applying the axi-symmetry (∂Z/∂φ = 0) and boundary conditions Z(R) = 0, Z(R0) =126

−D for a membrane without a load such as the robotic vehicle, the general solution to a127

membrane deformed by only self weight is128

Z(r) =
1

4λ
r2 + C1 log r + C2 (39)

where129

C1 =
D − 1

4λ
(R2 −R2

0)

log (R/R0)
, (40)

C2 =
1
4λ
(R2 logR0 −R2

0 logR)−D logR

log (R/R0)
(41)

0

-0.1

-0.2

𝑧
(m

)

0 0.6 1.2 0.6 1.2 0.6 1.2
𝑟 (m) 𝑟 (m) 𝑟 (m)

𝜆 = 6.5 m 𝜆 = 10.2 m𝜆 = 3.7 m

Figure S6: Membrane constant measurement: The black lines show the radial profiles of the free membrane from
Poisson equation Eq.39. The colored lines show the measurement from experiments.
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We measured the cross sections of the membrane with various central depressions D’s130

and compare them with solution Eq.39 for various λ. The value of λ is chosen such that131

the solutions match with experiments the best. In our setup, λ is measured to be 6.5 m132

(Fig.S6).133

S6.2 Membrane isotropy134

Ideally, the height of the membrane at a particular radius should be the same for any135

azimuthal angle in terms of the axi-symmetry. To understand how the membrane deviates136

from the ideal, the variation of this height is evaluated with the data taken from the137

Optitrack cameras for three different central depressions. The variation is found to be138

smaller than 5% of the central depression.

(a)

(b)

Figure S7: Shapes of the membrane with different central depressions. (a) The perspective views of the membrane
profile measured from the optical tracking system. (b) The red curves show the heights averaged over the azimuthal angles.

139
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S7. Analytic solution to the membrane140

As shown in the previous section, the deformation of the membrane by its self weight can141

be well characterized by ∆Z = λ−1. To model the additional load from the vehicles besides142

the weight of the membrane itself, we evaluate the area density of vehicle and scaled it143

by that of the membrane so that ∆Z = λ−1(1 + P̃ ) with P̃ = σv/σ where σv and σ are144

the density of the vehicle (≈ 20, 000 g/m2) and the membrane (137 g/m2) respectively.145

For simplicity, we assume the load is a uniform distribution on a disc centered at the ith146

vehicle’s position ri and with the radius of the vehicle Rv so that σv,i =
mi

πR2
v
1(r ∈ Ωi) and147

σv =
∑

i σv,i where Ωi = {r : |r− ri| < Rv}.148

To solve the Poisson equation, we integrate the Green function G(r, s) of Poisson149

equation with the source.150

λZ(r) =

∫
G(r, s)(1 + P̃ (s))ds2 (42)

=

∫
G(r, s)ds2 +

1

σ

∑
i

∫
Ωi

G(r, s)σv,i(s)ds
2 (43)

≡ I1 + I2 (44)

where the Green function on a disc with radius R is151

G(r, s) =
1

2π
log |r− s|

− 1

2π
log

(
|s|
R

·
∣∣∣∣r−R2 s

|s|2

∣∣∣∣) (45)

G(r,0) =
1

2π
log |r| − 1

2π
logR (46)

Let us consider a field point that is not covered by the vehicles r /∈ ∪iΩi. I1 is the152

solution to the case with uniform load that I1 = 1
4
(|r|2 − R2). For I2, the source is153
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effectively a point source since the field point is outside the source, so154

I2 =
1

σ

∑
i

∫
Ωi

G(r, s)
mi

πR2
v

πR2
vδ(s− ri)ds

2 (47)

=
1

σ

∑
i

miG(r, ri) (48)

Up till so far, we have solved the shape of the membrane Z(r). Next, we evaluate the155

height of the ith vehicle. Since the vehicle is not a point object, we average the membrane156

height Z on the rim of the vehicle to approximate the height of the vehicle zi.157

zi = ⟨Z⟩∂Ωi
(49)

λzi = ⟨I1 + I2⟩ = ⟨I1⟩+ ⟨I2⟩ (50)

⟨I1⟩ is contributed by the self weight of the entire membrane so that we approximate158

it by just the value at the center of the vehicle ri: ⟨I1⟩ = 1
4
(|ri|2 −R2).159

For ⟨I2⟩, there are two different types of contributions. The first ones are the patches160

of domain from the vehicles other than the ith vehicle, the one of concern that contribute161

as far field. The second type is the contribution from the load of vehicle i itself.162

For the first type, we still use the point source approximation:163

⟨I2,j ̸=i⟩ =
mj

σ
G(ri, rj) (51)

For the second type:164

⟨I2,i⟩ =
mi

σ
⟨G(r, ri)⟩r∈Ωi

(52)

=
mi

2πσ

(
⟨log |r− ri|⟩ −

〈
log

(
|ri|
R

·
∣∣∣∣r−R2 ri

|ri|2

∣∣∣∣)〉)
=

mi

2πσ

(
logRv − log

(
|ri|
R

·
∣∣∣∣ri −R2 ri

|ri|2

∣∣∣∣))
=

mi

2πσ
log

(
RvR

R2 − |ri|2

)
(53)
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Piecing all these terms together, we arrive at the z position of the ith vehicle is165

2πλzi =
π

2
(|ri|2 −R2) +

mi

σ
log

(
RvR

R2 − |ri|2

)
+

1

σ

∑
j ̸=i

mj

(
log

|ri − rj|
|ri − r′j|

− log
|rj|
R

)
(54)

where r′ = (R/|r|)2r is conventionally regarded as the position of the image charge.166

rj’s are the positions of the other vehicles.167

𝑧 𝑡
ℎ
𝑒
𝑜
−
𝑧 𝐹

𝐸
𝑀

𝑧 𝐹
𝐸
𝑀

(m)

Figure S8: Numerical verification of the analytical solution: We show a test with the blue vehicle put at different
y positions while the x position is fixed (0.2 m). The solid blue line shows the membrane shape and the dotted line shows
the vertical position of the vehicle z when placed at different positions. The bottom panel shows the relative error of z
between the analytical (Eq.54) and numerical (FEM) solution.

Despite the fact that some approximations are made, the analytical solution matches168

with the numerical result (FEM) with a relative error smaller than 10−3 (Fig.S8).169
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S8. Dynamics of two vehicles with the same mass170

Figure S9: Dynamics of two vehicles with the same mass (a) Trajectories of vehicles with the same mass started
at different initial conditions. (b) The relative distance of the two vehicles in (a).
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S9. Supplementary movies171

Movie S1: Trajectory of the heavy car (200 gr.) moving on elastic172

membrane: Circular orbit173

A typical circular orbit: A video of a robotic vehicle driving on an elastic membrane174

with a central depression of 9.6 cm. Instantaneous velocity and radius (r) are marked with175

red and green arrows, respectively. The heading angle is the angle between the velocity176

and radius.177

Movie S2: Trajectory of the heavy car (200 gr.) moving on elastic178

membrane: Retrograde precessing orbit179

A typical precessing orbit (retrograde): A video of a robotic vehicle driving on an180

elastic membrane with a central depression of 9.6 cm. Instantaneous velocity and radius181

(r) are marked with red and green arrows, respectively. The tracking shows that the apsis182

of the orbit is rotating in the opposite direction of the orbit.183

Movie S3: Trajectory of the light car (45 gr.) moving on elastic184

membrane: Prograde precessing orbit185

A typical precession orbit (prograde): The lighter vehicle’s orbit undergoes a pro-186

grade precession, i.e. the vehicle and the periapsis rotate clockwise. The mass of the187

vehicle is about one quarter the mass of the vehicle used in Movie S1 and S2. As pre-188

dicted by the theory, a radial attraction k(r) decreasing with r enabled by a lighter vehicle189

leads to the precession with the same sign of orbit, as opposed to the precession in Movie190

S2.191
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Movie S4: Deformation-only induced motion192

In this movie, the membrane deformation is created by a human-controlled meter stick.193

The motion of the vehicle re-oriented by this deformation shows the deformation itself194

can act as a force to affect the motion of an object on the membrane.195

Movie S5: Deformation-induced merger196

In the first part, both panels show the trajectories of two vehicles moving on the mem-197

brane at the same time. The comparison is made regarding the mass ratio between the198

two vehicles: when the leading vehicle is heavy enough (m21 = 1.37), the two vehicles199

eventually merge while the m21 = 1.00 fails to merge. In the second part, the video on200

the right panel shows the virtual superimposition of independent runs of the two vehicles201

with the same mass ratio as the left panel shows that the substrate-mediated interaction202

is indeed making the two vehicles interact.203

Movie S6: Controlling speed with tilt angle to avoid collisions204

Each video shows the trajectories of the IMU-controlled vehicle (white chassis, solid line)205

and uncontrolled vehicle (gray chassis, dashed line) when a particular control magnitude206

A = 0, 2, 4, 8 is used.207

Movie S7: Controlling speed with tilt angle to avoid collisions208

(Simulations of 5 vehicles)209

The movie shows the simulations of 5 vehicles moving on the same membrane as in210

experiments. Starting from the same initial condition, the vehicles applied with speed211

control scheme avoid from collisions while the ones without merge quickly. More details212

can be found in Fig.9 of the main text and the corresponding section.213
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