
Savoie et al., Sci. Robot. 4, eaax4316 (2019)     18 September 2019

S C I E N C E  R O B O T I C S  |  R E S E A R C H  A R T I C L E

1 of 10

C O L L E C T I V E  B E H A V I O R

A robot made of robots: Emergent transport 
and control of a smarticle ensemble
William Savoie1, Thomas A. Berrueta2, Zachary Jackson1, Ana Pervan2, Ross Warkentin1, 
Shengkai Li1, Todd D. Murphey2, Kurt Wiesenfeld1, Daniel I. Goldman1*

Robot locomotion is typically generated by coordinated integration of single-purpose components, like actuators, 
sensors, body segments, and limbs. We posit that certain future robots could self-propel using systems in which a 
delineation of components and their interactions is not so clear, becoming robust and flexible entities composed of 
functional components that are redundant and generic and can interact stochastically. Control of such a collective 
becomes a challenge because synthesis techniques typically assume known input-output relationships. To discover 
principles by which such future robots can be built and controlled, we study a model robophysical system: planar 
ensembles of periodically deforming smart, active particles—smarticles. When enclosed, these individually immotile 
robots could collectively diffuse via stochastic mechanical interactions. We show experimentally and theoretically 
that directed drift of such a supersmarticle could be achieved via inactivation of individual smarticles and used 
this phenomenon to generate endogenous phototaxis. By numerically modeling the relationship between smarticle 
activity and transport, we elucidated the role of smarticle deactivation on supersmarticle dynamics from little 
data—a single experimental trial. From this mapping, we demonstrate that the supersmarticle could be exogenously 
steered anywhere in the plane, expanding supersmarticle capabilities while simultaneously enabling decentral-
ized closed-loop control. We suggest that the smarticle model system may aid discovery of principles by which a 
class of future “stochastic” robots can rely on collective internal mechanical interactions to perform tasks.

INTRODUCTION
Self-propulsion (1) is a feature of living and artificial systems across 
scales—from crawling cells to swimming spermatozoa (2), micro- (3) 
and nanoswimmers (4), running cockroaches (5), and robots (6, 7). 
It is generally assumed that self-propelling systems require carefully 
orchestrated integration of many diverse components to perform 
the seemingly simple behavior of spatial translation. Thus, artificial 
locomoting systems typically consist of a central controller, a set of 
actuators and sensors to perform feedback control, and an objective 
function written in terms of individual system states; such designs 
have led to progress in machines that robustly and nearly autonomously 
roll (8), fly (9), and walk (10, 11) in relatively predictable environments.

In contrast to such “deterministically” designed robots, future 
more “stochastically” designed robots could generate self-propulsion 
using systems in which a delineation of components is not so clear, 
such that many redundant and generic elements fluidly interact and 
collaborate to achieve complex tasks (Fig. 1). Although such designs 
are potentially advantageous due to wide system reconfigurability 
and robustness to component damage, it is not yet clear how to build 
such a system to operate in natural environments. There are several 
reasons for this, some of which have been anticipated by insights 
from modular and swarm robotics (12–15), physics of active matter 
(13, 16–21), amorphous computing (22), and engineering of reliable 
systems from unreliable components (23).

For one, future stochastically designed robots (and collectives/
swarms) may contain so many components (members) (24, 25) that 
it might be infeasible to carefully arrange and couple the elements 
to generate coordinated translation or rotation. Further, like in 
crawling cells where locomotion is generated through cytoskeletal 
reconfigurations via shape-changing proteins, individual elements 

may be task-incapable [e.g., unable to move on their own, unlike in 
collective robot locomotion via mechanical rectification of individual 
bristlebots in (26, 27)]. In such situations, the robot’s objective should 
not depend on deterministic interactions between components but 
instead on emergent ensemble-level behaviors (25, 28). Thus, it becomes 
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Fig. 1. Stochastic robotic collectives. Future robots may be composed of compo-
nents whose delineation is neither clear nor deterministic, yet are capable of 
self-propulsion via the expression of ensemble-level behaviors leading to collective 
locomotion. In such a robot, groups of largely generic agents may be able to achieve complex 
goals, as routinely observed in biological collectives.
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a question of leveraging or mitigating the inherent uncertainty of 
internal component interactions to develop reliable control schemes 
of the ensemble.

Traditional control synthesis techniques determine which inputs 
best, and most robustly, enable a system to achieve an objective, 
such as self-propulsion. It can be challenging enough to find control 
inputs that realize a well-defined objective in a deterministic system. 
In the case of a robot composed of robots with highly complex 
interactions between the system and the environment, and no single 
configuration of individual components necessary for the robot to 
achieve locomotion, control synthesis using traditional methods is 
infeasible. The notion that an ensemble may be able to accomplish 
a goal independently of the specification of its individual states is 
incompatible with typical theories of control that assume a central 
control architecture with full state information.

Here, we sought to discover principles by which a collective can 
overcome individual locomotor limitations via opportunistic but 
stochastic mechanical interactions among individuals. Specifically, we 
studied a simplified robophysical (29) model of controllable, smart, 
active particles—smarticles—that are immotile but have mutable 
shape. An enclosed smarticle ensemble—a supersmarticle—however, 
can self-propel diffusively using interactions arising from the shape 
modulation of smarticles. Despite stochastic interactions between 
elements, a supersmarticle is capable of directed motion by selectively 
inactivating its constituents, which we demonstrate by achieving 
endogenously steered phototaxis. To understand the supersmarticle 
diffusion and its dependence on internal mechanical interactions, 
we developed a model based on kinetic theory. To further explore 
the ensemble’s abilities, we introduce a data-driven algorithm that 
enables decentralized control synthesis with respect to ensemble 
properties. Using this algorithm, we modeled supersmarticle dynamics 
and demonstrate that the ensemble is capable of rich locomotion by 
taking advantage of more complex control strategies. We validated 
our algorithm by leading the supersmarticle on a simple path, 
demonstrating that collective locomotors may be reliably controlled 
through their ensemble properties despite being composed of 
stochastically interacting unreliable elements.

RESULTS
Smarticle dynamics
The smarticle’s form (Figs. 1 and 2A and Materials and Methods) 
was inspired by insights from a previous study of rigid, non-active 
“u-particles” (30), which demonstrated how material properties of 
an entangling collective could vary via changes in the shape of its 
constituents. Smarticles, when active, perform a “square gait,” inspired 
by the dynamics of Purcell’s three-link swimmer (31, 32), and depicted 
in Fig. 2B. Outside of a frictional medium [e.g., (31, 32)], when resting 
in an orientation where the links’ axis of rotation is parallel to the 
normal of the surface it rests on, smarticles are incapable of transla-
tion or rotation (Fig. 2C) over hundreds of oscillation cycles. The 
moving links rest above the central link and never interact with the 
surface (movie S1).

Despite their inability to significantly self-propel, an individual 
robotic smarticle’s position and orientation can change as a result of 
a collision, as shown in Fig. 2D. When viewed as an ensemble, a 
“cloud” of self-deforming smarticles may display weak cohesion on 
short time scales, forming a rudimentary collective flocking unit 
(Fig. 3, A and B, and movie S2). That is, unlike single smarticle ex-

periments, we found that the center of mass (CoM) of the cloud could 
diffuse over scales comparable with the size of a smarticle (see fig. S1).

Because of interactions between smarticles, the area fraction φ 
typically decreased over time as in Fig. 3C. Here, φ = nAp/Ac, where 
Ac is the area of convex hull of the smarticles (bodies and arms) in 
the cloud (Fig. 3A), n is the number of smarticles in the system, and 
Ap is the area of a single smarticle. The decrease in φ was not always 
monotonic; in certain trials, increases in φ occurred (Fig. 3C). Despite 
purely repulsive interactions at surfaces, smarticles could both repel 
and attract their neighbors (see Fig. 3B). This emerges from the particle 
geometry: Collisions between particles in concave configurations can 
generate attraction via arm entanglement (30).

After sufficient time, the cloud’s mobility slowed as smarticles 
separated and no longer interacted strongly. We quantified collec-
tive mobility using the cloud’s “granular temperature,” defined as 

​〈 ​V​​ 2​ 〉=1 / 3 ​〈 ​〈 ​v​​ 2​ 〉​ n​​ − ​〈v〉​n​ 2 ​ 〉​ N​​​, where ​v  = ​ √ 
_

 ​​x ̇ ​​​ 2​ + ​​y  ̇​​​ 2​ ​ + (2l + w ) ​√ 
_

 ​​  ̇​​​ 2​ ​​ sums 

the translational plus rotational velocity of n smarticles of length 
l and width w and averages over N experiments (33, 34). On long time 
scales, a single experiment’s V2 may approach the noise floor (seen 
in Fig. 3D) (35), thereby limiting the flocking ability. For this study, 
we determined the noise floor empirically by measuring the granular 
temperature of non-interacting smarticles.

Supersmarticle dynamics
Given the correlation between φ (Fig. 3C) and 〈V2〉 (Fig. 3D), we 
hypothesized that we could sustain locomotion on longer time scales 
by constraining φ of the collective. To achieve this, we confined five 
smarticles within a ring, creating what we call a supersmarticle. Each 
smarticle in the supersmarticle starts at a random phase in the square 
gait and continuously performs a square gait inside an unanchored rigid 
ring of radius R = 9.6 cm and variable mass m ∈ [9.8 g, 207 g] (Fig. 4A). It 
takes t = 225 (where  = 1.6 s) before two smarticles are > out of phase. 
The ring diameter was chosen such that φ and 〈V2〉 remained high, 
yet there was enough area that jamming was rare and self-resolvable.

The ring confinement maintained φ at approximately the value 
observed at the initiation of the cloud trials (see Fig. 3A). Similarly, 
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Fig. 2. Smarticle robot dynamics. (A) Top view schematic w = 5.3 cm and l = 4.9 cm. 
(B) Clockwise (CW) square gait, with key configurations enumerated. (C) Drift of a 
single smarticle on a flat surface, executing a square gait over 38. (D) Tracked 
trajectory of a smarticle within an ensemble of other self-deforming smarticles; color 
gradient (blue to red) represents passage of time 47, with  = 1.6s.
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〈V2〉 of the supersmarticle system (Fig. 4B) remained at approximately 
the value found at the highest φ in cloud trials (Fig. 3, C and D). This 
led to persistent diffusive transport of the supersmarticle (Fig. 4B). 
Within the ring, individual smarticles displayed complex interactions, 
often displacing an amount comparable with, or greater than, the 
displacement of the ring itself, as shown in Fig. 4C.

Tracking the supersmarticle’s motion for a ring of mass m = 68 g 
(movie S3) revealed no correlation between final angular position 
between trials (e.g., Fig. 4D). We used 2(t), the mean square dis-
placement (MSD) of the ring, to characterize the motion: 2(t) = 
〈x2(t)〉 − 〈x(t)〉2, where 2(t) ∝ t and  specifies the type of diffusion 
the system undergoes. The supersmarticle exhibited different types 
of diffusion—normal (0 <  ≤ 1), superdiffusive (1 <  < 2), and even 
approximately ballistic ( ≥ 2)—depending on the time scale observed 
(36). The short time scale regime was consistent with  = 1 (Fig. 4E), 
indicating normal diffusive motion. The long time scale regimes 
were best fit with  ≈ 1.45 representing directionally invariant super-
diffusive motion.

We found that, if a smarticle near the boundary maintained a 
fixed straight shape or became “inactive” (Fig. 5A), the supersmarticle 
displayed directed drift on short time scales (movie S4). Because the 
angular position of the inactive smarticle around the ring was not 
fixed, drift in a constant direction was not observed on longer time 
scales in the laboratory frame (see fig. S2). When trajectories were 
examined in the frame of the inactive smarticle (Fig. 5B), the bias in 

drift toward the inactive smarticle became clear. In Fig. 5C, the cu-
mulative displacements are shown in the continuously rotating 
frame attached to the center link of the inactive smarticle such that 

​​S​ ∥​​(t ) = ​ ∑ 
i=0

​ 
t
  ​​ ​​ → s ​​​ i​ ⋅ ​​   R ​​∥​ 

i
 ​​ and ​​S​ ⊥​​(t ) = ​ ∑ 

i=0
​ 

t
  ​​ ​​ → s ​​​ i​ ⋅ ​​   R ​​⊥​ 

i
 ​​. Here, ​ ​​ → s ​​​ i​​ denotes the vector 

connecting the center of the ring at consecutive instants in time, 
and ​​​   R ​​∥​ 

i
 ​, ​​   R ​​⊥​ 

i
 ​​ are the unit vectors specifying the local frame (Fig. 5B). 

As with the fully active supersmarticle, the dynamics of the super
smarticle containing an inactive smarticle were superdiffusive and, 
at short time scales, approximately ballistic, as indicated by  ≈ 2.
Statistical model
To understand the supersmarticle diffusion and its dependence on 
internal mechanical interactions, we developed a model based on 
kinetic theory. Formally, the average displacement of the ring would be 
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Fig. 4. Collective confined diffusion. (A) Supersmarticle top view; ring inner radius 
is 9.6 cm. The four gray spheres were used to track the motion of the ring. (B) Granular 
temperature of five active smarticles confined in a ring; black line is raw data over 
10 trials, and blue is a moving window mean with a window size of 1. (C) Trajectories, 
from an experiment, of a smarticle inside the ring (purple), and the ring’s center of 
geometry (blue). (D) Experimental tracks of ring trajectory for 50 trials; mring = 68 g. 
The black circle represents the size and initial position of the ring. (E) MSD averaged 
over 50 and 80 trials, for the active and inactive systems, respectively, all lasting 
75. The inset shows the average change of  for active (black) and inactive (blue) 
systems. The oscillation seen in both the MSD and  is related to the gait period  
(where  = 1.6 s).
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Fig. 3. Smarticle cloud dynamics. (A) Snapshot of experimental trial, with the 
dashed line indicating the boundary of the convex hull area AC. The cloud’s CoM 
trajectory is illustrated in red, beginning at the black dot and ending at the red dot. 
Experiment ran for 113. (B) Center link trajectory of geometrically repulsive (top) 
and attractive interactions (bottom). (C) Evolution of φ averaged over 20 trials (black, 
with gray shaded region representing a single standard deviation); four individ-
ual trials are shown in blue, red, green, and brown lines. (D) 〈V2〉 averaged over 20 cloud 
trials. Raw data are in black; the blue line is moving mean with a window size of 1. 
Red line and area surrounding it represent mean value and single standard deviation 
of 〈V2〉 noise of an experiment lasting 10 with seven moving, but non-interacting, 
smarticles. Here, gait period  = 1.6 s.
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given by ​​〈​ → R ​〉  =  ∫ P​(​​​ → ​​)​​​ → R ​​(​​​ → ​​)​​d​ → ​​​, where ​​ → ​​ represents the micro
state (i.e., position, orientation, and heading) of the supersmarticle 
constituents immediately before a collision, and ​​ → R ​​ is the ring dis-
placement due to an individual collision. The resulting mean ring 
displacement, ​〈​ → R ​〉​, is then computed by integrating displacements 
due to individual collisions over the microstate probability distribu-
tion. However, because we do not have access to the detailed rela-
tion of ​​ → ​​ to the complicated smarticle-smarticle and smarticle-ring 
collisions, this calculation is intractable, demanding the develop-
ment of a simplified ensemble model.

We imagine active smarticles rattling inside the ring and colliding 
against the ring and the inactive smarticle. The role of the active 
smarticle in the supersmarticle is simplified as simple contacts around 
the ring. The contacts are abstracted as nudges (Fig. 6A). Each nudge 
has a uniform probability to act in any direction. As a result of 
symmetries in the system geometry, we may partition the space of ​​ → ​​ 
into six distinct types of collisions. Six collisions arise from two 
independent factors: whether or not the inactive smarticle is in 
contact with the ring and which of three regions of the ring the active 
smarticle contacts (denoted by roman numerals in Fig. 6B). Each of 
these individual collision types generates a unique response on the 
collective system.

This simplification leads to a model with two random variables. 
The first is an angle  that represents the direction of an individual 
nudge and takes a value between 0 and 2. The second is a binary 
variable  that represents whether or not the inactive robot is in 
contact with the ring. These variables together represent the various 
microstates  of the system. Depending on the value of the random 
variables, an individual nudge can move either the ring or both the 
ring and the inactive particle. Then, focusing on the movement of 
the ring, we must determine RA and RB, which are the distances that 
a nudge will displace the ring when moving only the ring, and when 
moving both ring and inactive smarticle, respectively. The possibili-
ties for ring movement are summarized in table S1.

With RA and RB, we can describe the simplified model of the 
supersmarticle ensemble in expectation, which we decompose into 
parallel and perpendicular components (see Fig. 5B). Denoting the 

proportion of time that the inactive smarticle is in contact with the 
ring as , the frequency of nudges as f, the amount of time the super
smarticle has been moving as T, the inactive smarticle’s angular 
diameter as  (see Fig. 6B), and treating each nudge as an independent 
event, the expected component of the velocity of the ring along​​ ​ ˆ R ​​ ∥​​​ 
of the inactive smarticle is

	​ 〈 ​v​ ∥​​ 〉  =  ( f  /  ) [(​R​ A​​ − ​R​ B​​ ) (1 − sin( ) ) − (1 −  ) ​R​ A​​ sin( ) ]​	 (1)
The perpendicular component of the ring velocity is simplified sub-

stantially because we know by symmetry that ​〈​ → R ​〉  = ​  ∑ 
i=1

​ 
6
 ​​〈 ​​ → R ​​ i​​ 〉  =  〈 ​​ ˆ R ​​ ∥​​ 〉​. 

This is to say that the mean displacement of the ring averaged over 
all distinct collisions is in the parallel direction; hence

	​ 〈 ​v​ ⊥​​ 〉  =  0​	 (2)

However, the variance along this direction is non-zero. The cor-
responding variances to the expected parallel and perpendicular veloc-
ities, Var[v∥] and Var[v⊥], are detailed fully in Materials and Methods.

Last, to completely specify this model, we must calculate RA and 
RB. To this end, we determine the relationship between the mass of 
the ring and the distance it moves from a nudge by modeling the 
active smarticles as pistons pushing on a sliding mass (see Materials 
and Methods). The predictions resulting from this model are plotted 
in Fig. 6C and fig. S3.

The theory correctly predicts the supersmarticle’s drift speed rela-
tive to that calculated experimentally as 〈v∥〉 = S∥(T)/T with T = 75. 
The theory predicts that the direction of 〈v∥〉 will reverse for a large 
enough ring mass. Directionality depends on the mass ratio ℳ = 
msmarticle/mring between the inactive smarticle and the ring, with 
reversal at a critical value of ℳ ≈ 0.8. To test this prediction, we 
conducted experiments for a series of different ring masses. The 
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Fig. 5. Biasing supersmarticle transport. (A) Supersmarticle schematic, with the 
inactive smarticle in red. (B) Supersmarticle trajectory frame transformation from 
laboratory to inactive smarticle frame. (C) Supersmarticle trajectories rotated into the 
laboratory frame, where axes are now the perpendicular and parallel components 
to the frame of the inactive particle.
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D

Fig. 6. Statistical model of supersmarticle transport. (A) Schematic of the theoretical 
collision model. (B) Three regions with distinct collision types for the theory as 
described in the text. (C) Theoretical (red) and experimental (black and blue) data 
for velocity versus mass ratio ℳ, showing mean and standard deviation. The blue 
data point is offset in ℳ for visibility and represents an experiment where the inactive 
particle was endogenously chosen by light (see text) for 40 trials. (D) Distributions of 
drift speed probabilities for ℳ regimes.
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results are summarized in Fig. 6C. The theory closely predicts the 
mean velocity, including direction reversal (movie S5). Although the 
theory predicts 〈v⊥〉 = 0 (fig. S3), we observed slight discrepancies, 
particularly at larger ℳ. We attribute these discrepancies in variance 
to correlations between collisions, whereas the theory assumes that 
collisions are independent.

The model elucidates the physics governing the dependence of 
〈v∥〉 on ℳ, as a function of the ensemble’s internal mechanical 
interactions. Consider first the high-ℳ limit. The three collision 
types involving the (light) ring but not the (heavy) inactive smarticle 
dominate the net motion (see Fig. 6B). Both of the forward collisions 
(region 2) are of this type, as is one rearward (region 3) collision, 
resulting in a relatively large positive ​〈 ​​   R ​​ ∥​​ 〉​. Conversely, in the 
low-ℳ limit, five of six collision types give rise to nearly equal magni-
tude ring displacements, the exception being the forward collision 
(region 1) of the active smarticle with the inactive smarticle when the 
latter is not in contact with the ring, in which case the ring displacement 
is exactly zero. This deficit in the forward-directed ring displacement 
results in a (small) negative value for the net displacement.

The close agreement between theory and experiment for the drift 
speed velocity is perhaps unexpected: With only N = 4 active smarti-
cles, it is not clear that a purely statistical kinetic theory approach 
should work. The theory overestimates the observed fluctuations in 
Fig. 6C, an indication of substantial correlations in the smarticle 
swarm collisions, which will be the focus of future work. Yet, despite 
this incongruity with the variance, the derived theoretical model is 
still capable of generating the directed motion of the ensemble ob-
served experimentally in the frame of the inactive smarticle.
Directing a phototaxing supersmarticle
On the basis of the intuition gained from the kinetic model, we pro-
grammed smarticles to inactivate when light detected from its photo
sensor exceeded a threshold. When illuminated at low angles (i.e., in 
the plane of the smarticle light sensors), photoinactivated smarticles 
occlude light from neighbors further from the source (Fig. 7A, inset), 
creating a situation similar to that analyzed in the previous section. 
The inactivated smarticle occludes the light from its neighbors: The 
straightening and resulting occlusion of light serves as a decentral-
ized and stigmergic directive. The inactive smarticle is affecting the 
motion of the ring by affecting the motion of the remaining smarticles. 
This decentralized strategy has been used in previous swarm robotic 
collectives to generate group movement and transport without 
requiring explicit communication between agents (37, 38).

However, we found that rather than regulate the angular location 
of an individual inactive smarticle, the static light source induced a 
switching sequence of inactive smarticles, leading to supersmarticle 
phototaxis. Because collisions in the ring can cause an inactive 
smarticle’s position to shift, when an inactive smarticle was dis-
located from its lighted position, it switched to the active state. Con-
sequently, an active smarticle could then be nudged into a position 
to receive enough light to become inactive. Hence, the supersmarticle 
phototactic drift was via endogenous steering, that is, where smarticle 
immobilization was spontaneously selected for without external 
feedback (see Fig. 7A and movie S6).

The endogenously forced system drifted in a preferred direction in 
the laboratory frame with a similar 〈v∥〉 to that of the non–light-driven 
system (Fig. 6C), whose drift was only observable in the frame of the 
inactive smarticle. This is remarkable given the complex switching 
dynamics of the inactive smarticle: For example, depending on dis-
tance and orientation relative to the light, it was possible for multiple 

smarticles to be simultaneously inactive as depicted in Fig. 7B. 
Moreover, the rotational symmetry of the supersmarticle allows one 
to infer that if the supersmarticle can translate in one direction, it 
should be able to translate in another direction by selecting different 
inactive smarticles.

To further highlight the supersmarticle systems indifference toward 
which smarticle is inactive, we plotted the cumulative distribution 
of total inactivity time in the form of a Lorenz curve (Fig. 7C). The 
curve presents the share of inactive time covered by the smarticle 
spending the least time being inactive (39). The shape of the Lorenz 
curve reflects the inequality in the distribution of the inactivity times 
of the smarticles: The more concave the curve, the more unequal 
the distribution. To characterize the Lorenz curve, we introduce the 
Gini coefficient, G, defined as the ratio of the area between the Lorenz 
curve and a line representing equality to the total area under the line 
of equality (39, 40). A value of 0 represents equality, and a value of 
1 is perfect inequality. In a single endogenous experiment lasting 
25 min where the light changed directions five times (see movie S6), 
we found that G = 0.21 (see bolded line in Fig. 7C). The Lorenz curve 
using data from all trials shows that 57% of the inactivity time was 
accounted for by 43% of the smarticles.

By considering each of the five excursions independently, the 
Gini coefficient and Lorenz curve can change markedly (see un-
bolded lines in Fig. 7C). For singular excursions, certain smarticles 
may remain in the inactive position for extended periods of time 
with a static light source, thus giving the Lorenz curves high values 
of inequality. This is a result of aforementioned correlations that can 
happen in smarticle collisions. On shorter time scales, the correla-
tions may incorrectly lead one to believe a smarticle hierarchy exists; 
however, on long time scales, it becomes apparent that the smarticles 
are indeed commutable.
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Fig. 7. Endogenous supersmarticle phototaxis. (A) Trajectory from an experiment 
of a self-directed (endogenously forced) photophilic supersmarticle tracking a static 
light source (movie S6). Inset: Schematic showing how a smarticle in the straight 
configuration can occlude light from smarticle behind it. (B) Map depicting when and 
which smarticles endogenously inactivate. (C) Lorenz plots detailing general equality 
of smarticle inactivity over a 25-min endogenous trial consisting of five separate 
excursions in different directions (see movie S6). Over the complete trial, we found 
G = 0.21, as shown in the bolded line. The unbolded lines are the Lorenz curves for 
the five separate excursions, where we found G = [0.28, 0.4, 0.42, 0.34, 0.49].
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Thus, although crude, the endogenously drifting supersmarticle 
result demonstrates that the collective can perform a task/behavior 
(40) such that locomotor control of the system is decentralized and 
offloaded completely to mechanical interactions (41) in response to 
highly structured environmental signals (i.e., smarticle inactivity 
patterns).
Discovering emergent control authority
Most control synthesis techniques from the past six decades rely on 
a deterministic understanding of actuation and its effect on system 
states (42). But to create an organized system out of disorganized 
components, it is necessary to understand what the collective can 
accomplish as a function of uncertain subsystem interactions (43). 
To enable the discovery of control strategies for collective locomotors, 
control must be synthesized with respect to ensemble properties 
rather than individual states.

We expect an ensemble’s control authority to be an emergent 
property rather than intrinsic. To address this, we introduce the 
notion of a candidate control signal to hypothesize actuation mecha-
nisms based on broken symmetries in the system (44). Using control 
signals, we can take a system with symmetry—and associated con-
served quantities—and apply control to break the symmetry, thereby 
asserting authority over otherwise conserved quantities. When actua-
tion mechanisms are unknown, symmetry breaking can be used 
as a way to hypothesize candidate control signals contributing to a 
system’s emergent control authority.

Given a candidate control signal, we apply a nonparametric, un-
supervised learning algorithm, dynamical system segmentation (DSS), 
to discover ensemble-level behaviors in relation to the signal. DSS 
extracts distinct system dynamics from the interactions of internal 
states and, when present, the effect of candidate control signals on 
states (45). Initially, the algorithm constructs a set of system models 
over sequential windows in time—each locally capturing the net 
effect of interactions between internal states and candidate control 
signals on the ensemble dynamics.

In constructing the set of models, we represent elements of the 
set using the Koopman operator, ​K​—an infinite-dimensional linear 
operator describing measure-preserving nonlinear dynamical systems 
through the evolution of observables (46). This choice of model is 
important because the Koopman operator does not explicitly require 
state information to describe the evolution of the system. Instead, 
the operator depends on observables, which may be any time-varying 
sensor measurement or property of the system such as mass, volume, 
or temperature. Formally, observables g are real-valued functions 
drawn from an infinite-dimensional Hilbert space, ℍ, that take 
measurements as their argument. The evolution of an observable 
through the infinite-dimensional Koopman operator is

	​ Kg(​x​ k​​ ) = g(F(​x​ k​​ ) ) = g(​x​ k+1​​)​	 (3)

where ​K : ℍ→ ℍ​ acts directly on the observables in the function 
space. We approximate ​K​ in finite dimensions with a data-driven 
operator K : ℋ→ ℋ by choosing a basis for some subspace ℋ ⊂ ℍ 
and applying least-squares optimization to compute K. The finite-
dimensional operator, K, is then an N × N matrix for a given choice 
of N-dimensional basis.

The algorithm then condenses the set of Koopman operators 
into a set of non-redundant exemplars by applying nonparametric 
clustering (47) directly onto the set of models—where each element 
is itself a matrix. The resulting compressed set contains all unique 

dynamical system behaviors observed in the dataset of sequential 
measurements. DSS achieves this without assuming how many 
behaviors the system exhibits—an important property when the 
cardinality is generally unknown a priori.

The output of DSS is a set of distinct, yet related, ensemble 
behaviors represented by a probabilistic graphical model ​G  =  (𝕂, 𝔼)​. 
The graph’s node set is specified by the compressed set of system 
behaviors, and its edge set is determined empirically by the transi-
tions observed in the training dataset. In this model, the ensemble 
behaviors, each of which is a deterministic description of the ensemble 
dynamics at a given configuration, are random variables whose joint 
probabilities are in ​G​. We refer to the information encoded by ​G​ as 
the system’s behavioral patterns.

Although the literature of learning control is evolving rapidly, 
existing methods are not immediately well suited for a problem as 
ill-posed as discovering emergent control authority. For one, reliably 
designing payoffs to reward emergence may not be possible, making 
it difficult to directly apply most reinforcement learning approaches 
(48–50). Moreover, techniques in inverse reinforcement learning, 
such as learning from demonstration (51) and imitation learning 
(52), typically suffer from a lack of generalizability, limiting the use 
of learned behaviors. DSS avoids these pitfalls by directly analyzing 
distinct system behaviors and constructing a predictive model from 
these subsystem interactions, leading to a generalizable model. In 
addition, DSS is extremely data efficient, which is critical given that 
emergence is typically a rare phenomenon.
Decentralized control of supersmarticles
On the basis of observations made in previous sections, we know the 
switching sequence of inactive smarticles (Fig. 7B) is causally related 
to system behavior via the breaking of symmetries in the internal colli-
sion distribution of the supersmarticle. We used this sequence as a 
candidate control signal and modeled its effect on supersmarticle dy-
namics with DSS. By taking data from a single endogenous phototaxis 
demonstration (such as Fig. 7A), we instantiated two separate models 
of the supersmarticle dynamics with DSS—one with candidate control 
information and one without—and studied their respective behavioral 
patterns. The basis functions used in DSS were selected on the basis 
of their ability to represent information about the relative locations of 
inactive smarticles within the ring and their effect on the motion 
of the supersmarticle (see the Supplementary Materials for details).

The resulting graphical models are shown in Fig. 8 (A to C) along 
with a graph constructed from the observed smarticle switching se-
quence. We refer to the switching sequence of inactive smarticles ob-
served in the given experimental trial as the experimental inactivity 
patterns, shown in Fig. 8A as a graph. Each node in the graph of Fig. 8A 
represents a unique combination of smarticles that were experimen-
tally observed to be simultaneously inactive, and the number in each 
node refers to the unique label of the respective inactive smarticles. 
For example, in Fig. 8A, the green node labeled 4 indicates that, at 
some point in the experimental trial, smarticle number 4 was inactive, 
and subsequently smarticle 1 also became inactive, changing the 
supersmarticle to the dark blue node labeled 1 and 4. We used the 
complexity (i.e., graph complexity) of the experimental inactivity 
patterns graph to represent an estimated baseline complexity of 
supersmarticle behaviors. If the candidate control signal was causally 
related to the ensemble dynamics, the system should have responded 
to actuation leading to behaviors identifiable by DSS.

Without candidate control information, DSS is unable to identify 
a set of behaviors explaining the observed drift, as seen in the nominal 
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behavioral patterns in Fig. 8B. However, when candidate control 
information is incorporated, DSS extracts a set of emergent behav-
ioral patterns of equal cardinality to the inactive smarticle switching 
sequence (Fig. 8C), where numbered nodes correspond to distinct 
behaviors identified by DSS. We note that there is no one-to-one 
correspondence between identified behaviors and elements of the 
candidate control signal. This is to be expected because the ensemble 
dynamics are not exclusively determined by the candidate control 
signal and are also driven by uncertainty, which is captured by the 
probabilistic transitions in the generated graphs.

Through endogenous steering, we showed that the supersmarticle 
is capable of directed transport toward a fixed objective. To improve 
on the controllability of the ensemble shown in previous sections, 
we looked for alternative locomotion strategies in simulation by 
synthesizing control to directly manipulate the algorithmically 
extracted ensemble behaviors. Previous work in control of inter-
connected stochastic systems has shown that integral control can 
often be a simple and robust strategy (53). However, due to the dis-
continuous nature of supersmarticle inactivations, model-based 
control is necessary to directly optimize system actions.

We designed a simple decentralized model-predictive controller 
that greedily searches for inactive smarticle switching sequences to 
alter the ensemble’s behavior—as determined by its DSS model—to 
achieve a collective objective. The collective objective was expressed 
as a quadratic cost on the position of the supersmarticle centroid 
with respect to a desired goal location in the world frame. The super
smarticle centroid was calculated via distributed consensus in a fully 

connected topology (see the Supplementary Materials for additional 
details) (54). We conducted four sets of Monte Carlo simulations 
(40 trials each), over distinct goal locations—left, right, up, and 
down—with randomized initial conditions for a duration of T = 75 
per trial (where  = 1.6s). The objectives were always equidistant and 
located directly vertically or horizontally from the initial conditions.

The resulting trajectories shown in Fig. 8D were exogenously 
steered in the world frame by the independent decision-making of 
individual smarticles. The simulation results confirm the symmetry-
based theoretical predictions: The ensemble should be capable of 
locomotion anywhere in the plane via exogenously selected smarticle 
inactivations—even when we train the model using only a single 
trajectory moving in a single direction. The supersmarticle provides a 
test case for whether DSS can detect emergent behavior and whether 
DSS (or related algorithms) should be used in more general settings 
where symmetry-based inference about control authority is not possible. 
By allowing an external source of feedback to inactivate smarticles, the 
decentralized controller manipulated ensemble behaviors to achieve 
more complicated goals than the model trained on, thereby predicting 
entirely emergent behavior. As a result of the generalizability of our 
machine learning model, we are able to make predictions and control 
the supersmarticle in entirely new settings, thereby harnessing the 
system’s emergent control authority to accomplish brand new tasks. 
We note that extending the smarticle hardware to accommodate for 
the proposed control algorithm can be done in a practical and com-
putationally efficient way and will be explored in future work.

On the basis of the simulation results, we experimentally validate 
the exogenous controllability predictions by guiding the supersmarticle 
through a simple maze using external feedback from an experimenter 
with a light source (Fig. 8E). Here, the experimenter is capable of 
directing the supersmarticle by freely shining a light source onto the 
ensemble, thereby using more complex inactivity sequences to achieve 
locomotion anywhere in the plane, just as the proposed decentralized 
control scheme did. Although the supersmarticle was provided with 
external guidance, it was able to achieve directed transport without 
state information or specifying individual objectives for its constituents. 
All movement was directly emergent from morphological computa-
tions in response to environmental signals (55). Hence, by framing 
the discovery of emergent control authority as a learning problem, 
we were able to hypothesize and model unconventional actuation 
leading to expressive controllable motion.

CONCLUSION
Inspired by a future in which a class of task-capable robots could be 
formed from myriad redundant and task-incapable components, we 
have created a primitive “robot made of robots” that can perform 
rudimentary phototaxis, despite none of its components—smarticles—
having locomotor capabilities. A generic statistical model accurately 
captures the fundamental drift dynamics, rationalizing how the 
supersmarticle can sense an aspect of its environment—light—and 
use this to endogenously steer itself via asymmetric inactivation of 
individuals. Further, through the introduction of novel machine 
learning techniques, we constructed a data-driven model of the 
ensemble, which enabled discovery and proof-of-control alternatives 
for generating exogenous steering when agents are capable of 
computation.

We emphasize that, unlike other mobile robots, the supersmarticle 
displays phototaxis without a central processor or dedicated motor 
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patterns. (A) Model shown is a graphical representation of a single inactive smarticle 
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blue to red, and the black circles represent the initial and final ring configurations.

 at G
E

O
R

G
IA

 IN
S

T
IT

U
T

E
 O

F
 T

E
C

H
N

O
LO

G
Y

 on S
eptem

ber 18, 2019
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

http://robotics.sciencemag.org/


Savoie et al., Sci. Robot. 4, eaax4316 (2019)     18 September 2019

S C I E N C E  R O B O T I C S  |  R E S E A R C H  A R T I C L E

8 of 10

components. The key ingredient, and what differentiates our collec-
tive from other robot swarms and locomoting collectives, is that our 
system is made of components that have very low control authority—
they cannot locomote individually—and are highly unpredictable—
they create emergent behavior from the highly complex interactions 
of their internal degrees of freedom. Although such a system might 
seem idiosyncratic, we note that it bears similarities to cascades of 
conformational changes in the nanomachines that regulate many 
cellular processes: proteins (56). Given the ubiquity of such processes 
in these tiny machines, we posit that our model smarticle system could 
provide inspiration for the generation of substantially more com-
plex task-capable ensembles like those pictured in Fig. 1, including 
perhaps three-dimensional (3D) collective locomotors and manipu-
lators. Enabling robots to flexibly reconfigure to collectively perform 
tasks in the presence of environmental noise and individual component 
malfunction or degradation (23) could enhance robustness in robot 
swarms across scales, from intravenous delivery (57–59) to search 
and rescue (60). Further, insights from collective robophysical sys-
tems (15, 61, 62) could elucidate principles by which biological col-
lectives [like slime molds (63)] perform tasks in complex natural 
environments.

MATERIALS AND METHODS
Smarticle robots
Each smarticle’s outer shell and arms, or outer links, are 3D printed. 
The arms are controlled by HD-1440A servomotors to a precision 
of <1∘ and with an accuracy of ±6∘. All processing and servomotor 
control is handled by an Arduino Pro Mini 328 (3.3 V/8 MHz model), 
which allows smarticles to be programmed to deform to specific 
configurations and gaits, where we define gaits as periodic trajectories 
in the configuration space (see Fig. 2B). When assembled, each single 
smarticle has a mass m = 34.8 ± 0.5 g. The system is powered by a 
3.7-V, 150-mAh, 30-C LiPo battery (Venom; Rathdrum, ID) enabling 
hours of testing. Smarticle positions and orientation were tracked using 
an infrared video recording hardware/software suite (OptiTrack; 
Corvallis, OR). All experiments were conducted on a 60 cm–by–60 cm 
aluminum plate leveled flat to <0.1∘.

Smarticle experiments
The Gini coefficient (G) is a statistical measure derived from the shape 
of the Lorenz curve. A value of G = 0 represents a situation of perfect 
equality, or in the case of the supersmarticle, all smarticles spent an 
equal amount of time being inactive. Conversely, a value of G = 1 is 
a maximally unequal trial, or one where only a single smarticle was 
inactive over the course of the experiment.

Statistical model
Below, we detail the full form of the variance of v∥

	​​

Var [ ​v​ ∥​​ ] = –(f / 4 ​π​​ 3​ T ) [​π​​ 2​ sin(2Ψ ) (​R​A​ 2 ​ − ​R​B​ 2 ​ λ)

​    

+ ​R​A​ 2 ​((− 4 ​λ​​ 3​ + 2 ​λ​​ 2​ + 2 ) Ψ + ​π​​ 3​((4 ​λ​​ 2​ + 2 ) / (​π​​ 2​ ) + λ–2 + (2Ψ ) / π ))

​     –4 ​R​ A​​ ​R​ B​​ λ(2λ + 1 ) (–λΨ + Ψ + π)​   
– ​R​B​ 2 ​ λ(6(λ–1 ) λΨ–6πλ + 2 ​π​​ 2​ Ψ + ​π​​ 3​)

​   

​–2(–λΨ + Ψπ ) (​R​ A​​ – ​R​ B​​ λ ) ​(​​4λ(​R​ A​​ – ​R​ B​​ ) sin(Ψ)​

​    

​+ cos(2Ψ ) (​R​ A​​ – ​R​ B​​ λ )​)​​]​

  ​​	

Furthermore, the full form of variance of v⊥ is shown below

	​​
​Var [ ​v​ ⊥​​ ] = –(f / 4T ) ​[​​ ​R​B​ 2 ​ ( + 2 ) − ​R​A​ 2 ​(( − 2 ) + 2)​

​    
​+ (​R​A​ 2 ​ − ​R​B​ 2 ​  ) sin(2 ) ​]​​​

  ​​	

To calculate the values of RA and RB, we must start with masses 
m1 and m2 such that the relative distance between them, x1 − x2, is 
specified by the actuation of the smarticles. The first mass, m1, rep-
resents the arm of a smarticle, and m2 represents the body. The mass 
of the boundary they push on is mb. Both m2 and mb have friction 
between them and the surface they are sitting on. This is shown in 
Fig. 6A. On the basis of this model, we arrive at the following equations 
of motion

	​​ F​ 2​​ − ​f​ s​​  = ​ m​ 2​​ ​​x ¨ ​​ 2​​​	

	​​ f​ s​​ − ​F​ b​​  =  (​m​ b​​ + ​m​ 1​​ ) ​​x ¨ ​​ 1​​​	 (4)

where F2 and Fb are the friction force on m2 and mb, respectively, and fs 
is the force between m1 and m2. By specifying x1 − x2 = A0 sin (t + ), 
F2 = (m2 + 2m1)g, and Fb = mbg, these equations can be integrated 
to find how far mb moves. Then, by plugging in for mb—the mass of 
just the ring—and the mass of the ring and the inactive smarticle, 
we can find RA and RB, respectively, as well as 〈v∥, ⊥〉 and Var[v∥, ⊥].

Dynamical system segmentation
The DSS algorithm is composed of three primary subroutines: (i) 
the calculation of Koopman operators over sequential windows of 
time via least-squares optimization, (ii) nonparametric clustering over 
the space of Koopman operators to determine unique system be-
haviors, and (iii) training a supervised learning model [e.g., support 
vector machine (SVM)] to learn relationships between system be-
haviors and construct the complete probabilistic graphical model. 
In the following sections, we expand on these subroutines, and a full 
outline of the algorithm can be found in the Supplementary Materials.

Koopman operators
The DSS algorithm first requires calculating finite-dimensional 
Koopman operators over sequential windows of the dataset. Although 
there are many ways to frame Koopman operator synthesis, we 
implement it as a least-squares optimization (64). Given a choice of 
nonlinear basis function (x) and a data sample X = {x1, …, xM}, we 
can formulate the Koopman operator synthesis problem as solving

	​​ min​ 
K

​  ​ ​ 1 ─ 2 ​ ​ ∑ 
k=1

​ 
M−1

​​ ​‖(​x​ k+1​​ ) − K(​x​ k​​ ) ‖​​ 2​​	

This optimization has a closed form solution of the following form

	​ K  = ​ AG​​ †​​	

where † denotes the Moore-Penrose pseudoinverse, and the individual 
matrix components are

	​ G  = ​  1 ─ M ​ ​ ∑ 
k=1

​ 
M−1

​​(​x​ k​​ )  ​(​x​ k​​)​​ T​​	

	​ A  = ​  1 ─ M ​ ​ ∑ 
k=1

​ 
M−1

​​(​x​ k+1​​ )  ​(​x​ k​​)​​ T​​	
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Nonparametric clustering
Given a set of Koopman operators, DSS looks for distinct dynamical 
behaviors by applying nonparametric clustering directly onto the set 
of operators. In particular, we apply hierarchical density-based spatial 
clustering of applications with noise (HDBSCAN) (47), which is a 
nonparametric clustering algorithm that specializes in problems 
subject to noisy and sparse measurements. By using HDBSCAN, we 
were able to discern distinct behaviors from the set of Koopman 
operators. From these clustered classes, we constructed class exem-
plars as a means of creating a set of distinct Koopman operators 
corresponding to observed system behaviors.

Supervised model
Once DSS has compiled a condensed set of exemplar behaviors, the 
algorithm must then determine the dependencies between each 
behavior and the states of the system. To this end, we trained an 
SVM. We did this by using the clustered class labels from HDBSCAN 
to label the state-space data. Then, using this newly labeled dataset, 
we trained a soft-margin SVM that assigned discerned behaviors to 
state observations. The SVM, in conjunction with the condensed set 
of exemplar behaviors, gave rise to the probabilistic graphical model, 
where the dynamics of the system are described by stochastically 
shifting Koopman operators.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/34/eaax4316/DC1
Text
Fig. S1. Unrotated center of mass trajectory of the smarticle cloud.
Fig. S2. Unrotated trajectories of the supersmarticle.
Fig. S3. Theoretical and experimental data for the perpendicular component of the 
supersmarticle drift speed.
Table S1. List of all six different types of collisions in the theoretical model.
Table S2. List of all parameters used in the theoretical model.
Algorithm S1. Dynamical system segmentation.
Movie S1. Individual smarticle performing square gait.
Movie S2. Smarticle cloud: Seven active smarticles.
Movie S3. Supersmarticle: ℳ= 0.51, five active smarticles.
Movie S4. Supersmarticle: ℳ= 0.51, one inactive, four active smarticles.
Movie S5. Supersmarticle: ℳ= 3.6, one inactive, four active smarticles.
Movie S6. Supersmarticle: ℳ= 3.6, endogenous phototaxing.
Movie S7. Supersmarticle: ℳ= 3.6, exogenous phototaxing.
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