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Systems consisting of spheres rolling on elastic membranes have been used as educational tools to
introduce a core conceptual idea of General Relativity (GR): how curvature guides the movement
of matter. However, previous studies have revealed that such schemes cannot accurately represent
relativistic dynamics in the laboratory. Dissipative forces cause the initially GR-like dynamics to be
transient and consequently restrict experimental study to only the beginnings of trajectories; dom-
inance of Earth’s gravity forbids the difference between spatial and temporal spacetime curvatures.
Here by developing a mapping between dynamics of a wheeled vehicle on a spandex membrane,
we demonstrate that an active object that can prescribe its speed can not only obtain steady-state
orbits, but also use the additional parameters such as speed to tune the orbits towards relativistic
dynamics. Our mapping demonstrates how activity mixes space and time in a metric, shows how
active particles do not necessarily follow geodesics in the real space but instead follow geodesics in
a fiducial spacetime. The mapping further reveals how parameters such as the membrane elasticity
and instantaneous speed allow programming a desired spacetime such as the Schwarzschild metric
near a non-rotating black hole. Our mapping and framework point the way to the possibility to
create a robophysical analog gravity system in the laboratory at low cost and provide insights into
active matter in deformable environments and robot exploration in complex landscapes.

Introduction. Systems consisting of spheres rolling on
curved surfaces [1, 2] are a well known non-hydrodynamic
analog to gravity. In such readily accessible systems,
researchers have made intriguing connections to gravity
such as Kepler-like laws, precession, and the stability of
orbits. However, their studies have also found that these
systems do not exactly mimic astrophysical gravity. For
instance, the scaling between the period and radius is
T ∝ r2/3 [3] instead of the T ∝ r3/2 in Kepler’s law.
Additionally, the sphere on the elastic is passive; as a
result, not only do trajectories decay quickly, but also
the tunable parameters are limited to only the boundary
conditions and the mass of the marble.

We hypothesized that making the object “active” – an
internally driven robot – would allow mechanical systems
to better model GR in part because of the ability to study
long time steady states. We further reasoned that the
programmability and sensory capabilities of increasingly
low-cost and powerful “robophysical” models [4, 5] could
allow tuning of parameters that lead to inexact mimics of
GR in passive systems. Indeed, our recent work [6] built a
framework to understand how the field-mediated dynam-
ics of active agents on flexible membranes demonstrate in
the words of Wheeler’s famous aphorism: “matter tells
spacetime how to curve and spacetime tells matter how
to move” [7]. In particular, we show that the spacetime
followed by an active object can be tuned by varying sys-
tem parameters such as the membrane elasticity and the
speed of the object.

Here we amplify on and extend the scheme introduced
in [6] and demonstrate how the activity can lead to
an exact mapping to GR. We first show how an active
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FIG. 1. A passive object versus an active object on
a membrane. While a passive marble is only subjected to
friction and Earth’s gravity that leads to energy dissipation
as F⃗ · v⃗ ∝ a⃗ · v⃗ < 0, an active object with an additional drive
force can keep steady-state motion with prescribed speed as
a⃗ · v⃗ = 0.

object with prescribed speed on an elastic membrane
produces longer and more controllable trajectories
compared with a passive marble. We then deduce the
spacetime it follows, and subsequently show one can
program the spacetime with a Schwarzschild orbit as an
example. We posit that a future robot car controlled
in the way we describe could mechanically mimic black
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holes dynamics in the laboratory, at low cost and with
strong pedagogical value.

An active object with fixed speed on an elastic mem-
brane. We first consider an active object prescribed with
a constant speed on a circular elastic membrane. Later,
we will discuss the general case of time-varying speed. To
prevent the object from simply following a near-straight-
line spatial geodesic with a spatial curvature

ds2 = Ψ2dr2 + r2dφ2 (1)

where Ψ2 = 1 + z′2 and prime denotes the derivative
with respect to r, we want the object to turn according
to the instantaneous local curvature. To do so, we propel
a vehicle with a differential drive that drives the center
of mass of the vehicle with a prescribed speed while the
speed difference between the two wheels depends on the
local slope.

We first compare the trajectories of the active vehicle
with those of a passive marble having the same mass as
the vehicle. We released them with the same velocity
on the same membrane individually. The speeds of the
vehicle and marble are set by adjusting the voltage on
the motor and the releasing height on the guiding track
(Fig.2a) respectively. The trajectories collected from ex-
periments showed that the active vehicle produced tra-
jectories much more persistent (Fig.2c) than the passive
marble which barely finished the first revolution (Fig.2b).

To understand these orbits, we follow the models in
[6, 8]. While a passive marble dissipates energy as a⃗·v⃗ < 0
(Fig. 1), an active object can conserve its speed when
the driving force dynamically balances with the friction
and exactly makes a⃗ · v⃗ = 0 (Fig.3a). Therefore, the
acceleration for a constant-speed motion can be written
as

aφ
r

= φ̈+
2 ṙ φ̇

r
=

a

r
cos θ (2)

ar = r̈ − r φ̇2

Ψ2
+

Ψ′

Ψ
ṙ2 = − a

Ψ
sin θ . (3)

where θ is the heading angle between the radial direc-
tion and the velocity on an isotropic circular membrane.

Though the speed is constant, the change of the veloc-
ity (the scalar acceleration a) depends on the local slope
γ (Fig.1). Since γ varies with radius (position) r, a is
also a function of r. Additionally, a should also depend
on velocity in general. However, given that the velocity
has constant magnitude as the speed is constant, this de-
pendence is reduced to one degree of freedom. For our
convenience, we chose the direction of the velocity, θ. If
we consider an active object without chiral bias such that
its trajectory has a mirror symmetry, the dependence of
a (thus aφ) on θ should be anti-symmetric about θ = 0,
as otherwise the clockwise (θ(t = 0) = θ0) and counter-
clockwise (θ(t = 0) = −θ0) trajectories (Fig.3b) will not
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FIG. 2. Trajectories of passive and active objects on an
elastic membrane. (a) Sample perspective views of an ac-
tive vehicle and a passive marble moving on a Spandex mem-
brane. The time interval between two consecutive snapshots
is 0.17 s. (b) The experimental trajectories, radius evolution,
and speed evolution of the active (red) and the passive (blue)
objects with the same mass (150 g) on the same membrane
started from the same initial position and velocity on the same
membrane. (c) The simulation counterparts of (b).

be mirror reflections with each other. A first-order ap-
proximation with this symmetry could be a ∝ k(r) sin θ
where the k(r) is the radial dependence due to the local
slope γ(r) that changes with radius. One could imagine
k increases with the local slope γ. The detail relation be-
tween k and γ would depend on the mechanical structure
of the active object, but one could always Taylor expand
this dependence. For preliminary study, here we assume
linear dependence k = Cγ.

While an active object follows equations Eqs. 2, 3, a
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FIG. 3. Dynamics of the active vehicle. (a) The accel-
eration of an active vehicle is perpendicular to its velocity v⃗.
(b) A non-chiral vehicle with a mirror-reflected initial velocity
P v⃗ will produce a mirror-reflected trajectory.

passive marble rolling on the membrane without slipping
has a Lagrangian [8]

L =
7

10
m
(
(1 + z′(r)2)ṙ2 + r2φ̇2

)
−mgz(r). (4)

If we consider the dissipation function to be an effective
Coulomb rolling friction D = −fv (See Sec. A of the

Appendix) where v =
√

ṙ2 + r2φ̇2 and f = µmg, we ar-
rive at a more realistic model by plugging the dissipation
into the right hand side of the Euler-Lagrange equation
d
dt (

∂L
∂q̇ )−

∂L
∂q = −∂D

∂q̇ where q are r and φ.

(1 + z′2)r̈ + z′z′′ṙ2 − rφ̇2 +
5

7
gz′ = −5

7
µg

ṙ

v
(5)

r2φ̈+ 2rṙφ̇ = −5

7
µg

r2φ̇

v
(6)

The left hand sides of the above equations are the same
as the dynamical equations in [1] while the right hand
sides correspond to the friction force.

Integration of the above models for the active vehicle
and passive marble (Fig.2c) shows qualitative agreement
with the experiments. Fig.2c shows the integration of
the active dynamics Eqs. 2, 3 and the passive dynamics
Eqs. 5, 6 on the same membrane measured from an
experiment when the object started from the same
position and velocity. The physical parameters are mea-
sured from experiments. The acceleration dependence
on radius k for the active vehicle uses k = Cγ = C∂rz
where z(r) is measured from the height of the static
vehicle placed at different radii r. The proportionality C
uses the ratio between acceleration and the gradient ∂rz
at the radius close to the edge of the elastic membrane.
We probe the friction coefficient for the passive marble
by measuring the dissipation of mechanical energy in a
designed experiment (see Sec. A of the appendix).

The spacetime of the orbits. To functionally under-
stand the feature of the orbit of the active object so that
we are able to program it, the spacetime of these orbits

could provide us with insights. If we recognize similarity
between the resultant spacetime metric and some known
metrics, then we could understand how the orbital fea-
tures depend on the system parameters.

In principle, the orbital dynamics we wish to map could
be described by a diversity of metrics. But for simplic-
ity, and to make the analogy with GR in the weak field
limit, given the axi-symmetry of the system, we propose
a metric of the form

ds2 = −α2dt2 +Φ2(Ψ2dr2 + r2dφ2) (7)

with α = α(r), Φ = Φ(r),Ψ2 = 1 + z′2. Here, the el-
ements of the metric gαβ are zero except gtt = −α2,
grr = Φ2Ψ2 and gφφ = Φ2r2. Plug the gαβ into
the Christoffel symbols Γµ

αβ in the geodesic equations

˚̊xµ + Γµ
αβ x̊αx̊β = 0, we arrive at

˚̊t+
(α2)′

α2
t̊̊r =

1

α2

(
α2̊t
)◦

= 0 (8)

˚̊φ+
(Φ2 r2)′

Φ2 r2
φ̊r̊ =

1

Φ2 r2
(
Φ2 r2φ̊

)◦
= 0 (9)

˚̊r +
(α2)′

2Φ2Ψ2
t̊2 +

(Φ2Ψ2)′

2Φ2Ψ2
r̊2 − (Φ2r2)′

2Φ2Ψ2
φ̊2 = 0 (10)

with λ as an affine parameter and q̊ = dq/dλ,̊ q̊ =
d2q/dλ2. From Eqs. 8,9, we have that

α2̊t = E = constant, (11)

Φ2r2φ̊ = L = constant, (12)

both a consequence that conservation of energy and an-
gular momentum holds.

With the help of q̊ = (dq/dt)(dt/dλ) = t̊q̇ (see Sec. B
of the appendix for details), the geodesic equations can
be rewritten as

φ̈+
2ṙφ̇

r
=

[
(α2)′

α2
− (Φ2)′

Φ2

]
ṙ φ̇ (13)

r̈ − rφ̇2

Ψ2
+

Ψ′

Ψ
ṙ2 =

[
(α2)′

α2
− (Φ2)′

Φ2

]
ṙ2

+
1

2Φ2Ψ2

[
(Φ2)′v2 − (α2)′

]
(14)

where primes denoting differentiation with respect to r.

Notice that the left hand side of Eqs. 13,14 are the
components of the acceleration, aφ and ar respectively,
in Eqs. 2,3. When we plug cos θ = ṙ/v, sin θ = rφ̇/v and
a = k sin θ into Eqs. 2,3, we have

φ̈+
2 ṙ φ̇

r
=

k

v2
ṙφ̇ (15)

r̈ − r φ̇2

Ψ2
+

Ψ′

Ψ
ṙ2 = − k

Ψ

r2φ̇2

v2
. (16)

Thus, comparing the right hand sides of Eqs. 13,14
and Eqs. 2,3 and noticing ṙ2 + r2φ̇2 = v2 in Eq. 16 yield
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the following relationships between the metric functions
α and Φ in terms of the speed of the vehicle and k.

(α2)′

α2
=

kΨ

v2

[
Φ2v2

α2 − Φ2v2

]
(17)

(Φ2)′

Φ2
=

kΨ

v2

[
2Φ2v2 − α2

α2 − Φ2v2

]
. (18)

Integration of the above equations yields

α2 = − 1

C1v2
+ C2 · e−K/v2

(19)

Φ2 =
α2

v2
+ C1(α

2)2 (20)

where K = K(r) ≡
∫ r

0
k(s)Ψ(s)ds.

To determine the constants, we make use of the nor-
malization condition and the fact that the metric should
be flat at k → 0.

The metric (Eq. 7) gives us normalization condition
−1 = −α2̊t2+Φ2(Ψ2r̊2+r2φ̊2). To exploit this condition,
we want to eliminate the d/dλ in r̊ like Eqs. 11, 12. Using
q̊ = (dq/dt)(dt/dλ) = t̊q̇, Eqs. 11, 12, and the fact that
v2 = r2φ̇2 + ṙ2, we have

r̊2 =

(
E

α2
ṙ

)2

=
E2

(α2)2
1

Ψ2
(v2 − r2φ̇2)

=
E2

(α2)2
1

Ψ2

[
v2 − r2

(
α2

E
φ̊

)2
]

=
E2

(α2)2
1

Ψ2

[
v2 − r2

(
α2

E

L

Φ2r2

)2
]
. (21)

Plug the t̊, r̊, φ̊ derived above into the normalization con-
dition, we now have

−1 = −E2

α2
+

Φ2E2v2

(α2)2
. (22)

Plug in the α2 and Φ2 derived earlier (Eqs. 19,20), we
have

− 1

E2
= C1v

2. (23)

Therefore C1 = − 1
v2E2 .

Another condition to determine the constants is that
when k = 0, the metric is flat. In fact, k(r) = 0 indicates
K(r) =

∫ r

s=0
k(s)Ψ(s) = 0. We set the lower limit of the

integral to zero, without loss of generality, since otherwise
the arbitrary constant will be absorbed by C2. This limit
reduces the metric to

α2
0 = − 1

C1v2
+ C2

Φ2
0 =

α2
0

v2
+ C1(α

2
0)

2

where α0 ≡ limk→0 α and Φ0 ≡ limk→0 Φ.
To satisfy the flatness that α0 = Φ0, we need

α2
0 =

α2
0

v2
+ C1(α

2
0)

2

1 =
1

v2
+ C1(−

1

C1v2
+ C2)

C1C2 = 1. (24)

Plug the conditions Eqs. 23,24 into the metric with
undetermined coefficients Eqs. 19,20, we finally arrive at

α2 = E2(1− v2e−K/v2

) (25)

Φ2 = E2e−K/v2

(1− v2e−K/v2

). (26)

The quantity E is a constant of motion (energy) asso-
ciated with the fact that the metric is time-independent.
The other constant of motion is L (angular momentum)
associated with the metric’s φ-symmetry.
Thus our formulation indeed reveals that the vehicle

does not simply follow spatial geodesics of the membrane
but instead follows geodesics in an emergent spacetime
generated by the global curvature, the local curvature,
the active dynamics, and the differential mechanism. The
resultant dynamics can now be understood as those of a
test particle in a new spacetime where the active fea-
ture of the real particle, such as a persistently controlled
speed, generates a non-splittable effective spacetime for
the test particle (i.e. gtt is not constant). In the lan-
guage of the work by Price [9], the effects of curvature
are now not restricted to space [10]. That is, in general,
the metric function gtt could depend on both the coor-
dinate time (t) as well as the spatial coordinates. For a
static metric (i.e., the metric functions are independent
of time), the spacetime becomes splittable when gtt does
not depend on the spatial coordinates. This leads to only
spatial curvature. It was argued in [9] that the spatial
curvature is different from the spacetime curvature as it
is devoid of gravity, i.e., a free particle initially at rest
will remain at rest.
The essential contribution from active drive is the

persistent response to the local curvature, here partic-
ularly enabled by the controlled constant speed unseen
in passive systems. In fact, when the response of the
turning to the local slope vanishes at the limit v → ∞
such that α2 = Φ2 = E2(1 − v2), the metric Eq. 7 with
components Eqs. 25,26 reduces to a splittable (and flat)
spacetime Eq. 1. On the other hand, when v is finite
and controllable, the active locomotion provides more
flexibility and programmability in fabricating the de-
sired spacetime depicted by GR than the passive agents
studied in the previous works such as the dissipative
marbles [1, 8] rolling on a membrane. For instance, the
conserved quantity directly led from the metric could
show that a k increasing with r makes an orbit have a
precession with a sign opposite to the orbit while a k
decreasing with r makes an orbit have a precession with
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a sign same as the orbit [6].

Programming arbitrary spacetime with speed-varying
active object. The metric Eqs. 25,26 has shown us how
the parameters of the system change the spacetime and
thus the orbit. Now we want to see how we can do the
inverse problem to program the desired spacetime with
the system parameters (e.g., k(r) and v(r)).

In metric Eqs. 25,26, we can tune the speed and mem-
brane elasticity to change the spacetime of the orbits.
However, here the spatial and radial metric are not com-
pletely disentangled yet. To have two degrees of freedom
such that we can indeed program the spacetime arbitrar-
ily, one could introduce another degree of freedom. For
instance, if we allow the speed v to vary with the radius
r (physical instantiation could be achieved by inferring
the radius from the instantaneous tilting angle γ), Eqs.
17, 18 with Ψ2 ≈ 1 give the requirement of mapping as

(α2)′

α2
− (Φ2)′

Φ2
=

v′

v
+

k

v2
(27)

(Φ2)′v2 − (α2)′

2Φ2
= −k. (28)

These two equations above give us the recipe to create
desired spacetime by changing the speed of the vehicle
with radius. For a desired metric with spatial curvature
Φ2(r) and temporal curvature α2(r), we can solve for
the required membrane elasticity and object speed by
plugging in the curvatures into these to equations. The
solution (see Sec. C of the appendix for details) is

v(r)2 =

(∫ r

r1

f(r′) · (α
2)′(r′)

Φ2(r′)
dr′
)
/f(r) (29)

where

f(r) = −e
∫ r
r1

−2
(α2)′(r′)
α2(r′)

+
(Φ2)′(r′)
Φ2(r′)

dr′

. (30)

For instance, if we plug in the Schwarzschild metric
in isotropic coordinates α2(r) = 1 − rs/r,Φ

2(r) = (1 −
rs/r)

−1, we arrive at the prescription for the membrane
elasticity k(r) and active object speed v(r) as shown in
Fig.4a. Analytically,

v(r)2 = rs
(r − rs)

2

r3
+ C

(
r − rs

r

)3

(31)

k(r) =
rs(r − rs)(r + Cr + rs − Crs)

2r4
(32)

where

C =
v20r

3
0

(r0 − rs)3
− rs

r0 − rs
. (33)

a

b

3𝜋𝑟𝑆ℓ
−1

simulation

Theory (small precession)

A 3.1-mm black hole

Δ𝜑𝑝𝑟𝑒𝑐

c

2𝐴

2ℓ

3/2

simulation

FIG. 4. Creating Schwarzschild orbit with speed vary-
ing particle. (a) The speed and membrane elasticity’s de-
pendence on radius to create an Schwarzschild blackhole with
rs = 3.1 mm. The inset shows a precessing orbit with A = 0.3
m by using this prescription. (b) Precession angle |∆φprec| as
a function of inverse latus rectum. (c) The relation between
the orbital period T and the semi major-axis A follows the
Keplar’s law as T ∝ A3/2. Insets in (b) and (c) show the
trajectories around the data points.

Here, v0 is the vehicle speed at r0 as the boundary
condition. One can use the inner radius as r0 for instance.

Simulations using this prescription show features of
Schwarzschild orbit such as the linear dependence of pre-
cession angle in terms of the inverse latus rectum. For
Schwarzschild orbits with small precession, the preces-
sion angle increases with the inverse latus rectum as
∆φprec = 6πG2M/(c2l) = 3πrsℓ

−1 where G is the grav-
itational constant, M is the mass of the star, c is the
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speed of light, and ℓ ≡ A (1 − e2) is the latus rec-
tum. We evaluate the semi major-axis A and the ec-
centricity e using the minimum and maximum radii:
A = (rmax + rmin)/2, e = (rmax − rmin)/(rmax + rmin).
Fig. 4b shows the precession angle ∆φprec as function
of the inverse of the latus rectum ℓ−1 from simulations
given v0 = v(r0 = 0.05m) = 0.225 m/s and rs = 0.0031
m. The curve qualitatively follows the linear relation-
ship, with small deviation from the theory due to the
large precession angle. By changing (r0, v0), we can get
larger angular momenta and thus larger orbits around the
same blackhole. These orbits show a relation between pe-
riod T and semi major-axis A following the Keplar’s law
(Fig.4c).

To achieve this in experiments, a vehicle must actively
vary its speed with radius and a membrane must have a
radial dependence of its elastic modulus. One possible
solution for the vehicle is to attach a tilt sensor to
infer the radius and change the speed. To program the
membrane with radially varying profile k(r) = Cg|∂rz|,
here we consider a membrane with linear elasticity
following the Poisson Equation ∇ · E∇z = P where
P is the unit load from the membrane gravity. One
possible way is to obtain the desired k(r) is to create
an elastic material with a radially varying thickness
P = P (r). Another option is to fabricate a membrane
with a radially varying modulus E = E(r).

Discussion. In this paper, we demonstrated how the
use of an active particle –a robot – moving on an elas-
tic membrane can generate a system which can mimic
dynamics of bodies in arbitrary spacetime. Given the
flexibility in construction and programming vehicles, our
system makes for an attractive target to push toward
a mechanical analog GR system; while superficially our
system resembles the educational tool used to motivate
Einstein’s view of spacetime curvature influencing matter
trajectories [1, 3, 8], unlike such systems which are not
good analogs of GR, the activity allows the dynamics of
the vehicle to be dictated by the curvature of “space-
time”, not just the curvature of space as in splittable
spacetimes (gtt is constant) [9]. Thus we posit that me-
chanical analog “robophysical” [4, 11] systems can com-
plement existing fluid [12, 13], condensed matter [14],
atomic, and optical [15–17] analog gravity systems [18]
given the ability to create infinite types of spacetimes.
Further, we might even generate analogies to wave-like
systems [19–21]; for example, one could increase the
speed of the vehicle to be comparable to disturbance
propagation (such that the membrane would follow the
wave equation).

Beyond its role as a mechanical analog for GR, this
framework could also provide a new perspective to un-
derstand active matter undergoing field-mediated inter-
actions [6, 22]. For instance, the spacetime metric of the
agents’ motion can both guide our choice of parameter

values to alter orbital features like the precession sign
and influence our design of control schemes that accom-
plish tasks like helping multiple agents avoid mergers on
the membrane [6].
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Appendix

A. Probing the effective friction

Although the rolling friction can be complicated and
the dissipation into the membrane could make it even
more complicated, we probe the magnitude of an effective
friction that absorbs all dissipative forces by doing the
following experiment. We release the marble at the rim
of the circular membrane with zero speed and thus zero
kinetic energy. The marble then rolls radially towards
the center, passes through the center, and stops before it
reaches the other end of the diameter due to the effective
rolling friction. Absorbing the loss of mechanical energy
into the dissipation from the effective rolling friction froll
for a distance of ℓ, we arrive at

frollℓ = mg∆h (34)

The measurements from experiment that ℓ = 1.5 m,
∆h = 0.1 m give the effective friction coefficient µ =
froll/mg = ∆h/ℓ = 0.07 ∼ 0.1.

𝐸𝑘 = 0

released

stops

𝐸𝑘 = 0

ℓ

FIG. 5. An experiment to probe the effective friction.

B. Converting derivatives

With the help of q̊ ≡ dq
dλ = dt

dλ
dq
dt and α2̊t = E,Φ2r2φ̊ =

L in Eqs. 11,12, we have

t̊ =
E

α2
(35)

˚̊t =
dt

dλ

d̊t

dt

=
E

α2

d

dt
(
E

α2
)

= −E2(α2)′

(α2)3
ṙ (36)

r̊ =
dt

dλ

dr

dt
=

E

α2
ṙ (37)

˚̊r =
dt

dλ

d̊r

dt

=
E

α2
· d

dt
(
E

α2
ṙ)

=
E2

(α2)2
·
(
− (α2)′

α2
ṙ2 + r̈

)
(38)

φ̊ =
dt

dλ

dφ

dt
=

E

α2
φ̇ (39)

˚̊φ =
dt

dλ

dφ̊

dt

=
E

α2

d

dt
(
E

α2
φ̇)

=
E2

(α2)2
·
(
− (α2)′

α2
ṙφ̇+ φ̈

)
. (40)

C. Programming the metric

By eliminating the k in Eqs. 27,28, we get

MV − V ′ =
(α2)′

Φ2
(41)

where M(r) = 2(α2)′(r)/α2(r) − (Φ2)′(r)/Φ2(r) and
V (r) = v2(r).
We can multiply a function f(r) to both sides of Eq. 41

to make the left hand side exact. Noting (fV )′ = f ′V +
fV ′, we need f ′/f = −M . Therefore,

f(r) = −e
∫ r
r1

−M(r′)dr′
. (42)

With this f , we now have (fV )′ = f (α2)′/Φ2. So,

V (r) =

(∫ r

r1

f(r′) · (α
2)′(r′)

Φ2(r′)
dr′
)
· 1

f(r)
. (43)

By plugging in the Schwarzschild metric in isotropic
coordinates α2(r) = 1 − rs/r,Φ

2(r) = (1 − rs/r)
−1, we

have

f(r) = −e
∫ r
r1

− 3rs
r′(r′−rs)

dr′

= −e(C1+3 log (r/(r−rs)))

= −C2 ·
(

r

r − rs

)3

. (44)
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Therefore,

V (r) =

(∫ r

r1

C2 ·
(

r′

r′ − rs

)3

· (r
′ − rs)rs
r′3

dr′

)
/f(r)

=

(∫ r

r1

C2 ·
rs

(r′ − rs)2
dr′
)
/f(r)

= (−C2
rs

r − rs
+ C3)/(−C2 ·

(
r

r − rs

)3

)

= rs
(r − rs)

2

r3
+ C

(
r − rs

r

)3

(45)

k(r) = − (Φ2)′V − (α2)′

2Φ2

=
(r − rs)rs(r + Cr + rs − Crs)

2r4
. (46)

To program the active object physically, we want to
prescribe the speed v0 at a certain radius (say the inner

radius r0) so that V (r0) = v20 , we need

C =
v20r

3
0

(r0 − rs)3
− rs

r0 − rs
. (47)

Further, a reasonable speed vc at a characteristic orbit
size (say the circular orbit rc) will limit the size of the
Schwarzschild radius rs (the size of the black hole) with
V (rc;rs)

rc
= k(rc).
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