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SUMMARY

While legged and limbless animals demonstrate amazing mobility on natural,

multi-component terrains, human-made devices on wheels and tracks often suffer

performance loss in off-road situations. To investigate the discrepancy in locomotion

efficacy, we must integrate our knowledge of biomechanics, dynamical systems, control

theory, and the physics of interaction between the body/appendage and the ground.

Predictive models and simulations built on such an interdisciplinary approach can help

design robotic devices that gracefully navigate and manipulate complex environments.

In this dissertation, we created simulations/models to study locomotion on dry,

homogeneous granular terrains. For intruders moving at low speeds (less than 0.5

m/s), granular media behave like low Reynolds number fluids. IN this regime (also

known as the “frictional fluid regime”), we developed a Resistive Force Theory (RFT)

to predict reaction forces on appendages moving in the vertical plane (the saggital

plane). Combining these force relations with a multibody software, we could accu-

rately and rapidly model the dynamics of a small hexapedal robot (∼15 cm, ∼100 g),

on a granular medium composed of poppy seeds. The RFT simulation also predicted

the performance of SandBot, a ∼30 cm long, 2.5 kg weight hexapod robot, moving

on A weakened granular substrate.

However, during the rapid locomotion of animals (e.g. the zebra-tailed lizard,

Callisaurus draconoides) and robots (e.g. DynaRoACH, a cockroach inspired robot),

where instantaneous limb penetration speed can reach values greater than 1.5 m/s,

analogous force relations do not yet exist. Thus, we used the Discrete Element Method

(DEM) to compute the limb-ground interactions. After using physical experiments to

validate DEM parameters, the simulation captured the forward speed of DynaRoACH

xiii



on a substrate of 3mm glass particles at all leg stride frequencies tested. Further, the

simulation revealed the mechanism by which the lightweight legged robot maintained

high performance in a regime where its larger counterpart failed.

When environments become heterogeneous, new modeling and control approaches

are needed. We studied the limbless locomotion of the shovel-nosed snake, Chionactis

occipitalis, in lattices of rigid pegs affixed to a low-friction white board substrate.

The kinematic analysis indicated that C. occipitalis actively modulated its shape and

used pegs to generate thrust. Based on these findings, we constructed a close-loop-

controlled snake simulation which reproduced aspects of the animal behavior. Finally,

we developed a theory for transport in macroscopic, heterogeneous environments,

when the long-term dynamics like diffusion constants are of interest.

xiv



CHAPTER I

INTRODUCTION

1.1 Overview

Animals must move to search for food, escape from predators, or find mates [8].

While biological locomotion has long been studied from morphological and physi-

ological perspectives [61], it cannot be treated as an isolated phenomena involving

only a few articulated joints and muscle groups. During locomotion, rhythmic motor

patterns are produced by specialized circuits in the neural system, i.e. the central

pattern generators (CPG) [106]. To transport the center of mass, locomotors have

to interact with external environments, exchange energies, and generate thrust/drag

forces using their bodies and/or appendages [75]. Information from sensory organs

and mechanical feedback from the musculoskeletal system influence the central ner-

vous system, which then adjusts the motor commands. This multi-level picture of

locomotion, the integrative and comparative biomechanics and neuramechanics, is

becoming increasingly popular [61, 225].

Studies in this field focus on different aspects. The contractile properties of mus-

cles, e.g. the force-length-velocity relation, were studied in vivo [4] and in vitro [5].

Muscles and connective tendons can store/release kinematic energy and help stabilize

the motion [25, 134]. The dynamics of locomotive systems can be abstracted [189, 102]

and, in principle, solved using the Newton-Euler equations (or Lagrangian equa-

tions) [127] with force/torque inputs from the environment. The complex interac-

tions between animal limbs and environments have been considered for locomotion in

air [179, 222], water/fluid [215, 129, 159], and recently on natural terrains [42, 147,

142]. Efforts have also been made to connect locomotion strategies and various types

1



A

B

C

D

E F

Figure 1: Animals and their habitats. (A) A group of sperm whales Physeter
macrocephalus. (B) A buzzing bee. (C) Mudskippers. (D) A snow leopard Uncia
uncia (E) The zebra-tailed lizard Callisauraus draconoides. Photo by Chen Li. (F)
The Mohave shovel-nosed snake Chionactis occipitalis. Photo by Sarah S. Sharpe. If
not otherwise indicated, all pictures are taken from Wikimedia.
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of feedback information, including vision [165, 206], proprioception [186], touch [47]

and temperature [200]. Finally, comprehensive theories have been proposed in at-

tempts to incorporate all aforementioned aspects [202, 149, 172]. In this dissertation,

we will primarily study the dynamics and the physics of locomotive interactions with

the environment.

Wing tip path

Leading edge

Body posture

Down-stroke

Up-stroke

+

WH

COG

A

B

Figure 2: (A) The vortex structure (blue donut shapes) created by a moving
bluegill sunfish. Adapted from [129]. (B) Wing tip trajectories of a tethered fruit fly
drosophila melanogaster. Adapted from [132].

For flying in air and swimming in water, researchers have created many theoret-

ical predictive models [71, 161, 219] to describe the complex interactions between

the locomotor and the surrounding Newtonian fluids using the Navier-Stokes equa-

tions. With proper boundary conditions, computational fluid dynamics (CFD) can

3



now reproduce complex wake structures [129] around the pectoral fin of a bluegill sun-

fish [153], Figure 2A, or identify the velocity field near the flapping wings of a fruit fly

at different stroke phases [185, 132], Figure 2B. These models have not only allowed

researchers to understand the movement of aerial and aquatic organisms [219] (such

as bacteria and spermatozoa [131], insects [222], birds [166], and fish and whales [129])

and their functional morphology, evolution, and ecology [67, 229], but also advanced

the engineering design of aircraft [71], marine vehicles [161], and flying [229] and

swimming [128] robots.

template

A B

C

Figure 3: (A) The Spring Loaded Inverted Pendulum (SLIP) model for running
on hard ground. (B) and (C) The “virtual leg” concept for movements on multiple
limbs. Black or white markers indicate the group of synchronized leg(s) during the
stance phase. Figure adapted from [102].
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Terrestrial locomotion is another research area relevant to many different fields,

from biology, physics and mechanical engineering, to robotics and industry (e.g. agri-

cultural equipments). We can categorize ground movement into three sub-types:

wheeled/tracked, legged and other limbless locomotion. The theory of wheels under

rolling constraints has been established since the invention of mechanics, and the mo-

bility of vehicles has been well studied on flat, smooth surfaces [195]. Lately, there

has been an increasing need for versatile robotic devices to navigate through rough

terrains of unknown physical properties. They may operate in hazardous environ-

ments for search and rescue purposes [69] and participate in exploration tasks [70].

However, compared to legged and limbless animals, the off-road mobility of wheeled

and tracked vehicles is relatively limited [145].

Many terrestrial animal species (Figure 1C, D, E, and F) adopt legged locomo-

tion, in which forward and vertical thrusts are generated by appendages moving

with repetitive patterns (gaits) on ground. However, in most existing biological and

robotic studies, the ground is flat and solid [202, 189, 187], and the feet are assumed

to maintain non-slip contact during the entire stance phase (the gait phase that be-

gins with foot touch down and ends with lift off) [39]. With these ansatz, template

models for walking (inverted pendulum) and running (spring-loaded inverted pendu-

lum, SLIP) were developed [39, 28]. In SLIP (Figure 3A), the body is abstracted to

a point mass, and the limb is modeled as a loaded spring. The stance phase is then

a simple energy saving and restoring process facilitated by the spring. This simple

picture was absorbed into more comprehensive dynamical theories for animals using

complicated gaits [102], Figure 3B and C. For systems with multiple appendages, the

group of synchronized legs in a gait can be theoretically treated as a single, “virtual

leg” [178]. Advanced robots such as BigDog [177] and RHex [187] have been built on

this philosophy and can hop and dynamically balance on uneven, rough terrains such

as pebbles.

5



Limbless locomotion on/in complex substrates is also prevalent in nature, often

used by snakes [88, 111], worms [176] and some lizard species [78, 142]. It is highly

flexible due to the many degrees of freedom that the slender body bears (for example,

a snake can have ∼ 100 − 300 vertebrates linked in a long chain). But the curse of

dimensionality also limits the understanding of such locomotion and makes effective

control a difficult task. Nevertheless, templates for snake-like locomotion have been

proposed [99, 144, 18] and tested on robotic platforms [99, 144].

1.2 Locomotion on and within flowable substrates

1.2.1 Animal locomotion on flowable ground

A B

C

D

Figure 4: Examples of flowable terrestrial substrates. (A) Sand dunes. (B) Leaf
litter. (C) Snow. (D) Martian soil. Term of use: (A) Photo by Rosino. (B) Photo by
bosela, used under the license Morguefile.com/cropped from original. (C) Attributed
to Jason Hollinger. (D) Image is credited to NASA/JPL/Cornell.
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Many terrestrial environments are composed of rheologically complex soft mate-

rials that flow upon interaction (Figure 4); examples include sand, mud, snow, and

leaf debris. During the stance phase, the limb-ground contact point does not remain

fixed [134], thus breaking assumptions of the SLIP template discussed previously.

Even worse, flowable terrestrial materials are not yet modeled at the level of New-

tonian fluids. Understanding locomotion in such environments is, therefore, an open

problem.

Legged and limbless animals [30, 73, 218, 175, 134] face the challenges of moving

on flowable substrates. The group led by Hanley studied the energy expenditures

for mule deer and elk locomotion on snow, and they noticed a curvilinear increase in

the cost of transport (CoT, the energy consumed to move unit distance) when snow

depth and density increased [73]. However, some animals demonstrate agility and

maneuverability on flowable terrains. Li et al. found that, by slapping its hind feet

down at high speed (≈ 1 m/s) with toes spread parallel with the ground, the zebra-

tailed lizard was able to running quickly over granular media [134]. Later, Qian et al.

systematically studied various species (Uma scoparia, Sceloporus olivaceus, Ocypode

quadrata, Callisaurus draconoides and Pachydactylus bibroni) moving on weakened

granular media prepared with an air-fluidized bed [175]. They found that while most

test animals (U. scoparia, S. olivaceus, O. quadrata and P. bibroni) suffered from

performance loss (as measured by forward moving speed) when air flow increased

and the ground stiffness decreased, the zebra-tailed lizard (C. draconoides) was able

to maintain its normal locomotion speed, even when the medium was completely

fluidized. Moreover, all animals out-performed the test robots (SandBot [135] and

Xplorer [136]) for the same ground conditions. Despite the complexity in control,

limbless locomotion works surprisingly well on flowable ground. For example, Marvi

et al. recently showed that sidewinders (Crotalus cerastes) manipulated the length

of the body in contact with granular surface in order to effectively climb granular
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inclines [144].

There have also been scattered efforts to monitor and model the movement of

small organisms in the soil, sand, and mud. Charles Darwin’s final book focused

on the actions of worms on soil [58]. In the 1960s using capacitive sensing, Norris

and Kavanau studied subsurface locomotion of four species of limbless reptiles (three

snakes and one lizard) [122]. Trueman investigated the burrowing of mole crabs [210]

and the razor clam Ensis [209] in soft substrates. Recently, Winter et al. studied the

burrowing mechanism of razor clams in mud and found that the animal fluidizes the

substrate to reduce drag [224]. Groups led by Jung [118] and Arratia [117] studied

the swimming of nematodes in wet granular media and enhanced mobility was found

when compared with fluids.

1.2.2 Granular media, model flowable substrate

Although we classify sand, soil, mud, snow, and debris all to flowable grounds, their

resistance properties are not equally understood. For example, our understanding of

mud is surprisingly limited; there is no established model to quantitatively character-

ize this structured fluid. While snow crystals have been carefully studied [171], little is

known about the structure of loose, porous snow medium. A few experiments of snow

avalanching [123] were conducted, but the general force-relations (e.g. penetration

resistance) are still not disclosed at this stage.

On the contrary, the rheology of granular media has been studied extensively [160,

109, 97, 10]. A granular material is a collection of macroscopic, solid particles [10].

The inter-particle contact forces are typically repulsive and dissipative, because ther-

mal fluctuations and electrostatic interactions are negligible. Like other flowable

terrains, granular media exhibits solid-fluid duality [109]. When frictional contacts

between grains break under stress, the medium yields (due to localized forcing from
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Dunes State Park
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Figure 5: Examples of granular media in nature (top row) and in lab (bottom row).
Sand pictures from Wikimedia.
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intruders) or avalanches in a tilted container [160]. The state of a static, homoge-

neous granular medium (in which particles are composed of the same material and

have similar sizes) can be described by a single dimensionless parameter, the volume

fraction (or packing fraction) φ, which is the ratio of the solid volume (the sum of

grain volumes) to the media volume. For dry granular media, φ typically varies in

0.57 < φ < 0.64 [62], although the exact range is influenced by particle friction [113].

Using the air-fluidized bed and shaking protocols [190], we can precisely control φ in

laboratory settings.

A B

C D

Figure 6: Examples of desert animals. (A) Desert cottontail, Sylvilagus audubonii.
(B) Desert horned lizard, Phrynosoma platyrhinos. (C) Rattlesnake, Crotalus
cerastes. (D) Camel spider, Solifugae. Pictures from Wikimedia.

Granular media, i.e. deserts, cover a significant portion of the land on earth [167,

72]. Although water is scarce, there is diverse wildlife present in desert [38, 151].

Typical sand dwelling animals include mammals such as rabbits (desert cottontails),

10



ground squirrels and kangaroo rats; some lizard and snake species, including the

zebra-tailed lizards, desert horned lizards and rattlesnakes; and many arthropods

such as scorpions and solifuges (camel spiders). While many animals demonstrate

high mobility [134, 144] on this flowable terrain, their thrust generation mechanisms

are unclear and not well studied.
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Figure 7: Drag forces in granular media depend on volume fraction. (A) Average
drag force vs φ. Temporal force profiles are plotted in (B) for selected volume frac-
tions (indicated by colored arrows). (B) Temporal fluctuation of drag forces at three
packing fractions. Figures reproduced from [87].

In granular physics, efforts have been made to understand drag (vertical and

horizontal) [7, 6, 82, 87] and lift [63, 93] forces on intruders moving at low speed

(v . 0.5 m/s, roughly speaking). Gravish et al. performed experiments with a

flat plate plowing through homogeneous granular media prepared at different φ, and

they found that both the average drag force and temporal fluctuations in the drag

increase with the packing fraction (Figure 7 A and B) [87]. For a fixed φ, drag forces

increase approximately proportional to the leading area of intruder and penetration

depth [98, 93, 32] (Figure 8A, B), but are insensitive to the changes in moving speed of

intruders (Figure 8A). These studies are the building block, from which we developed

more complex and comprehensive force models that demonstrated predictive power in

11



1x10
6

0.8

0.6

0.4

0.2

0

F
/R

3
[N

/m
3
]

21.510.50

z/R

spheres

R (mm)
12.7
25.4
50.5

Eqs. (3c-d)

κ (z/R - 1/3)

κ (z/R - 0.58)

F
o

rc
e

 
(N

)

12

0
0 4 8

4

8

0 16 32

depth (cm)

φ= 0.62

φ= 0.58

Speed (cm/s)

A B

Figure 8: (A) Horizontal drag forces on a cylinder at different depths and speeds.
Plot adapted from [142]. (B) Scaling of vertical drag forces for a spherical intruder.
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modeling animal locomotion on and within homogeneous granular media [136, 142].

Below, we explain these advanced force theories, and discuss their applicabilities and

limitations.

1.2.3 Limits of terramechanics

A

θm

ω

r

τx(θ)x

z

h
λh

σ(θ)

θ

vx

Normal stress distribution

B

Figure 9: (A) Mars Rover Curiosity’s selfie. Photo from NASA. (B) The terrame-
chanics theory for wheel-ground interaction. A wheel of radius r is moving with
forward speed vx and angular speed ω. The normal σ and tangent τx stresses on
the contact surface depend on the angular position θ. The ground deforms during
interaction and the level of surface behind the wheel is generally lower (as indicated
by the scaling parameter λ). Figure adapted from [107].
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We briefly review terramechanics, the force model developed for wheeled locomo-

tion on loose soil and granular media. Off-road mobility has long been a concern for

engineers building wheeled/tracked devices, with a considerable amount of effort ap-

plied to model the interactions vehicles and loose, flowable terrain such as sand. The

terramechanics approach, dating back to the 1960s, models soil as (roughly speaking)

a nonlinear damped spring [23]. At each contact point on the wheel or tread, normal

and shear stresses are computed, often using many fitting parameters (depending on

the stress model [110, 227, 226]), Figure 9 (B). The stress projected to the vertical

direction is then balanced with the load of the system to determine the static and dy-

namic sinkage of the wheel during slip (a condition when the lowest point of the wheel

has a non-zero speed relative to the ground) [107]. Terramechanics has advanced the

off-road mobility of vehicles in the past 50 years on highly deformable soil. However,

since the method was primarily developed for large, heavy vehicles (such as tanks),

its applicability towards small, light-weight robots is less understood [192]. Also, the

interaction of geometries other than wheels and tracks (e.g., legs) with soil is not well

modeled.

1.2.4 Resistive Force Theory for granular media

At this stage, there is no fundamental force law for granular media at the level of

Navier-Stokes equations for fluids. In most previous studies, intruders of simple (e.g.

cylindrical and rectangular) shapes were used, and movement patterns were simple,

involving only translation in either the horizontal or vertical plane. The scaling force

laws developed cannot be applied directly to locomotion in which parts of the body

(often of irregular shapes) translate and rotate simultaneously1.

In our lab, we were inspired by the approach developed by pioneers in fluid me-

chanics who did not solve (and, without computational fluid dynamics, could not)

1Part of this section was edited based on a published work [230] with permissions.
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Figure 10: (A) Illustration of the basic idea behind Resistive Force Theory (RFT)
for 2D swimming. The body propagates a wave of prescribed shape in the negative x-
direction and experiences reaction forces which propel it forward. Each infinitesimal
element ds on the swimmers body is characterized by its tangent direction t̂ (or
normal direction n̂) and its velocity v direction; each element experiences a force
dF⊥,‖. In true fluids, these forces were described by Stokes law, while for granular
media, they are measured in experiment. Figure adapted from [230]. (B) Averaged
F⊥,‖ on the cylinder wall vs. angle of attack Ψ. F⊥ is enhanced in GM compared
with a low Re fluid. Figure reproduced from [64].

the full Navier-Stokes equations for complex flows in the presence of non-trivial mov-

ing boundaries. Instead, simpler approximations were made in viscous fluids. The

best known of these, called Resistive Force Theory (RFT) [89] assumes that the de-

forming body can be partitioned into segments, each experiencing drag, and that

the flow/force fields from these segments are hydrodynamically decoupled and do not

influence the fields of other segments. Therefore, the normal and tangential forces on

a small element (Figure 10A) depend only on the local properties, namely, the length

of the element ds, the velocity v and the orientation t̂ (the fluid is homogeneous, so

position dependence is dropped). The net force on the swimmer is then computed

from the integral

F =

∫
(dF⊥ + dF‖) =

∫
ds(f⊥(v, t̂)n̂ + f‖(v, t̂)t̂), (1)

where the functional forms of f⊥ and f‖ can in principle be determined from Stokes

equations; however, experiments are often needed because analytical solutions to

14



Stokes equations cannot be easily obtained even in simple cases (e.g., a finite length

cylinder moving in the axial direction [212]). In granular media where there is no

constitutive law, f⊥ and f‖ can only be determined from experiment or DEM [143]

simulation (details discussed later).

In viscous fluids, the RFT approximation has had some success when compared to

experiment [130, 22, 137]. However, in the physiologically relevant regimes for which

RFT was originally formulated (the movement of flagella for bacteria, for example),

discrepancies between RFT and experiment have recently been observed [181]. To

remedy this, more comprehensive theories have been developed, and these account

for higher order corrections (see [181] for discussion).

RFT with empirically determined f⊥ and f‖ can accurately model (and predict

aspects of) locomotion of animals and physical models of animals (robots) within

dense GM [142, 64, 94, 63, 65]. This has been somewhat surprising, since we initially

worried that interaction with a medium that can display features of a solid [160] a

compressible fluid [10] and/or a gas [31] would require models which accounted for

the physics of each regime as well as transitions between them. In this disserta-

tion, we have extended RFT to legged locomotion where interactions happen in a

approximately vertical plane.

1.2.5 Discrete Element Method

High-speed granular impact has been studied in various lab controlled settings [120,

85, 44], and scaling relations were discovered. These simple force laws can, at the

best, be used to qualitatively explain complex locomotion systems. We still lack a

quantitative model that can predict the intrusion forces in the high-speed regime

revelant to the rapid locomotion of animals [134] and robots [231]. Luckily, there

exists a robust numerical tool, the Discrete Element Method (DEM, Figure 11A, B,

and C) [51], which is able to reproduce many granular phenomena with high fidelity.
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Figure 11: Multi-particle Discrete Element Method simulation (DEM) reveals how
material flows around a swimming simulation. (A) A 3-dimensional DEM simulation
of the sandfish lizard Scincus scincus in a medium of approximately 3×105 approxi-
mately 3 mm diameter glass spheres. The snapshots of the animals body are rendered
in red. (B) In DEM simulation, when particles (of radius r) with velocities v1 and
v2 collide with each other, the inter-particle contact forces Fn,s are computed from
a virtual overlap δ which represents the elastic deformation at the contact area. (C)
Top view of the subsurface swimming of a simulated sandfish (S. scincus) in DEM.
Particles above the plane of interest have been rendered transparent. The movement
of the animals body (indicated by the white region) mobilizes the particles around
it. Colored stripes are used for visualization. Colors in the stripe correspond to
the initial y positions (decrease from red to blue) of particles before the medium is
disturbed. Image created by Yang Ding.
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The philosophy behind DEM is straightforward, that is, to simulate the movement

of every particle in the media and compute the interaction forces between each pair

of grains in contact [44]. The particle deformation, i.e. the strain, during collision

is represented by a virtual overlap (Figure 11B). The normal contact force is then

computed using damped-spring-dashpot model [60], which has its foundation in the

Hertzian theory [116] for elastic solids. The tangential force may be modeled using the

dashpot formulation with different parameter values, or simply as Coulomb friction.

DEM simulations were used to study the rheology of granular media; common topics

include the shear band formation [108, 207, 164] and discharge rate in hoppers [9, 45],

etc. Previous studies [63, 143] have also shown that, once the parameters in the

contact models were correctly tuned, DEM accurately computed the drag and impact

forces exerted by an intruder moving in particulate media. In this dissertation, we

use the nonlinear spring force model proposed in [63, 143]. The normal and tangent

forces are written as:

Fn = knδ
3/2 − gnνnδ1/2

Ft = µFn , (2)

where vn is the normal component of the relative velocity, kn the Hertzian contact

stiffness, and gn the viscoelasticity dissipation coefficient. The correct combination

of kn and the phenomenological parameter gn will produce the velocity dependent

coefficient of restitution measured in experiments [143]. For tangential forces we use

the normal Coulomb friction. Values of these coefficients can be found in [143, 231]

for 3 mm diameter glass particles and 6 mm diameter ABS plastic particles.

1.2.6 A continuum model for granular media

Recently, progress has been made in understanding the foundation of RFT and, more

broadly, the connection between intrusion forces and material flow in granular media.

The group led by Kamrin has developed a plasticity theory [119] for dense granular
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flow. Combined with the material point method (MPM) simulation [68], they can

reproduce known experiment measurements, such as the width of a shear-band devel-

oped in the split-bottom geometry [96]. The theory was recently extended to include

moving boundaries, and flows and forces developed in the yielding regime were pre-

dicted [17]. The RFT force relations [136] in the vertical plane were quantitatively

replicated. The surface pressure distributions predicted from the theory matched the

numerical computation of RFT, for intruders of different geometries moving steadily.

Although the reason behind the linear superposition in RFT has not yet been clarified,

the plasticity theory already encoded information such as particle sizes and intruder

speed (inertia effects) [17]. Further experiments are needed to testing this promis-

ing model in regimes where the RFT assumptions are not validated (e.g. high-speed

intrusion).

1.3 Multibody dynamics and simulations

To model complex locomotion systems, we used high-fidelity multibody solvers. Multi-

body simulation, i.e. the method that numerically computes the dynamical systems

composed of articulated rigid bodies, has broad applications. It has been used in the

film industry to create realistic animations without motion capture, in the automobile

industry to model engine combustion gears and suspension systems (Figure 12A), in

aerospace engineering [21, 157], and recently in robotics research (Figure 12B and C)

and advanced robots such as BigDog [170].

The core task of every multibody engine is to solve the Newton-Euler equations: M 0

0 I


 v̇

ω̇

+

 0

ω × Iω

 =

 f

τ

 , (3)

where M and I are the mass and moment of inertia matrices, f and τ account for

external forces and torques, v and ω are translational and rotational velocities. Rigid
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Figure 12: (A) MSC Adams simulation of a car suspension system. Adapted from
mscsoftware.com under fair use. (B) Atlas, the bipedal humanoid robot simualted
in Gazebo. Figure from gazebosim.org. (C) Multibody simulation aided sit-to-stand
task of a bipedal robot. Figure adapted from [203].
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bodies in simulation are typically connected with joints of various kinds, each impos-

ing some type of kinematic constraints. The constraints can either be solved using

Lagrange multipliers, or eliminated if we reformulate the problem using generalized

coordinates [138]:

M(q)q̈ + C(q, q̇) = Qint + JTv f + JTω τ , (4)

where q and q̇ are general coordinates and velocities. Centrifugal and Coriolis forces

are absorbed into C(q, q̇). f and τ are projected into the q−coordinate system using

Jacobians Jv for linear velocities, and Jω for angular velocities. Qint represents the

internal drive forces (in a vector form), such as torques generated by the motors.

Contact modeling is an challenging topic in the multibody simulation. The physics

of interactions between solids [116, 169] is complicated and beyond the scope of this

dissertation. In multibody simulation, the details of elastic deformations are ignored

and the contact forces are computed using abstracted methods. In early models,

contacts were resolved by adding penalty forces/impulses to penetration (e.g. such

as in DEM simulation) [205]. The time step needed for numerical convergence is

typically small for materials with high Young’s modulus. The current state-of-the-art

approach explores LCP (linear complementarity problem) based formulations [168]

where contacts are described by unilateral constraints, and the friction cones are

discretized [121, 201]. Special stepping algorithms [12, 201] were developed to solve

the non-smooth, stiff contact dynamics. For example, Tasaro et al. have proposed

an iterative method to compute the continuous cone constraints [12, 13], and imple-

mented it in their Chrono::Engine [204, 146], a C++ based physics simulation library.

In this dissertation, we used MBDyn2, an experimentally validated [83] physics en-

gine to model dynamics of legged robots. Lately, to study the limbless locomtion

2Source code available at www.mbdyn.org
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we switched to the high-fidelity Chrono::Engine3, which has a more flexible API (ap-

plication program interface) and better visualization. The soft ground interactions

in our simulation are based on either RFT or DEM, while rigid body collisions are

handled directly in the physics engine (e.g. Chrono::Engine).

Multibody LoopDEM Loop Multibody Loop

A B

sync

Figure 13: Coupling between multibody simulation and (A) DEM or (B) RFT
force models. (qn, q̇n) is the state of the articulated rigid-body system at the n-th
step during simulation. (rn, ṙn) represents the state of the particle system in DEM.
Fe/dFe is the 3M×1 column vector containting DEM/RFT interaction forces applied
to all M rigid bodies. Fi is the inter-particle collision force vector of dimesion 3N×1,
where N is the number of simulated grains. Black arrows indicate forces on individual
particles and rigid bodies. Red arrows indicate velocities at different surface elements
of a rigid body. ∆t is the time step.

We illustrate the idea of multibody-ground cosimulation in Figure 13. At the

beginning of each simulation step, we consider the force vector Fe applied to the

right-hand side of Equation 4. If RFT is used as the input force model, we simply

the sum the element force dFe, which depends on the local velocity and orientation

3Source code and instructions can be found at http://chronoengine.info/chronoengine/
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or each small surface segment (Figure 13B, middle block). Then, the multibody

dynamics is updated by the physics engine and ready for next iteration. In this way,

the simulation only contains the multibody loop. If use DEM, we have to compute Fe

and inter-particle collision force Fi from contacts between rigid bodies and particles.

We also update both the multibody system and the particle system, and synchronize

their states before the next force computation stage (Figure 13A, middle block). The

time step ∆t needed for simulation to converge depends on the force models being

used. In DEM systems, small values (1 ∼ 2µs) for time step are needed to capture

the particle collision process. In RFT simulation, we usually set ∆t = 0.01s for real

time computation; reducing ∆t does not give observably different dynamics.

1.4 Heterogeneous locomotion

1.4.1 Scattering motion of robots

When robots step into Mother Nature, they face the challenging environments that

wild animals are familiar with—uneven, rough and multicomponent heterogeneous

terrains. Unlike homogeneous granular media which is better understood, most natu-

ral terrains have some randomness, and their resistance properties are not predictable.

Pioneers in the robotics community have built legged systems that can negotiate mul-

tiple terrains. Examples of such robots includes RHex [187] and BigDog [177], and

the recently released next-generation Atlas (a bipedal, humanoid robot). However,

most existing studies have focused on the control [223] and mechanical design [187]

aspects of these robots. Principles of locomotion and transport in heterogeneous

environments have not yet been revealed.

In recent years, we have begun to approach heterogeneous locomotion problems

from a “robophysics” perspective [3]. Robots can serve as simplified locomotor models

because they are highly controllable (as compared with animals that often exhibit

unpredictable behavior) and their parameters are tunable. Systematic studies using
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Figure 14: (A) Simulated Xplorer robot walking on 3mm diameter particles. Glass
boulders (green spheres, 1.5 cm in radius) were added to perturb the locomotion. (B)
Two simulation runs started with very similar initial positions. (C) After a few steps,
the center of mass (CoM) trajectories (red lines) began to separate. Figure adapted
from [174].
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robots have facilitated the understanding of locomotion principles on/in homogeneous

flowable terrain, for various movement modes such as walking and running [135, 136,

231], jumping [1], and limbless undulation [142, 144].

In the spirit of robophysics, we studied the heterogeneous locomotion problem

in a lab controlled environment [174]. While a natural particulate terrain contains

poly-dispersed particles (the diameters of which range from a few hundred microns

to several centimeters), the “model” heterogeneous medium was bi-dispersed, and

composed of a homogeneous bed of 3 mm glass particles, and boulders of 3 cm in

diameter. We used an open-loop controlled hexapod robot, Xplorer [136] as the test

platform. The motion of the robot was captured by high-speed cameras (AOS X-PRI)

at 250 frames per second. A DEM simulation was created to compare with experiment

(Figure 14A). In both experiment and simulation, the locomotion of Xplorer was per-

turbed, as shown from the tracked center of mass (CoM) trajectories (Figure 14C).

Although the condition of the test bed was precisely controlled at the particle level

(the positions and velocities of individual particles) in simulation, if the robot’s start-

ing positions were varied by ∼ 0.5 cm (which is ∼ 5% of the body length, Figure 14B),

the CoM trajectories separated after a few leg strides [174]. The sensitivity on initial

condition is a signature of chaotic behavior, frequently observed in turbulence [184],

ODE (ordinary differential equation) systems [41, 139, 199], and some families of low

dimensional maps [92].

In later studies, we made extensive experimental efforts to understand the com-

plex interactions between Xplorer’s leg and a boulder placed on a granular medium

composed of loosely packed poppy seeds (Figure 15) [173, 174]. The change of the

robot’s moving direction (the scattering angle θ, Figure 15B) after collision with the

single boulder depended sensitively on both the impact parameter (the distance be-

tween the boulder and the centerline of the robot before collision, Figure 15B and C)

and the fore-aft position (the initial distance between the CoM of Xplorer and the

24



L
at

er
al

 I
n

it
ia

l 
p

o
si

ti
o

n
 (

cm
)

-5

0

5

5 cm

θ

v

Y

X

0 20-20
10

0

−10

Y (cm)

X
 (

cm
)

10

15

F
o
re

-a
ft

 i
n
it

ia
l 

p
o
si

ti
o
n
 (

cm
)

v

Boulder

20

v

Boulder

Lateral 

initial 

position

Fore-aft

initial 

position

A B

C

D

Figure 15: Single boulder scattering experiment. (A) Automated terrain creation
and locomotion testing system. The automated system, including the vision system,
the 3-axis motor, the universal jamming gripper, the air fluidized bed and the tilting
actuators. (B) Experimental setup. The center of the boulder is set as the origin. X
and Y axis represents lateral and fore-aft direction. (C) Robot CoM trajectories for
different lateral initial positions (i.e., different impact parameter). Data were collected
from a free boulder experiment, where the boulder was initially placed at a burial
depth of ≈ 1 cm, a quarter of the free boulder diameter. Trajectory color indicates
different impact parameters. (D) Robot CoM trajectories for various fore-aft initial
positions (i.e., different leg phase at contact). Data were collected from immobile
boulder experiment, where the boulder was fixed at a burial depth of ≈ 1.25 cm,
a quarter of the stationary boulder diameter. Red lines represent the linear fit of
the robots trajectories after boulder interaction, which was used to calculate the
scattering angle . The white circles in (B) and (C) indicate boulder position. Figure
adapted from [174].
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boulder, projected to the moving direction, see Figure 15B and D). Detailed observa-

tions indicated that θ was largely determined by the inclination angle at the point of

first leg contact, and was insensitive to the actual material composition and geometry

of the boulder.

Although complicated, the interaction between the robot and the boulder can be

described by a non-trivial potential function that depends on state variables (e.g., leg

phase and CoM position) [174]. Based on this evidence, an anticipatory controller

was examined [173] to “counter” the effects of boulders.

1.4.2 Path planning and transport properties

In a field of obstacles where the robot is scattered by a potential at each step, it is not

surprising that the dynamic of the open-loop controlled robot is chaotic. Given the

instability presented in heterogeneous locomotion and the complexity of the underly-

ing interaction model, an accurate analytical/numerical description of the dynamical

system seems hopeless.

However, not all locomotion tasks require precise predictions of trajectories. For

example, animal foraging behavior requires locomotion control at a strategic level

(e.g. searching and path planning) [216, 217]. In a context where the present food

distribution is far away (so a direct sensing is not valid) and undetermined, what

are optimal searching paths that increase survivability? Various studies have raised

this question [196, 105], where animal locomotion patterns where analyzed at a land-

scape level. A similar situation applies to robotic devices in search and rescue tasks,

where points of interest (such as locations of victims of an earthquake) remain to

be explored efficiently. In recent years, there have been scattered studies on chaotic

planning and trajectory generation in autonomous robots [158, 220]. At the time of

this dissertation, literature on this topic is still scarce, and few principles have been

revealed. While studies have shown some scaling laws for animal behaviors [196], they
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only hypothesized, vague connections between movement patterns and properties of

the environment (such as drift and diffusion in fluids) [105].

In this dissertation, we explore the in-depth topic of diffusional transport in a de-

terministic setting, where interaction forces between scatterers and a passively con-

trolled, constant-speed particle are modeled using hard-wall potentials. “Artificial

potential” based control has been proposed and tested in the past [180, 126]. We

anticipate that the theory presented can be used as fundamental blocks in advanced

path planning algorithms for next-generation field robots.

1.5 Locomotion control and feedback
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Figure 16: Snapshots of a cockroach running and following an angled wall. The
cockroach’s body trajectory is plotted in red. The blue curve indicates the body
angle. Figure adapted from [47].

Animal locomotion in many scenarios is guided by a closed-loop control system.

The controller, i.e. the neural system, is responsible for processing information of the

environment collected from various sensory sources (such as vision, tactile sensing

from the antenna, force and torque measurements from ensembles of Golgi tendon

organs [48]). Signals combining motor pattern and sensory feedback are emitted to

groups of synergistic muscles, which generate motion that is adaptive to the envi-

ronment. There are many examples of animal locomotionwith integrated feedback.

was shown to use its antenna during high speed running to follow walls that change
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orientation (Figure 16) [47]. The bipedal guinea fowl can dynamically balance its

steps on obstacles by increasing distal muscles recruitment [57].

Figure 17: The multi-level control structure of locomotion systems. Figure adapted
from [61].

There are two distinct categories of feedback: the sensing feedback that needs to

be actively processed (Figure 17, left side), and mechanical feedback which responds

passively at the musculoskeletal level (Figure 17, right side). Although in this in-

troduction we will not delve deeply into the neuromechanics world, it is worthwhile

to differentiate the roles of different sensory feedback. Inputs from central sensors

such as eyes and ears are used to adjust the overall moving direction and speed, while

proprioceptors such as the inner ear maintain the body balance unconsciously. Phasic

feebacks (mainly from mechanosensory cells such as muscle spindles) are fired at the

time of rapid perturbation. They can modulate the motor pattern within a step cycle

and increase the robustness of locomotion.

In neural systems, time delays are inevitable (Figure 18) [47, 95]. For example,

there is often a lag between the onset of stimuli and the time stamp at which sensors

begin to collect and transmit information [95]. Such delays challenge the number of

viable control schemes that rely on the sensing information [95]. In fact, it has been

shown that the mechanical response (the spring and damper-like, intrinsic behavior

of musculoskeletal structures) can play a dominant role in the stability of repeti-

tive, rapid locomotion [74]. The groups led by Full and Holmes proposed the lateral
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Figure 18: Illustrated diagram showing the information flow and time delay during
the hawkmoth flying. Figure adapted from [162].

leg-spring (LLS) model [188], a self-stabilizing system that explained the horizontal

recovery of cockroaches under sudden perturbations [114]. Conversely, a naive con-

trol strategy based on feedback from body orientation may slow down the equilibrium

process of the natural dynamics (as described by the LLS template) [188].

In robot control, sensing feedback often needs to be tightly coupled to low-level,

mechanical compliance in motors and actuators. A robot arm with high propor-

tional gain (i.e. low compliance) can trace the desired trajectory accurately in a

workspace with known boundaries. However, when a snake robot undulates in an

array of pegs positioned randomly, such precise control using fixed joint space tem-

plate (e.g. the serpentine wave [99]) can be a disaster [208]. Hogan et al. have

proposed an impedance control [100] in which loads from the environments (forces

at the end-effector and torques at joints) may be used to tune both the compli-

ance and the inertia response of the manipulator actively [101]. The desired be-

havior of the system, i.e. the target impedance, was often encoded in second-order,
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damped-oscillator equations [101]. Controllers built with this scheme were demon-

strated in legged [33, 211] systems traversing rough environments and limbless [182]

robots climbing pipes, although physical principles connecting compliance, environ-

ment properties, and locomotion efficiency have not yet been discovered. In this

dissertation, we apply biologically inspired, compliant control schemes to a snake-like

robot in simulation, and systematically study the locomotion performance.

1.6 Organization of the thesis

With the framework introduced, this thesis is organized in the following manner:

1. In Chapter 2, a RFT model for low-speed, legged locomotion on granular surface

is presented. The chapter is edited based on [136].

2. In Chapter 3, I illustrate a DEM study of lightweight, high-speed locomotion

on granular fluid. The chapter is edited based on [231, 175].

3. In Chapter 4, transport and diffusion of a particle moving in a heterogeneous

environment, the Lorentz gas is discussed.

4. We present preliminary studies of snake locomotion and control in Chapter 5.
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CHAPTER II

THE RESISTIVE FORCE THEORY FOR LEGGED

LOCOMOTION ON HOMOGENEOUS GRANULAR

MEDIA

The contents of this chapter was edited based on the published papers [136, 175]. RFT

force measurements and Xplorer experiments were conducted by Chen Li. Penetration

tests in weakened granular and SandBot experiments were conducted by Feifei Qian.

2.1 Introduction

Surface

Side view

A B

5 cm

Figure 19: Legged interaction with granular media. (A) A zebra-tailed lizard run-
ning on sand [134]. Dashed box indicates the region of leg-ground interaction shown
in (B). Schematic of leg-ground interaction for (B) the hind foot of the zebra-taield
lizard. Dashed, solid, and dotted tracings are leg positions at early, mid, and late
stance. Bars and arrows indicate local orientations and movement directions of leg
elements. The gray area is the granular substrate.

To begin to create a terradynamics that allows the prediction of legged locomotion

on a flowable ground, we hypothesized that the net forces on a leg (or a body)

moving in a granular medium in the vertical plane could be approximated by the

linear superposition of resistive forces on infinitesimal leg (or body) elements. Our

hypothesis was inspired by our recent success in applying the methods of resistive
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force theory [131] to predict the forces and movement during the limbless locomotion

of a lizard swimming in sand [142] and in describing the drag [142, 63] and lift [63] on

simple objects moving in granular media at fixed depths. In these studies, the linear

superposition was valid for intruders moving in granular media in the horizontal

plane at low enough speeds (for example, ≤ 0.5 m/s for 0.3-mm glass particles [142]),

where intrusion forces are dominated by particle friction (insensitive to speed) and

non-inertial [142]. However, it was unclear whether linear superposition could apply

to legs (or bodies) of complex morphology and kinematics moving in the vertical

plane. In this chapter we will answer these questions in detail.

2.2 Materials and methods

2.2.1 Force measurements

To measure resistive forces for leg elements, we moved a thin rigid plate (of area

A) in granular media in the vertical plane at 1 cm/s and measured lift fz and drag

fx on the plate (in the continuously yielding regime). We determined vertical and

horizontal stresses σz,x = fz,x/A as a function of the plates depth |z| below the surface,

angle of attack β, and angle of intrusion γ (Figure 20) . To test the generality of our

resistive force model, we used three dry granular media of various particle size, shape,

density, and friction, prepared into flat, naturally occurring, loosely and closely packed

states [135, 142] (Figure 55, and Table S1). Slightly polydispersed near-spherical glass

particles 0.3 and 3 mm in diameter (covering the particle size range of natural dry

sand (∼0.1 to∼1 mm) [19]) and rounded, slightly kidney-shaped poppy seeds (0.7 mm

in diameter) allowed us to probe general principles for naturally occurring granular

media of high sphericity and roundness (such as Ottawa sand [43]). We discuss at the

end of the paper possible effects of particle nonsphericity and angularity also found

in many natural sands [43].

We used aluminum to construct the plate element (area A = 3.81 × 2.54 cm2,
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Figure 20: Lift Fz (blue arrow) and drag Fx (green arrow) on a thin rigid plate of
area A moving in granular media (gray area) in the vertical plane at speed v = 1
cm/s were measured as a function of the plates depth |z| below the surface, angle
of attack β, and angle of intrusion γ. The granular media were fluidized (and then
compacted when a closely packed state was prepared) using an air-fluidized bed. g is
gravitational acceleration.

thickness = 0.64 cm) and model legs (maximal length 2R = 7.62 cm, width = 2.54 cm,

thickness = 0.64 cm). We measured the friction coefficient µ between aluminum and

poppy seeds to be 0.40 (later we constructed robot legs using plastic of a similar

friction coefficient with poppy seeds, 0.36), by placing an aluminum plate on a wooden

plate bonded with a single layer of poppy seeds, increasing the slope of the wooden

plate from zero, and examining the angle ξ at which the aluminum plate began to

slide. Thus µ = tanξ. The length and width of both the plate element and model

legs were ∼ 10 times the particle diameter, ensuring that the granular media could

be approximated as a continuum.
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Before each force measurement, we used an air fluidized bed (24× 22 cm2 surface

area) to prepare the granular media (15 cm deep) to a well-defined compaction (see

Table 3 for the volume fractions of closely and loosely packed states of the granular

media tested). Air flow was turned off during force measurements. We used a 6

degree-of-freedom robotic arm (CRS Robotics) to move the plate element and rotate

the model legs. We used a 6-axis force and torque transducer (ATI Industrial Au-

tomation) mounted between the intruder and the robotic arm to measure forces to a

precision of 0.05 N at a sampling frequency of 100 Hz. We performed all the force

measurements at low speeds (∼ 1 cm/s) to ensure that particle inertia was negligible,

and in a vertical plane at the middle of the air fluidized bed and far from the sidewalls

(distance > 3 cm) to minimize boundary effects.

In the plate element intrusion experiment, we attached the plate to the force and

torque transducer via a supporting rod and an adjustable mount with which attack

angle β could be varied. We varied intrusion angle γ by adjusting the trajectory of

the robotic arm. For each combination of β and γ, we separately measured the forces

on the supporting rod and mount moving in the granular media without the plate,

and subtracted them to obtain forces exerted by the granular media on the plate

alone.

During each test session, we first prepared the granular media while the plate was

above the surface. We then moved the plate (oriented at attack angle β) downward

to the surface (depth |z| = 0), paused it for 2 seconds, and then intruded it into the

granular media along intrusion angle γ. After intrusion was finished, we prepared

the granular media again, and extracted the plate along the same path. This gave us

measurements of stresses σz,x for both ±(β, γ). For horizontal movements (γ = 0),

σz,x were nearly constant when the plate was far from the container sidewalls, and

we obtained αz,x by fitting Eq. 1 to averages of σz,x in the steady state regions at

three depths (|z| = 2.54 cm, 5.08 cm, and 7.62 cm). We measured αz,x for γ within
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[−π/2, π/2], and determined αz,x for γ within [−π,−π/2] and [π/2, π] by symmetry:
αz(β, γ) = αz(−β,−π − γ) if −π ≤ γ ≤ −π/2

αz(β, γ) = αz(−β, π − γ) if π/2 ≤ γ ≤ π

(5)


αx(β, γ) = −αx(−β,−π − γ) if −π ≤ γ ≤ −π/2

αx(β, γ) = −αx(−β, π − γ) if π/2 ≤ γ ≤ π

(6)

In the model leg rotation experiment, we rotated the model legs at an angular

velocity ω = 0.2 rad/s at a hip height h = 2 cm within leg angle −3π/4 ≤ θ ≤

3π/4 (at the beginning and end of which all three legs tested were fully above the

granular surface), where leg angle θ was defined as the angle sweeping from the

vertical downward direction to the direction along which leg length was maximal.

For each model leg, we separately measured the forces due to the weight of the model

legs rotating in the air, and subtracted them to obtain the forces on the model legs

exerted by the granular media during rotation.

Due to the high repeatability of our fluidized bed and robotic arm, we found

that for all media tested, run-to-run variation in αz,x for fixed β and γ was always

within 0.005 N/cm3 at any given depth; thus we only performed one trial for each

combination of β and γ. All the stresses were calculated in the regions where the

plate was far from the container boundaries (distance > 6 cm). We also confirmed

that for low enough speeds, intrusion forces in granular media were insensitive to

speed (for example, in loosely packed poppy seeds, at v = 1 m/s, force only increased

by less than 20% from that at v = 1 cm/s); thus, particle inertia was negligible.

2.2.2 Robot platform

We built our robot (body length = 13 cm, body mass = 150 g) by modifying a small

commercially available robot (RoboXplorer, Smart Lab). The robot had similar mor-

phology and kinematics as a RHex robot, with a rigid body and six legs performing
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1 degree-of-freedom rotation in an alternating tripod gait. We substituted the stock

motor with a stronger one (RadioShack Super Speed 9–18 VDC Hobby Motor, Model

# 273-256) and modified the gear trains (gear ratio: 47 revolutions in the motor

transmits into 1 rotation of the legs). These changes increased maximal stride fre-

quency f to 5 Hz. We removed the external body shell to reduce weight and the belly

area (to 13× 2 cm2). This reduced drag on the belly during locomotion on granular

media.

We used 3-D printing to make custom robot legs. All the legs had the same max-

imal length 2R = 4.1 cm, width = 1.0 cm, and thickness = 0.3 cm, but different

curvatures 1/r = [−1,−0.92,−0.60, 0, 0.60, 0.92, 1]/R. The ABS plastic used to fab-

ricate the legs had a similar friction coefficient with poppy seeds (0.36) to that of

aluminum with poppy seeds (0.40). The leg width and length were ∼ 10 times the

particle diameter, allowing the granular media to be approximated as a continuum.

We ensured that the legs had large enough stiffness and moved like rigid bodies (< 5%

deformation) during locomotion.

We tuned the center of mass of the robot to overlap with the geometric center of

the body by adding mass to the lighter end of the robot. We measured the masses,

dimensions, and relative positions of all robot body and leg parts, and calculated the

moment of inertia of the robot to be I = 2.08×103 g cm2 about the pitch axis through

the center of mass. We powered the robot by an external power supply (Power Ten

Inc.) to ensure constant voltage during trials, and adjusted voltage to vary stride

frequency f between trials.

Before each trial, we used an air fluidized bed track (200 × 50 cm2 surface area)

to prepare the granular media (12 cm deep) to a well-defined compaction. We used

two synchronized high-speed cameras (X-PRI, AOS Technologies) to capture top and

side views of the robot’s locomotion at 500 frame/s. We measured f from the side

view, and measured forward speed vx from the top view by digitizing a high contrast
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marker placed near the center of mass. For each f and 1/r, we performed three trials

and reported mean ± s.d. for average forward speed vx in experiment.

2.3 Results and discussion

2.3.1 Forces on the plate
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Figure 21: (A) Vertical (blue curve) and horizontal (green curve) stresses
αz,x = Fz,x/A versus |z| for representative intrusion and extraction using (β, γ) =
±(π/6, π/4) into loosely packed poppy seeds. Blue and green dashed lines are linear
fits with zero intercept over intermediate depths at which the plate was fully sub-
merged and far from the bottom of the container. Horizontal arrows on top indicate
the range of leg depths in Figures 22 and 23. (B) Vertical and (C) horizontal stresses
per unit depth αz,x [slopes of dashed fit lines in (A)] versus β and γ. Plate schemat-
ics with arrows denote representative orientations and movement directions. Black
curves indicate where αz,x = 0. The shaded areas indicate where αz (or αx) is not
opposing the plates vertical (or horizontal) velocity. Circles indicate z,x from data
shown in (A). Arrows above and below the color bars indicate directions of αz,x for
positive and negative values.

In all media tested, we observed that for all attack angles β and intrusion angles

γ, σz,x were nearly proportional to depth |z| when the plate was fully submerged and

far from the bottom of the container (Figure 21A). This is because friction-dominated

forces are proportional to the hydrostatic-like pressure in granular media. Therefore,

we modeled the hydrostatic-like stresses as

where αz,x are vertical and horizontal stresses per unit depth (slopes of dashed fit

lines in Figure 21A). We found that in all media tested, αz,x depended sensitively on
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both attack angle β and intrusion angle γ (Figure 21, C and D, Figure 56, and addi-

tional data Table S5). αz,x was opposing the plates vertical (or horizontal) velocity for

most but, counter-intuitively, not all β and γ (exceptions are indicated by the shaded

regions). For almost all attack angles β, αz,x had larger magnitudes for intrusion

angle γ ≥ 0 than for γ ≤ 0; i.e., it was harder to push the plate into granular media

than to extract it. For all intrusion angles γ except γ = ±π/2, |αz,x| were asymmet-

ric to attack angles β = 0 and β = ±π/2; i.e., only when the plate moved vertically

were stress magnitudes the same for vertically or horizontally mirrored orientations

(e.g., β = ±π/6). These asymmetries are a result of gravity breaking symmetry in

the vertical plane and differ from the case in the horizontal plane [142]. Our resistive

force measurements are an advance from previous force models based on the flat-plate

approximation used in many terramechanic models [23, 150], which capture only the

dependence of stresses on intruder depth, but not on its orientation or movement

direction (Figure 53).

Despite their different magnitudes and subtle differences in shape, the overall

profiles of stresses (per unit depth) αz,x(β, γ) were similar for all media tested. Fur-

thermore, these stress profiles could be approximated (to the first order) by a simple

scaling of generic stress profiles (Figures 58 and 59, and Tables 4 and 5).

2.3.2 Forces on rotational intruders

We next tested our hypothesis that forces on a complex intruder moving in granular

media in the vertical plane could be approximated by the linear superposition of forces

on all intruder elements. We measured the net lift Fz and thrust Fx on thin rigid

model legs rotating about a fixed axle (simulating a tethered body [222, 229]) through

granular media in the vertical plane at ∼ 1 cm/s (Figure 22). We then compared

them to predictions from the resistive force model by the integration of stresses over
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Figure 22: The resistive force model predicts forces on intruders of complex mor-
phology and kinematics moving in granular media. Three thin rigid model legs of
different geometries, (A) a c-leg, (B) a flat leg, and (C) a reversed c-leg, were rotated
about a fixed axle at a hip height h through granular media (gray area) in the vertical
plane at an angular velocity ω, generating leg speeds of v ∼ 1 cm/s, and net lift Fz
(blue) and thrust Fx (green) were measured as a function of leg angle θ All three
legs had identical maximal length 2R from the axle. g is gravitational acceleration.
(D to F) Fz,x versus θ on the three legs measured in the experiment (solid curves)
and predicted by the resistive force model (dashed curves) using Eq. 2 (movie S3).
Insets: Fz,x versus θ from experiment (solid curves) versus predicted (dotted curves)
using Eq. 2 and previous force models in which stresses depended only on depth
(Figure 54).
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the legs

Fz,x =

∫
S

σz,x(|z|s, βs, γs)dAs =

∫
S

αz,x(βs, γs)|z|sdAs , (7)

where S is the leading surface of the leg; dAs, |z|s, βs, and γs are the area, depth below

the surface, angle of attack, and angle of intrusion of infinitesimal leg elements; and

αz,x(βs, γs) are element stresses per unit depth (interpolated from data in Figure 21, B

and C). To test the robustness of our force model, we used three model legs of different

geometries (with the same maximal leg length 2R): a RHex robots c-leg [135, 115], a

flat leg, and a reversed c-leg (Figure 22, A to C). In model calculations, each leg was

divided into 30 elements.

In all media tested (Figure 22, D to F, and Figure 57), we observed that for

all three legs, the measured net lift and thrust Fz,x as a function of leg angle θ

(solid curves) were asymmetric to the vertical downward direction (θ = 0), and were

larger during intrusion (θ ≤ 0) than during extraction (θ ≥ 0). Peak Fz,x were

largest on the c-leg and smallest on the reversed c-leg. The reversed c-leg experienced

significant negative lift (suction force, Fz < 0) during extraction. For all media

tested, our resistive force model predicted Fz,x versus θ for all three legs (dashed

curves), capturing both the magnitudes and asymmetric profiles. The relative errors

of peak forces between data and model predictions were within 10% for the c-leg

in four media tested, and within 33% for all three legs in all media tested. The

accuracy of our resistive force model was significantly better than that of previous

force models in which stresses depended only on depth (Figure 22, D to F, insets;

Figure 54). Furthermore, our resistive force model revealed that the c-leg generated

the largest forces, because its morphology allowed leg elements to not only reach

deeper depths but also access larger stress regions in Figure 21, B and C (particularly

for elements at large depths).
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Our discovery of the insensitivity of the stress profiles to particle properties (Fig-

ure 56) has practical benefits: For granular media of near-monodispersed, near-

spherical, rounded particles, as an alternative to measuring αz,x for all attack angles

β and intrusion angles γ in the laboratory, one can simply perform a single measure-

ment [of αz(0, π/2), using a horizontal plate penetrating vertically downward] to infer

all αz,x(β, γ) by a scaling routine (supplementary text section 3 and Figure S9) and

predict forces (with a small loss in accuracy for the c-leg and the flat leg, but a larger

loss in accuracy for the reversed c-leg, Figure 60).

2.3.3 Prediction of robot performance using RFT

We tested the ability of our resistive force model to predict legged locomotion. We

chose to study the locomotor performance (speed) of a small RHex-like robot [115]

(Figure 23A, top) moving on granular media. The robots six legs rotated nearly

entirely in the vertical plane during locomotion, and its small size ensured that leg

intrusion speeds were low enough for particle inertia to be negligible. We chose

poppy seeds as the test granular medium, because the grains were both small enough

be prepared in our fluidized bed track [135] and large enough to not jam the robots

motor and gear trains. The robots legs had a similar friction coefficient with poppy

seeds to that of the model legs and were sufficiently rigid so that they experienced

negligible bending during movement.

Unlike the sand-swimming lizard, which moves within granular media quasistat-

ically (thrust and drag are always roughly balanced) [142], legged locomotion on

the surface of granular media is dynamic (forces are not always instantaneously bal-

anced). As a result, the resistive force theory (which solves for speed by balancing

forces) [131, 142] cannot be directly applied. Thus, to use our resistive force model to

calculate robot speed, we developed a three-dimensional multibody dynamic simula-

tion of the robot (Figure 23A, bottom) (28). The simulated robot had the same body
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Figure 23: A multibody dynamic simulation using the resistive force model predicts
legged locomotion on granular media. (A) Side views of a small RHex-like robot at
mid-stance during locomotion on granular media, using c-legs (left) and reversed c-legs
(right) in the experiment (top) and simulation (bottom). Arrows in the simulation
indicate element forces on one tripod of legs. g is gravitational acceleration. (B)
Forward speed vx versus time t from two representative runs using c-legs (red, stride
frequency f = 2.0 Hz , curvature 1/r = 1/R) and reversed c-legs (blue, f = 2.2 Hz ,
1/r = 1/R). (C) Average forward speed Embedded Image versus f using legs of seven
curvatures 1/r transitioning from reversed c-legs to c-legs (inset), where r is the radius
of curvature, 2R is the maximal length of the robot legs, and the minus sign denotes
reversed legs. (D) Embedded Image versus 1/r at f = 1, 2, 3, and 4 Hz. In (B)
to (D), solid and dashed curves indicate the experiment and simulation, respectively.
Error bars in (C) denote ±1 s.d. (� 1 cm/s in the simulation). Experimental data
in (D) are interpolated from those in (C) (hence no error bars). Red and blue arrows
in (C) and (D) indicate averages from data shown in (B).
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and leg morphology and used the same alternating tripod gait as the actual robot and

had its motion constrained in the vertical plane. We divided each body plate and leg

into 30 elements. The velocity v and angular velocity ω of the simulated robots body

were calculated by solving the Lagrangian equations of the robotic system, provided

the net force and torque calculated from our resistive force model by the integration

of stresses over each leg and the body using Eq. 2. To test the robustness of our

resistive force model and simulation, we used legs of seven geometries with different

curvatures 1/r (given maximal leg length 2R) (Figure 23C, inset) and varied stride

frequency f to up to 5 Hz.

We observed similar robot kinematics (Figure 23A) and forward speed vx ver-

sus time t (Figure 23B) in both the experiment and simulation. The robot moved

faster and penetrated its legs less deeply during stance using c-legs (Figure 23A, left;

Figure 23B, red) than using reversed c-legs (Figure 23A, right; Figure 23B, blue).

Average forward speed v̄x increased with stride frequency f for legs of all curvatures

1/r and was lower at any f using legs of negative curvatures than using legs of positive

curvatures (Figure 23, C and D). The agreement between experiment and simulation

in v̄x(f, 1/r) was remarkable: Errors were within 20% for 90% of the f and 1/r tested

and within 35% for all the f and 1/r tested. Simulation using our scaling routine also

achieved reasonable accuracy (Figure 53). This was an improvement over simulation

using previous force models in which stresses depended only on depth (Figure 65).

Our resistive force model and simulation revealed that the robot moved faster

using c-legs than using reversed c-legs, because whereas the c-legs penetrated less

deeply, their elements accessed larger stress regions in Figure 21, B and C, resulting

in larger leg lift (Figure 66) and smaller body drag. Our model and simulation also

allowed the prediction of ground reaction forces on granular media (Figure 23A, red

arrows, and Figure S13), which would be difficult to measure otherwise. Furthermore,

our model and simulation predicted that using arc-like legs (given maximal leg length
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2R) of an optimal curvature of 1/r = 0.86/R, the robot would achieve maximal speed

of v̄x = 72 cm/s (≈5 body length/s) at 5 Hz. Our approach affords significant reduc-

tion in the computational time needed to model movement on granular media. For

example, relative to our multiparticle Discrete Element Method (DEM) simulation

of movement on granular media [231, 63], our simulation using the resistive force

model can achieve a factor of 106 in speed-up (e.g., 10 s versus 30 days using DEM

to simulate 1 s of locomotion on a granular bed of 5× 106 poppy seeds).

2.4 Further discussions

2.4.1 Application to natural sand

We tested the predictive power of our scaling routine (Figure 61) for two highly

polydispersed, nonspherical, highly angular natural sands (Figures 62, 63 and 64,

and Table 6)1. We found that the model accuracy for natural sands was slightly

worse than found in the glass spheres and poppy seeds (for example, 35% versus 20%

error in peak Fz for a rotating c-leg). As was the case for the near-spherical granular

media tested, the functional forms of forces on the c-leg and the flat leg were still well

captured by our scaling routine. Furthermore, the overestimation was not affected by

reducing the polydispersity of the natural sand. This suggests that the nonsphericity

and angularity of natural sand particles[43] may be the cause of this overestimation,

which may require additional model fitting parameters and scaling factors. Our model

is intended for dry sand (∼0.1 to ∼1 mm in particle diameter [19]) and may not work

for dry cohesive powder (≤∼ 0.01 mm) [40]. We do not expect our model to work

if the particle size approaches a characteristic length of the locomotor (for example,

∼ 1cm particles for our robot of ∼ 1cm foot size), so that the continuum assumption

breaks down and particles effectively become boulders. We also do not expect our

model to capture wet, cohesive flowable media such as soil and mud.

1Details can also be found in Appendix A
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2.4.2 Application to weakened granular media

CA B

Figure 24: Experiment setup and force measurement for the penetration experiment.
(A) Diagram of penetration experiment. (B) Vertical force on a w = 3.7 cm, R = 3.8
cm SandBot cylindrical leg versus depth during penetration of ≈ 1 mm diameter
poppy seeds at various air fluidization speeds from 0 to 0.3 m · s−1. Colors represent
air speeds. (C) Vertical penetration resistance, k, versus air flow speed. Blue circles
and black squares represent the slope of vertical force per unit depth from experiment
and RFT simulation, respectively. Figure reproduced from [175].

Locomotor performance is sensitive to mechanical properties of the ground, which

vary widely among different terrestrial environments. Using an air-fluidized bed,

we can systematically control penetration resistance of granular media via contin-

uous upward air flow. Recently, we studied locomotion performance of the larger

SandBot(∼ 2.5 kg, ∼ 30 cm RHex-like robot, Figure 25A) walking on a weakened

granular substrate. We measured the vertical ground reaction force Fz (Figure 24B,

solid lines), and computed the penetration resistance k = Fz/|z| = Aαz(0, π/2) (force

per depth, blue circles in Figure 24C) on a cylindrical leg (Figure 24A) of SandBot un-

der different air flow speeds vair. Though air flow potentially adds more complications

to the system, k in experiments decreased approximately linearly with increasing vair

(below the onset of fluidization). We posited that the angular dependence map αz,x

was preserved under the air flow. The decrease of granular resistance was then mod-

eled by a single scaling factor (like ζ in the generic stress calculation in Appendix A).

The modified RFT captured the penetration force (Figure 24B, the black solid line

with squares) and resistance (Figure 24C, black squares) on the leg. We then used the
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Figure 25: (A) SandBot with cylindrical wheels. (B) Average forward speed v̄x
of SandBot on poppy seeds as a function of air flow speed for different leg rotation
frequencies (ω = 2, 4, 6, 8 rad/s, from blue to red). Solid curves correspond to RFT
model predictions. Figure reproduced from [230].

extended terradynamics to predict the locomotion speeds of SandBot. The average

forward speed v̄x vs. vair in terradynamic simulations (Figure 25B, solid lines) and

experiments (Figure 25B, symbols) agreed well for low air speed vair ≈ 0. Though in

experiments v̄x decreased faster with increasing vair than in RFT (especially at the

highest frequency ω = 8 rad/s), the model qualitatively captured the experimentally

observed failure of the locomotor at large vair.

2.5 Conclusion

We have developed a new approach to predicting legged locomotion on granular me-

dia. This terradynamics relies on new resistive force measurements and linear su-

perposition [131, 142, 63]. The general profiles of these resistive force measurements

are insensitive (other than magnitudes) to a variety of granular media composed

of slightly polydispersed, approximately spherical, rounded particles. Our terrady-

namics may not be limited to legged locomotion, because the integration of stresses

should in principle work for devices of other morphology and kinematics, such as
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wheels, tracks, and earth movers moving on granular media [23, 150]. For the parti-

cle types tested here, an important addition to our model would be to capture three-

dimensional effects [134] and spatial and temporal variation in compaction [135] and

slopes [30], and test its validity in the high-speed inertial fluid regime (when leg in-

trusion speed is 1 m/s, at which particle inertia dominates forces) [231]. Our resistive

force model also provides opportunities to test and develop new physics theories of

dense granular flow [119]. Finally, we envision that, in concert with aero- and hy-

drodynamics [71, 161, 219, 131, 222, 166, 129, 67, 229, 128], a general terradynamics

of complex ground will not only advance understanding of how animals move [61]

at present [219, 131, 222, 166, 129, 67, 28, 39, 102, 134, 30, 73, 218, 142], but also

facilitate the development of robots with locomotor capabilities approaching those of

organisms [229, 128, 177, 135, 115, 231].
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CHAPTER III

DISCRETE ELEMENT SIMULATION OF LEGGED

LOCOMOTION ON HOMOGENEOUS GRANULAR

MEDIA

The contents of this chapter was edited published in ref. [231]. Experiments were

performed by Feifei Qian.

3.1 Introduction

Animals live in the deserts can move rapidly across granular surfaces. For example,

the zebra-tailed lizard (Callisaurus draconoides, ∼ 10 cm, ∼ 10 g) can run at speeds

over 100 cm/s (10 body length/s) on sand. Unlike SandBot which must penetrate

a large portion (> 70%) of its limbs to move on granular media, the lizard is light

enough that even while running it only penetrates a small portion (< 30%) of its

limbs to generate force [134]. This suggests that a small, lightweight body may

confer advantages for locomotion on deformable surfaces such as granular media.

Recent advances in the technique of smart composite microstructures (SCMs) [228]

have enabled the development of small, lightweight robots (∼ 10 cm, ∼ 20 g) [103, 26]

such as DynaRoACH (Figure 26A). These robots are similar in size to the zebra-tailed

lizard (and many other desert vertebrates and invertebrates [49, 156] and can achieve

performance approaching animals (∼ 10 body length/s) on solid surfaces. Therefore,

in addition to advancing locomotor capabilities of devices on complex terrain [133],

these lightweight robots provide promising physical models to study how effective

legged locomotion can be achieved on granular (flowable) substrates in small, high-

performing animals.
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In this chapter we reveal principles of movement of lightweight locomotors on gran-

ular media using a combination of laboratory experiment and Discrete Element Sim-

ulation (DEM). We perform studies of DynaRoACH on a medium of glass particles.

To obtain estimates of ground reaction forces that result in high performance, we in-

tegrate the DEM simulation with a multi-body dynamic simulation of the robot. Our

study reveals for the first time that qualitatively different propulsion mechanisms exist

for low- and high-frequency movement on granular media. While the low-frequency

locomotion of DynaRoACH can be understood using a previously introduced rotary

walking model, at higher frequency, the robot utilizes the hydrodynamic response of

the granular medium to achieve high performance through sustained fluidization of

the ground. Furthermore, we use the simulation to systematically vary parameters

such as friction (particleparticle and particleleg) that are inconvenient to modify in

experiment, and demonstrate performance and stability limits. We also investigate

how limb width modifies the walkrun transition. We expect that the mechanics dis-

covered here and the tools we have developed should be applicable to other devices

and provide a starting point to understand biological locomotion and develop robot

designs on more complex deformable substrates, such as leaf litter and mud.

3.2 Materials and methods

3.2.1 Experiment platform

Robotic platform The DynaRoACH robot used in this study (Figure 26A) is a small,

lightweight (10 cm, 25 g), bio-inspired hexapedal robot [103]. It has six c-shaped

legs (radius 1 cm) and runs with an alternating tripod gait. All six legs are driven

by a single motor through body linkages. The motor is controlled by a centralized

controller mounted close to the center of mass (CoM) of the robot. Control parameters

such as the stride frequency, running time, and PID control gains are set on a PC

and communicated to the controller through a Bluetooth wireless interface.

49



Side View

Top View

BA

C

Dorsal camera

Lateral camera

1 cm

10 cm

Tracking markers

3 mm diameter glass particles

x

z v

Figure 26: The lightweight, hexapedal DynaRoACH robot resting on a bed of 3 mm
diameter glass particles. (B) Leg tip trajectories from top view and side view. Solid
blue and dashed green trajectories denote the two alternating tripods. (C) High-speed
video experimental setup.
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We used 3.0 ± 0.2 mm diameter glass particles (density = 2.47 g/cm3) as the

granular medium (Figure 26C). The large size of the particles reduces computation

time in the simulation portion of the study, facilitating a direct comparison between

experiment and simulation. While these particles are larger than most natural sand

grains, they have similar qualitative behavior in response to intrusion; a previous

study [143]) also demonstrated that these particles provided a good model material

for studying locomotion (swimming) within granular media.

In our study, we prepared the granular medium into a closely packed state (φ =

0.63). However, we found that our results did not qualitatively change for different

φ (e.g. robot speed was insensitive to φ), likely because the robot penetrated its legs

into the granular medium to depths of only a few particle diameters and the range of

achievable φ was small (0.61 < φ < 0.63) in the low-friction 3 mm particles.

We ran the DynaRoACH robot on a 75 cm long, 30 cm wide trackway filled with

the 3 mm diameter glass particles to a depth of 6 cm (Figure 26C). We pressed the

particles using a flat plate before each trial to prepare the particles to a closely packed

state. Running kinematics were captured by two high-speed video cameras (AOS X-

PRI) from both top and side views at a frame rate of 200 fps. One high-contrast dorsal

marker was bonded above the robot CoM to obtain average forward speed; two lateral

markers were bonded on the front and rear of the robot body to obtain CoM height

(approximated by the average vertical position of the two markers). Stride frequency

was determined from the videos.

To capture prescribed leg trajectories, the robot was suspended in the air and the

trajectories of the leg tips were recorded as the motor rotated. During a cycle, each leg

rotated backward about the hip (retraction), lifted-up sideways, and swung forward

(protraction) (Figure 26B). Leg kinematic parameters such as the foreaft swing angle

and lateral lifting angle were determined by tracking the markers on the legs and used

to guide tuning of leg trajectories in simulation. We define a stride period T as the
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time between the start of two consecutive retraction phases, and stance as when the

leg generates ground reaction force (determined from simulation).

3.2.2 Simulation

A

C

10 cm

3 mm diameter glass particles

B

v

 Top View

Side View

10 cm

Figure 27: (A) Simulation of the robot using MBDyn. (B) Leg tip trajectories in
simulation. (C) Simulation of the robot running on a bed of 3 mm particles.

In the simulation, we use the contact force model given by Equation 2, with

kn = 2×106 kg · s−2 ·m−1/2 and gn = 15 kg · s−1 ·m−1/2. We set µpp,pl = {0.1, 0.3} the

particleparticle and particleleg friction coefficients. The restitution and friction coef-

ficients were experimentally measured and validated in a rod drag experiment [143].

Once the parameters were set in the DEM simulation, the robot locomotion could

be accurately predicted over a wide range of conditions. The simulated granular bed

(3× 105 particles) was 60 PD (particle diameters) in width, 15 PD in depth, and 290

PD in length, and had frictionless boundaries (Figure 1F). At low frequencies we used

a shorter granular bed (90 PD) containing 1.1 × 105 particles to save computation

time.

To model the robot we used a multi-body dynamic simulator, MBDyn [83, 24],

which allows time domain simulation of multi-body mechanical systems from first
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principle equations (Equation 3). MBDyn features a full 3D simulation with six

translational and rotational degrees of freedom. This is essential for locomotion on

the surface during which pitch, roll, and yaw are often present [133]. In the dynamic

simulation, the robot was constructed with similar body and leg geometries as the

actual robot (Figure 27A). The simulated robot was composed of 13 individual rigid

parts: one box-shaped body, six c-shaped legs, and six linking plates between legs and

body. The legs of the actual robot were not perfectly rigid but experimental observa-

tions showed little leg deformation during locomotion on granular media. The joints

between the link plates and c-shaped legs allowed frontback swing of the legs while

the platebody joints allowed sideways lifting of the legs. Tuning kinematic parame-

ters for the joint movements produced leg trajectories (Figure 27B) that resembled

experimental measurements (Figure 26B) without mimicking the internal linkage of

the actual robot.

We combined MBDyn with the DEM code to simulate robot locomotion on gran-

ular media via a communication interface (a UNIX socket using C++). At each time

step, MBDyn integrated the equations of motion for the robot combined with the

forces and torques calculated from the DEM code. The updated kinematics including

position, orientation, velocity, and angular velocity of each part of the robot were then

passed back to the DEM code to compute the forces and torques on all interacting

elements at the next time step. The time step was 2.5 µs , although setting it to 1 µs

did not change the results; the time step was determined by typical particle overlap

times in DEM. In addition to the kinematics during locomotion (e.g. CoM position

and velocity, stride length, limb penetration depth), the dynamics during locomotion

(e.g. net ground reaction force on each limb and tripod) were also determined from

the simulation.
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3.3 Results and discussion

3.3.1 Kinematics

From measurements in simulation of the instantaneous speed of the robot (see Fig-

ure 28), we computed time-averaged forward speed. The speed of the robot measured

in both experiment and simulation (Figure 29A) agreed well, and increased monoton-

ically with stride frequency. At the highest stride frequency tested in experiment (12

Hz), the robot reached a speed of 50 cm/s (5 body length/s), comparable to slow runs

of the zebra-tailed lizard. Calculated stride length (Figure 29B) decreased with stride

frequency from low (0 − 3 Hz) to intermediate frequencies (4 − 6 Hz) but increased

with stride frequency at high frequencies (7− 12 Hz). Duty factor (the percentage of

the total stride period during which the limb is in contact with the ground) measured

in simulation (Figure 28E and J) fell below 0.5 at intermediate frequencies of ∼ 6

Hz (Figure 29C), indicating the onset of aerial phases. Closer examination of the

kinematics revealed that the robot displayed a transition in locomotor mode as stride

frequency increased.

At low stride frequencies (e.g. 3 Hz, Figure 28A–E), as predicted, the DynaRoACH

robot used a quasi-static rotary walking locomotor mode, where forward speed in-

creased sub-linearly with stride frequency (i.e. stride length decreased; Figure 29B).

Instantaneous forward speed also increased from 0 to 25 cm/s during most of stance

and then dropped to zero (Figure 28C). Vertical position of the CoM simulation (Fig-

ure 28B and D) showed that average body height was 1.28± 0.03 cm during stance,

increased by 0.46 ± 0.03 cm (38% of the standing body height 1.2 cm) during most

of stance, and then decreased by the same amount.

The observed decrease in stride length with stride frequency, increase in body

height and forward speed during most of stance, and decrease in body height and

forward speed between stances were in accord with predictions of the rotary walk-

ing model (Figure 29A and 3B, red curve) [135]. This suggests that like SandBot,
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Figure 28: Two locomotion modes observed for the robot moving on granular media:
(A)-(E) walking at low frequencies (e.g. 3 Hz); (F)-(J) running at high frequencies
(e.g. 11 Hz). (A), (F) Sideview of the robot in experiment. (B), (G) Sideview of the
robot in simulation. (C), (H) Instantaneous forward speed versus time. (D), (I) Body
height versus time. (E), (J) Vertical ground reaction force on a tripod versus time.
Dashed blue curve and solid green curve are for the two alternating tripods. Black
horizontal line indicates body weight (mg). In (A), (B) and (F), (G) the three time
instants shown are the start, middle, and end of three different stances. In (C)(E) and
(H)(J) data are shown for simulation only. Duty factor is stance duration t divided
by stride period T .
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Figure 29: Performance and gait parameters (blue circles: experiment; green
squares: simulation): (A) average forward speed versus stride frequency; (B) stride
length versus stride frequency; (C) duty factor versus stride frequency (simulation
only). Blue region indicates where transition of locomotor mode occurs. Dashed
red curves in (A, B) are predictions from the rotary walking mode [135]. Error bars
indicate standard deviation.

the small DynaRoACH robot also rotary-walked on solidified granular media at low

frequencies. The decrease in body height and forward speed occurred at the start

of stance; however, this does not contradict the rotary walking model, but is a con-

sequence of the different leg trajectories of the small robot and SandBot. Because

SandBot rotates its legs in circular trajectories, its body must rest on the surface be-

tween two tripods, resulting in stance phase that begins during the retraction phases

of legs. The DynaRoACH robot instead uses protractionretraction leg trajectories,

which result in stance phases that begin during protraction phases of the legs.

At high stride frequencies (Figure 28F–J, 11 Hz) the DynaRoACH robot exhibited

a different locomotor mode than that predicted by the rotary walking model. The

forward speed of DynaRoACH increased super-linearly with stride frequency (i.e.

stride length increased; Figure 3B). Instantaneous forward speed was always greater

than zero and decreased during the first half of stance. It then increased during the

second half of stance (Figure 28H). The average body height measured in simulation

was 1.86± 0.02 cm above the surface (Figure 28F, G, I), which was 0.58 cm (48% of

the standing body height 1.2 cm) higher than that at low frequencies. Body height

decreased by 0.19 ± 0.02 cm (16% of the standing body height 1.2 cm) during the
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first half of stance and increased by the same amount during the second half of

stance. Simulation revealed that grains around the intruding legs remained fluidized

throughout the stance phase.

While these kinematics were different from those predicted by the rotary walking

model (Figure 29A and B, red curve), they also differed from the slow surface swim-

ming which SandBot used at high stride frequencies [135], in which the body height

remained constant while the belly lay on the surface and forward speed was small

(∼ 1 cm/s). For DynaRoACH running on granular media at high frequencies, we ob-

served a decrease in body height and instantaneous forward speed during the first half

of stance, a monotonic increase of average forward speed with stride frequency, and

aerial phases observed. These signatures were also observed in the zebra-tailed lizard

running on granular substrates [134]; that study revealed that the lizards movement

could be described by a springloaded inverted pendulum (SLIP) model [28]. This

similarity suggested that unlike SandBot, but like the zebra-tailed lizard, the small

robot used a SLIP-like running mode on granular media at high frequencies.

3.3.2 Ground reaction force

To understand the mechanism of the transition in locomotor mode from walking at

low frequencies to running (but not swimming) at high frequencies, we examined in

simulation the vertical ground reaction force, Fz, on a tripod of legs. For animals

and legged robots moving on deformable or yielding substrates such as the surface

of water [84] or granular surfaces [134], it is critical that the material generates suf-

ficient Fz to balance the weight and inertial force of the body before legs sink too

deeply into the substrate. Averaged over a cycle, lift must equal the body weight, i.e.

1
D·T

∫
Fzdt = mg, where mg is the body weight of the robot, T the cycle period, and

D the duty factor defined as the stance duration divided by T .

At low stride frequencies (e.g. 3 Hz), because duty factor was greater than (but
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Figure 30: Limb penetration and intrusion speed measured in simulation. (A)
Maximum leg penetration depth (measured in particle diameters) versus stride fre-
quency. (B) Maximum leg vertical penetration speed versus stride frequency. Error
bars indicate standard deviation.

close to) 0.5, Fz on both tripods was close to the body weight for most of the cycle

(Figure 28E). As duty factor decreased below 0.5 with increasing stride frequency,

Fz on both tripods no longer overlapped, and the magnitude of Fz on each tripod

increased. The peak of Fz increased from ∼ 1 mg at 3 Hz (Figure 28E) to ∼ 6−7 mg

at 12 Hz (Figure 28J). Peak torque on a tripod about the hips measured in simulation

at 12 Hz was 10 mN-m; this was less than the stall torque of the motorgearbox system.

The rotary walking model can only explain the mechanism governing the increase

in Fz at low frequencies. At low frequencies (< 3 Hz), the granular force is fric-

tion dominated, and therefore is independent of intrusion speed and increases with

penetration depth. As stride frequency increased, this depth-dependent granular

force increased due to the increasing inertial force associated with the lifting of the

body [135]; this resulted in an increasing penetration depth (Figure 30A). As stride

frequency increased to> 3 Hz, however, the measured leg penetration depth decreased

(Figure 30A), counter to the prediction of the rotary walking model. In this regime

the walking model also predicted a decrease in the lift force on the legs, contrary to

observations (Figure 28E and J).
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Figure 31: Vertical ground reaction force versus maximum leg penetration speed.
Dashed red curve indicates quadratic fit Fz/mg = αv2 + 1 with fitting parameter
α = 5.7× 10−3cm−2s2. Error bars indicate standard deviation.

This discrepancy suggests that there must be additional contribution to the force

at high frequencies. Examination of leg kinematics in simulation revealed that the

vertical penetration speed of the legs increased with stride frequency and reached

nearly 1 m/s at 12 Hz (Figure 30B). It is known that the granular forces during

high-speed impact are hydrodynamic-like and increase approximately quadratically

with impact speed [120, 85]. Our data of lift versus vertical leg penetration speed

(Figure 31, green squares) can be described approximately by a quadratic with a

non-zero y-intercept (Figure 31, dashed red curve), due to the finite yield stress of

the medium. We hypothesize that as the vertical leg penetration speeds increases,

the inertial force of the grains being accelerated by the legs becomes important and

contributes significantly to the vertical ground reaction force. In other words, at high

frequencies, the robot runs on granular material that behaves like an inertial fluid,

much like the basilisk lizard (Basiliscus), the so-called Jesus lizard that runs on the

surface of water [84].

We used previous intrusion studies in granular media to estimate the transition
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frequency for the DynaRoACH robot. Studies of horizontal drag in granular me-

dia [7] suggest that inertial effects become important for intrusion speeds beyond

vc ∼ (2gd)1/2, where d is the particle diameter and g the gravitational acceleration.

For 3 mm diameter glass particles, vc = 25 cm/s. This indicates that hydrodynamic-

like force should become significant as the vertical leg penetration speed increases

beyond ∼ 25 cm/s, or as stride frequency increases past ∼ 6 Hz (Figure 30B). This is

in accord with the observed transition in locomotor mode around 6 Hz (Figure 29).

We posit that this transition of the propulsion mechanism from low-frequency (i.e.

low vertical penetration speed) walking on yielding ground to high-frequency (i.e.

high vertical penetration speed) running on fluidizing ground is generic to locomo-

tion on granular media. However, the frequency at which the walk-to-run transition

occurs should depend on parameters associated with the granular media as well as

the robot morphology and kinematics.

The capability of the small robot to run rapidly at high frequencies on granular

media by using hydrodynamic-like forces, in contrast to SandBots slow swimming,

suggests that lightweight locomotors have an advantage when moving on granular

surfaces. Indeed, the small robots legs are relatively large (projected surface area

∼ 1.4 cm2) compared with its body weight (25 g) (each leg of a tripod applies a

pressure of 600 Pa when standing), and can generate enough hydrodynamic-like lift

by paddling its legs rapidly to maintain the body well above the surface. By contrast,

SandBots legs are relatively small (projected surface area ∼ 5 cm2) compared with

its body weight (2300 g) (each leg of a tripod applies a pressure of ∼ 1.5 × 104 Pa

when standing), and cannot generate enough hydrodynamic-like lift to support the

body before the legs sink deeply enough to encounter previously disturbed material

over steps and trigger swimming. This may explain why the zebra-tailed lizard, the

highest-performing among desert lizards of similar size, has the largest hind feet [134,

175]
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3.3.3 Parameter variation
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Figure 32: Robot average forward speed upon variation of (A) particleparticle fric-
tion pp (with µpp = 0.3) and (B) particle leg friction µpl (with µpp = 0.1) in simulation
(filled green squares: 3 Hz; empty green squares: 12 Hz).

Because the MBDyn multi-body simulation is based on first principles (i.e. New-

tonEuler equations of motion), and the DEM simulation of granular media is based

on validated empirical models (e.g. Hertzian contact theory, Coulomb model of fric-

tion), our results should be applicable to a broad class of granular substrates. The

simulation tool therefore allows rapid and accurate systematic variation of the prop-

erties of the locomotor (e.g. leg morphology, leg kinematics) as well as the granular

substrate (e.g. size, density, friction, and hardness of particles). For example, while

in experiment it is difficult to alter only one property while not changing others, in

simulation we can test the effects of each substrate property. This can provide insight

for design of future multi-terrain robots, and allows testing of biological hypotheses.

To demonstrate the capabilities of our simulation for parameter variation, we varied

the coeffi- cients of particleparticle friction µpp, particleleg friction µpl, and leg width,

and tested the effects of these parameters on the robot speed.

Dramatic changes in locomotor performance were observed when µpp was varied

(Figure 32A). For walking at low frequencies (e.g. 3 Hz, Figure 32A, filled green
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squares), the robot speed increased monotonically with µpp, and saturated at high

µpp. In this regime, forces were dominated by friction (particularly, µpp). As µpp

increased, the legs needed to penetrate less to balance body weight and inertial forces.

As a result, stride length and speed increased with µpp. The saturation of speed at

high µpp was a consequence of leg penetration depth approaching zero with increasing

µpp. Thus, stride length could not increase further.

For running at high frequencies (e.g. 12 Hz, Figure 32A, empty green squares), the

robot speed increased with µpp for µpp < 0.2 and decreased with µpp for µpp > 0.2. The

increase of speed with µpp for µpp < 0.2 is likely because the inertial force provided

by the particles being accelerated by the legs increased with µpp. We observed that

multiple layers of particles directly under and around the legs were fluidized during

leg penetration. We hypothesize that the size of the region of accelerating particles

increases with µpp because larger µpp facilitates interlocking of the particles. The

decrease of speed with µpp between 0.2 < pp / 0.4 for running at high frequencies

is likely a result of reduction in propulsion due to an asymmetric gait. We observed

that in this regime, the particles became more tightly interlocked and lost fluidity.

The lift force on one tripod alone became sufficient to accelerate the robot up such

that the body traveled in the air during the remainder of the cycle and the other

tripod never touched the ground.

As µpp increased above ∼ 0.4, the particles became so tightly interlocked that

the granular substrate behaved like rigid ground. Locomotion became unstable as

the robot bounced erratically, and its movement direction changed randomly. This is

similar to the unstable motion of the robot on rigid ground (Li et al., 2010). Forward

speed was not well defined in this regime. The perfectly rigid legs of the robot used in

simulation may have contributed to this instability by generating force spikes during

substrate impact [124]

Particleleg friction µpl had little effect on the robot speed at low frequencies (e.g. 3
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Hz, Figure 32B, filled squares). We observed that the penetration depth and the stride

length remained the same when µpl increased. This indicates that the yielding forces of

granular media during low-speed penetration are insensitive to the surface roughness

of the c-legs, but instead are dominated by particle particle friction (Figure 32A). We

hypothesize that at low frequencies, as the robot rotary walks on solidified particles,

ground reaction force results primarily from normal forces on the leading surface

(rather than friction on the thin sides) of the c-legs.

At high frequencies (e.g. 12 Hz, Figure 32B, empty squares) the robot speed was

sensitive to (and increased with) µpl. We observed an increase in Fx but not Fz with

µpl (e.g. Fx increased by 50% when µpl increased from 0 to 0.7 while Fz did not

change significantly). Further work is needed to better understand propulsive force

in the high-frequency impact-induced fluid-like regime.
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Figure 33: Robot average forward speed versus stride frequency (solid green squares:
original foot width of 0.7 cm; dashed black squares: foot width of 0.3 cm; empty red
squares: foot width of 2 cm) for different leg widths (in simulation). Horizontal
bars in the inset represent the width of the legs. The filled black circle indicates
the particle size. Front view of the robot with different leg widths are shown on
top. Values of friction coefficients µpp,pl = {0.1, 0.3} are used. The dashed lines in
the 2 cm and 0.7 cm leg widths are separate linear fits to the speed of the robot
between the stride frequencies of 2− 6 Hz and 7− 12 Hz. The intersection of a pair
of lines indicates the transition frequency from rotary-walking-dominated locomotion
to fluid-like propulsion.
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Because both hydrostatic-like frictional forces [7, 98] and hydrodynamic-like iner-

tial forces [120, 85] are proportional to intruder area, we expected that an increase

(or decrease) of the robot leg width would result in increased (or decreased) ground

reaction forces. To test how leg size affects locomotor performance and transitions in

locomotor modes, in simulation we varied the width of all the six c-legs (Figure 33,

top diagrams) while keeping their radius and kinematics fixed.

At low stride frequencies (1− 3 Hz) the performance of the robot was insensitive

to changes in the leg morphology (Figure 33). Because the robot is lightweight, at

low frequencies the stride length was near 2r, the maximal value of the stride length

for rotary walking (where r is the leg radius), seen in the original legs (Figure 29B).

An increase in the foot width could not increase the stride length significantly beyond

2r and thus the forward speed did not increase significantly (Figure 33, filled green

squares to empty red squares). When the width of the legs was close to the particle

diameter, we postulated that the ground reaction force would no longer linearly scale

with the leg area. In the lowfrequency regime we observed that the penetration depth

increased by only 33% when the foot width was reduced to half of the original width.

As a result, the stride length and speed did not drop substantially (Figure 33, filled

green squares to dashed black squares).

In contrast, at high stride frequencies the robots performance depended sensitively

on the leg width. We observed that increasing the leg width by 3 times (from 0.7 cm

to 2.0 cm) increased the stride length (and, thus, the average speed) by up to 1.7 times

(Figure 33, from filled green to empty red). Surprisingly, the frequency at which the

robot switched from rotary-walking behavior to fluid-like propulsion was insensitive

to leg width. We determined the transition frequencies from the intersection of linear

fits to the speed of the robot in two regions, 2−6 Hz and 7−12 Hz (Figure 33, dotted

gray lines). We found that the transition frequencies decreased by only 0.5 Hz (about

6%) when the leg width increased by 3 times. Transition frequencies measured from
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duty factor (i.e. the frequency at which duty factor = 0.5) also showed a decrease

by ∼ 1 Hz ( 10%). This implies that the relationship between foot area and average

speed is non-trivial. We hypothesize that it is governed by a nonlinear interplay of

body inertia and complex intrusion rheology. Advances in the physics of intrusion

and impact [191, 44] are required to develop a fundamental understanding of such

interactions. In addition, decreasing the leg width by 50% (from 0.7 cm to 0.3 cm)

(Figure 33, filled green to dashed black) resulted not only in decreased speeds at low

frequencies, but also triggered a transition of locomotor mode from running to slow

swimming (similar to that observed in SandBot [135]).

3.4 conclusion

Inspired by high-performing desert animals moving on granular media, we studied in

experiment the locomotion of a lightweight, bio-inspired, legged robot (DynaRoACH)

on a granular substrate and developed an experimentally validated computer simula-

tion of the locomotion. Our approach enabled examination of the mechanics respon-

sible for the robots high locomotor performance. DynaRoACH displayed a transition

in locomotor mode from walking at low frequencies to running at high frequencies.

At low frequencies, hydrostatic-like forces generated during yielding of the granular

material ultimately led to solidification of the material, and the robot moved as if it

were walking on a solid surface. At high frequencies, however, the inertia of the grains

being accelerated became important and forces became hydrodynamic-like. In this

regime the robot ran rapidly by paddling legs on fluidized granular material. Thus

our results reveal that lightweight robots can achieve high locomotor performance on

granular media by exploiting the fluid-like properties of these substrates.

The experimentally validated simulation of the lightweight robot platform provides

the most accurate model to date of robot locomotion on granular media, and therefore

enables detailed examination of the mechanics of legged locomotion over a wide range
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of flowable substrates. In particular, the simulation tool we have developed can be

used to systematically test the effect of both locomotor and substrate properties on

locomotor performance. Practically this can guide the design, control and power

consumption estimates for high-performing multi-terrain robot platforms.

Finally, we note that while the approach described here allows detailed investi-

gation of mechanics of movement, a complementary approach is needed: the devel-

opment of low-order dynamical models [136] that can be used to gain insight into

the critical mechanics of dynamical running. In our future work, we will investigate

whether a dynamic force relationship that describes the hydrodynamic-like forces dur-

ing high-speed leg intrusions can be obtained from measurements in DEM simulation.

We posit that a generalized locomotion model similar to the SLIP [28] can be devel-

oped based on such a force relationship and can extend our current study to more

generalized conditions. This generalized model will shed light on the locomotor dy-

namics of legged animals and robots on granular media, as well as guide development

for analytically tractable low-order models.
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CHAPTER IV

DETERMINISTIC TRANSPORT IN HETEROGENEOUS

ENVIRONMENT

The chapter contains an ongoing work made possible by collaborating with Prof.

Predrag Cvitanović.

4.1 Introduction

The advances in the theory of dynamical systems have brought a new life to Boltz-

mann’s mechanical formulation of statistical mechanics, especially for systems near

or far from equilibrium, and yielded new sets of microscopic dynamics formulas for

macroscopic observables such as the transport coefficients. Sinai, Ruelle and Bowen

(SRB) have generalized Boltzmann’s notion of ergodicity for a constant energy sur-

face for a Hamiltonian system in equilibrium to dissipative systems in nonequilibrium

stationary states [198, 183, 29]. In this more general setting the attractor plays the

role of a constant energy surface, and the SRB measure is a generalization of the

Liouville measure. Such measures are purely microscopic and indifferent to whether

the system is at equilibrium, close to equilibrium or far from it. “Far for equilibrium”

in this context refers to systems with large deviations from Maxwell’s equilibrium

velocity distribution. Furthermore, the theory of dynamical systems has yielded new

sets of microscopic dynamics formulas for macroscopic observables such as diffusion

constants, to which we turn now.

The classical Boltzmann equation for evolution of 1-particle density is based on

stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle collision.

It is a very good approximate description of dilute gas dynamics, but a difficult
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starting point for inclusion of systematic corrections. In the periodic orbit theory of

deterministic diffusion, introduced in refs. [14, 54, 55], no correlations are neglected -

they are all included in the exact cycle expansions for transport coefficients such as

the diffusion constant.

Let x̂(t) = φ̂t(x̂0) denote the point in the full state space M̂ reached by the

flow in time t. The diffusion tensor is the temporal and ensemble average of the

displacement:

Dij = lim
t→∞

1

2dt
〈x̂(t)ix̂(t)j〉 , (8)

where the index i and j are restricted to the spatial components qi of the state space

vectors x = (q, p), i.e., if the dynamics is Hamiltonian, the sum is over the d degrees

of freedom.

The Lorentz gas [140] is one of the simplest dynamical systems that exhibit de-

terministic diffusion. The 2-dimensional Lorentz gas is an infinite scatterer array in

which diffusion of a light molecule in a gas of heavy scatterers is modeled by the

motion of a point particle in a plane as a sequence of straight, free flight segments,

bouncing elastically off an array of reflecting disks. The Lorentz gas is called “gas”

because one can equivalently think of it as consisting of any number of point-like fast

“light molecules” interacting only with the stationary “heavy molecules,” and not

among themselves. As the scatterer array is built up from defocusing surfaces, it is

one of the simplest hyperbolic Hamiltonian dynamical systems that exhibits chaos

and deterministic diffusion, Figure 34. The original Lorentz gas [140] assumed a

random distribution of heavy scatterers; a description of such gas requires statistical

assumptions about the distribution of scatterers. A periodic Lorenz gas (configu-

ration of scatterers invariant under a discrete group of translations of the plane),

however, is amenable to pure deterministic description. Ergodic properties of peri-

odic Lorenz gases were first studied by Sinai [197], and its diffusive properties have

been extensively studied ever since [76, 35, 36, 141, 34, 81, 37]. For a recent review
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see Detmantmann [59].

Figure 34: A chaotic trajectory of a finite horizon Lorentz gas point particle bounc-
ing in a hexagonal array of disks. The disks are spaced closely enough so that the no
free flight segment is of infinite length.

One distinguishes the infinite horizon diffusive behavior, which allows for infinite

length flights, from the finite horizon case [36], where the particle always hits the

next disk in finite time. Here we shall restrict our consideration to the finite horizon

case, with a triangular tiling of the plane by disks sufficiently large so that no infinite

length free flight is possible. In this case the diffusion is normal [36, 27], with x̂(t)2

growing like t. Unfortunately, as we shall see, the same mechanism that guarantees
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a finite horizon also leads to rather awkward pruning of periodic orbits.

The approach introduced in ref. [54] and tested in ref. [55], exploits the fact that

the periodic Lorentz gas can be constructed by putting together translated copies of

an elementary cell. Therefore quantities characterizing global dynamics, such as the

Lyapunov exponent and the diffusion constant, can be computed from the dynamics

restricted to the elementary cell.

To investigate the transport property of such systems, we apply cycle expan-

sions [52] to the analysis of diffusion coefficient. The resulting formulas are exact;

no probabilistic assumptions are made, and all correlations are taken into account by

the inclusion of cycles of all periods. While existing cycle expansion theory yields the

correct result by tiling the state space into elementary cells, the convergence rate is

slow because of bad shadowing and poor choice of symbolic grammar [55]. In this

paper we propose a novel approach that significantly improves the efficiency of cy-

cle expansion formula, by factorizing the non-commuting rotational and translational

symmetry and using periodic orbits in the fundamental domain.

The exact results are sometimes counterintuitive, and might help us decide whether

a diffusive phenomenon whose microscopic dynamics is hard to observe directly, such

as conductance fluctuations in a mesoscopic device, is due to impurities or to deter-

ministic transport. For example, as some parameter (such as mean free flight time)

is increased, the deterministic diffusion coefficient reveals a non-monotone, fractal

dependence.

In sect. 4.2 we define periodic Lorentz gas, and describe the symmetry reduction

of its full state space to the elementary cell and the fundamental domain.

In sect. 4.5 we briefly review the formulas for diffusion coefficients in the 2-

dimensional periodic Lorentz gas, using dynamics restricted in elementary cell.

In sect. 4.6 we factorize the rotational symmetry and derive the diffusion coefficient
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using fundamental domain cycles.

4.2 Diffusion in periodic arrays

wr

Figure 35: An elementary cell and its six unit translations. The ratio of distance
w between the nearest pair of disks to the disk radius r determines the dynamical
properties in the system. The transition between the finite and the infinite horizon is
controlled by the ratio of w/r: the horizon is finite for w/r < 4/

√
3− 2 = 0.3094 · · · .

Most of the periodic Lorentz gas literature, such as Bunimovich and Sinai [36], is

focused on the symmetries under discrete translations of periodic tilings of the plane,

usually defined by a parallelepipedal “fundamental domain” (“primitive unit cell”)

spanned by a pair of vectors e1, e2, such that the center of every disk is labeled by a

pair of integers n̂ = (m,n) = m e1 + n e2. However, for a triangular periodic Lorentz

gas the full symmetry group is the space group p6mm (see Cotton [46] Chemical

applications of group theory, Chapt. 11, for a discussion of the geometry of space

groups), and the natural tiling is in terms of the hexagon centered on the scattering

disk (“Wigner-Seitz cell”, “Voronoi cell”), see Figure 35. The full, infinite state space
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M̂ (i.e., both spatial coordinates and momenta) then has a periodic tiling by compact

state space tiles

M̂ =
⋃
n̂∈T

Mn̂,

obtained by all translations a state space tile, which we here refer to as the elementary

cell M =M0, with T the abelian group of lattice translations.

Furthermore, space group p6mm has a point subgroup C6v = D6, because the

hexagonal elementary cell itself can be tiled by 12 triangular tiles,

M =
⋃
g∈D6

M̃g,

as in Figure 36 (a), upper left. We pick one of these compact state spaces, and

refer to it as the fundamental domain M̃ = M̃e. The fundamental domain tiles the

full hexagon by its 11 copies obtained by application of the D6 point group actions,

rotations around the center or reflections across symmetry lines.

As we will work with three kinds of state spaces, throughout the text we will

repeatedly use tildes ( ˜ ), nothings and hats ( ˆ ) atop symbols to signify dynamical

quantities in the fundamental domain, elementary cell and full state space, respec-

tively:

˜ fundamental domain M̃, triangle in Figure 36

[nothing] elementary cellM, hexagon in Figure 36

ˆ full state space M̂, lattice in Figure 36 (9)

The dynamics can be restricted to the elementary cell by imposing periodic boundary

conditions: whenever the particle leaves across the edge of the hexagon cell, it imme-

diately reenters through the opposite edge, and the corresponding discrete translation

is recorded, in order that the full state space trajectory can be reconstructed from

the trajectory confined to the elementary cell. Let x̂(t) = φ̂t(x̂0) denote the point

in the full state space M̂ reached by the flow in time t. x(t) = φt(x0) denotes the
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A

B

Figure 36: (A) Motion in the fundamental domain M̃ (top left), the elementary

cell M (top right), and the full state space M̂ (bottom). (B) The above trajectory
unwrapped in the full space and its 11 copies obtained by applying all D6 point group
actions to it. Figure adapted from ref. [55].
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corresponding flow in the elementary cell; the two are related by

n̂t(x0) = φ̂t(x0)− φt(x0) ∈ T , (10)

the translation of the endpoint of the global path into the elementary cell M. We

will show in sect. 4.5 that for the dynamics in the elementary cell, the full state

space displacement accrued along an elementary cell periodic orbit is one-to-one and

independent of the starting point.

The elementary cell dynamics can be restricted to dynamics in the fundamental

domain by applying a reflection whenever the trajectory crosses one of the three edges

of the triangle, as will be discussed in detail in sect. 4.4.1. We denote the quantity

x̃(t) = φ̃t(x̃) as the flow in the fundamental domain M̃ . φ̃t(x̃) is related to φt(x̃) by

a point group symmetry g ∈ D6 which maps x̃(t) ∈ M̃ to x(t) ∈M.

Thus any full state space trajectory x̂(t) can be uniquely reduced to its fundamen-

tal domain counterpart x̃(t). This eliminates redundancies purely due to symmetries,

and renders computations carried out in the fundamental domain easier, with signif-

icantly faster convergence. The reverse process, however, is always one-to-many, as

illustrated by Figure 36 (b). As the fundamental domain does not have the concept

of absolute orientation, a single unwrapped trajectory may have up to 11 full state

space copies, with 12 orientations in all. Even worse, depending on where we start to

unwrap the trajectory, the full state space trajectories can be of completely different

shapes, and, the global distance f̂ rTp̃(x̃) − x̃, x̃ ∈ p̃, depends on the starting cycle

point if p̃ is only a segment of the global cycle p. An example is the full state space

diamond-shaped 4-cycle of Figure 37; depending whether one starts at x̃1 or x̃2 on

the corresponding fundamental domain 2-cycle, the global distance covered in time

Tp̃ is either the short or the long diagonal.

How to deal with such consequences of the non-commutativity of translations and

rotations is the main thrust of this paper.
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Figure 37: A fundamental domain periodic orbit unwrapped in full space. Figure
reproduced from ref. [54].

4.3 Elementary cell symbolic dynamics

The computation of diffusion coefficient (39) requires knowledge of periodic orbits. In

the Lorentz gas system, a few simple orbits may be obtained by inspection: a 2-bounce

periodic orbit is traced out by the particle bouncing between a disk and one of its

nearest neighbors, or one of the second nearest disks. The number of periodic orbits

increases exponentially with np, the number of bounces (the ‘topological length’ of the

orbit), they trace out shapes of increasing spatial complexity, and as their instability

increases exponentially with their length, it becomes quickly not possible to determine

them with the initial guess Newton’s method.

Instead, we need to first enumerate qualitatively all possible trajectories, i.e., con-

struct the symbolic dynamics for the system. The idea is to identify each periodic

orbit with a unique sequence of symbols, drawn from a finite alphabet. Intuitively

speaking, a symbol may characterize a certain pattern of the dynamics. Once the

alphabet and the grammar of admissible itineraries is determined, we may enumer-

ate all possible periodic orbits and eventually pin down as many as needed for the
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computation of a given long-time average.

We start with a brief review of the symbolic dynamics developed in ref. [55]. With

imposed finite horizon there are 12 possible ways of jump from a disk (Figure 38 (a)).

Any trajectory in the full space can always be constructed from a series of flights,

each belongs to the 12 “signature jumps”. In particular, a periodic orbit in the

elementary cell is represented as a repeatable string of such symbols. For example,

the bouncing mode between nearest disks is written as 06, meaning that the periodic

orbit is consisted of two successive flights, one traveling towards right (symbol 0) and

the next reflecting backwards (symbol 6).

Periodic orbits in the elementary cell can either be stationary in the full state

space (returning to its initial point after completing a full cycle, e.g., 06 that bounces

between two nearest disks); or running, with a net spatial displacement after each

period (e.g., 05, Figure 38 (a) and (c)). A stationary cycle “traps” the particle locally

for all time, while a running cycle advances it at a constant velocity. The diffusion

(39) is the result of competition between the two type of cycles.

With the symbolic dynamics, we then use the least action principle to compute

the periodic orbits [52]. In a planetary Hamiltonian billiard system, the Maupertuis’

principle indicates that the traveling length along a cycle is minimized. We can solve

the problem by optimizing the total free flight distance with the constraint that links

have to connect the specific disks visited along the orbit.

Some confidence can be gained at this point by applying the above formula (39)

to a trivial system. For a simple example, see the chain of baker’s maps chain of

coupled baker maps studied in ref. [79]. In this case there are only four fixed points,

all with stability Λp = 1/2, two of which give rise to the translations n̂p = ±1. As

the system is uniformly hyperbolic, all curvature terms are identically zero, and the

fixed points substituted into (39) yield immediately the correct result D = 1/4.
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Figure 38: Elementary cell symbolic dynamics is obtained by counterclockwise
labeling the translation vectors connecting the center of the current disk to the center
of the next disk. (A) The finite horizon is here imposed by limiting jumps from the
center cell to six short jumps (even labels 0, 2, · · · , 10) and six ‘long’ jumps (odd
labels 1, 3, · · · , 11). (B) Running mode 05 advances by n̂4 per period. (C) In the
elementary cell this is a periodic orbit 05 of topological length 2.

4.4 Into the fundamental domain

In ref. [54] some effort, unsuccessful, was made to derive a diffusion formula for the

fully symmetry-reduced dynamics, involving only quantities computed within the

fundamental domain. The fact that lattice translations do not commute with the

symmetry group within the elementary cell makes this apparently a difficult task.

The main achievement of this paper is a new proposal how to extend periodic orbit

theory in order to solve this vexing problem.

In sect. 4.2 we had reduced a trajectory from full space to elementary cell, as

in Figure 36 (a), upper right, using the translational symmetry, and were able to

compute various quantities in terms of elementary cell periodic orbits. In this section

we will further utilize the point group symmetry to derive the fully symmetry-reduced

trace formula and, for the first time, the diffusion constant using cycles restricted to

the fundamental domain.
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4.4.1 Point group changes translation

A point x in the elementary cell is identified by its fundamental domain mirror image:

x = g x̃,

given a little group action g ∈ G. We have to appreciate that both the full space flow

φ̂t(x) and elementary flow φt(x) is G-equivariant under the lattice group symmetry,.

φ̂t(g x̃) = g φ̂t(x̃) , φt(g x̃) = g φt(x̃) , (11)

It follows that the displacement in full space is also G-equivariant under the little

group:

n̂t(x) = φ̂t(g x̃)− φt(g x̃) = g (φ̂t(x̃)− φt(x̃)) = g n̂t(x̃) . (12)

However, this nice property does not automatically resolve the problem at hand.

When the dynamics is restricted to the fundamental domain, we lose the absolute

orientation. We show this by following a prime periodic orbit p̃ in the fundamental

domain.

Let p̃ ≡ {x̃1, . . . , x̃np̃}, with topological length np̃ and x̃i the points of collision on

the orbit. Starting from the edge of disk at x̃i, at some point the flight will meet one

of the triangle boundaries of the fundamental domain and be deflected back. In the

full space the particle continues to another triangular domain, which, in general, does

not have the same orientation to the original copy (figure here). The relative change

in the orientation can always be described by a element of the little group. Before

the particle reaches the next collision point x̃i+1, it has crossed multiple boundaries

(or symmetry lines), and we denote the accumulated change in the orientation by

gp̃(x̃i, x̃i+1).

Denote the displacement of flight (x̃i, x̃i+1) as n̂p̃(x̃i, x̃i+1), the added displacement

from x̃i to x̃i+2 is

n̂p̃(x̃i, x̃i+2) = n̂p̃(x̃i, x̃i+1) + gp̃(x̃i, x̃i+1)n̂p̃(x̃i+1, x̃i+2) , (13)
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i.e., we have to memorize the change in the relative orientation. Applying this rule

to the entire cycle, we have (after applying a cyclic shift np̃ + 1→ 1)

n̂p̃(x̃1) =

np̃∑
i=1

gp̃(x̃1, x̃i) n̂(x̃i, x̃i+1), (14)

where the left order product gp̃(x̃1, x̃i) =
∏i−1

j=1 gp̃(x̃j, x̃j+1), and gp̃(x̃1, x̃1) = e. Unlike

in the elementary cell, the displacement in general is dependent on the starting point.

We define the total group action (orientation change) for the orbit

hp̃(x̃1) =

np̃∏
i=1

gp̃(x̃i, x̃i+1) , (15)

which immediately connects the flow in fundamental domain and elementary cell by

φtp̃(x̃i) = hp̃(x̃i)φ̃
tp̃(x̃i) . (16)

Although the group action hp̃(x̃i) depends on the initial points on the orbit as

well, it is a property of the orbit’s symmetry. Using (15), one can easily show that

all hp̃(x̃i), x̃i ∈ p̃ belong to the same subgroup of G

hp̃(x̃i+1) = g−1
p̃ (x̃i, x̃i+1)hp̃(x̃i) gp̃(x̃i, x̃i+1) . (17)

If we let the particle (starting from x̃i) travel along the fundamental domain orbit r

times, the result displacement is

L̂p̃(r, x̃i) ≡ (e+ h1
p̃(x̃i) + · · ·+ hr−1

p̃ (x̃i)) · n̂p̃(x̃i) . (18)

4.4.2 Grammar of fundamental domain

Existing elementary cell symbolic dynamics cannot generate the prime fundamental

domain orbits. While the 12 symbols partition the elementary cell state space into

distinct regions, when wrapped into the fundamental domain state space, these re-

gions begin to overlap. Thus, we developed a new symbolic description to identify

the fundamental domain cycles, by means of tile generators, which we describe next.
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Figure 39: (a) Three generators tile the plane by flipping the fundamental domain
across its three strait edges. Two are elements of D6, the reflection s across the
short disk-disk separation, and the reflection ` across the long disk-disk separation.
Together they tile the elementary cell (hexagon in Figure 36 (a) upper right) by copies
of the fundamental domain. Translations are generated by the reflection f that pivots
a disk center to disk center by a flip across the symmetry line normal to the short
disk-disk separation. (b) Tiling of the 7-disk by copies of the fundamental domain,
labeled by a (not unique) sequence of the three generators {s, `, f}, chosen so that
each sequence contain one and only on disk-to-disk pivot f .

Tracking an arbitrary trajectory in the triangular, fundamental domain, we can

distinguish two types of bounces: those off the disk edge, and those that in the full

state space cross the symmetry axes. As discussed in sect. 4.4.1, the latter will add

up to group operations along the full state space trajectory.

We enumerate all the elements in the point group D6:

G = {e, C+
6 , C

−
6 , C

+
3 , C

−
3 , C2, σd1, σd2, σd3, σv1, σv2, σv3} , (19)

with s = σd the reflection across the short disk-disk separation, and ` = σv reflection

across the long disk-disk separation generators of D6. The entire space group p6mm

is then generated by adding a disk-to-disk generator f that pivots a disk center to

another by flip across the symmetry line normal to the short disk-disk separation,

Figure 39 (a). We find it convenient to define C as the generator of cyclic rotations

by π/3,

`s = C−6 = C , C6 = e ; s` = C+
6 , s = C+

6 ` . (20)
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Figure 40: Fundamental domain symbolic dynamics. (A) With imposed finite
horizon and starting on the edge of a disk in fundamental domain (the green filled
region), there are at most 6 disks that can be reached by free flight (disks 0, 1, 2, 4, 10
and 11). The reflection symmetry axes partition the circumference of a disk into 12
segments which we label counterclockwise, from 0 to 11. (B) The fundamental domain
fixed point {2, 10}, which corresponds to a periodic orbit of length 6 in elementary
cell (0246810), is unwrapped in global space. (C) After each collision we re-label
the disks and triangular partitions according to their relative positions to the “new”
fundamental domain. In the figure labels are also rotated according to the point
group actions.
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A free flight between two disks in the full space may then be wrapped into funda-

mental domain, according to the sequence of edges {s, `, f} it passed. There are many

different paths when jump to the nearest disk: it can be as simple as a single pivot

f , or can be more complex such like `fs that involves crossing multiple symmetry

lines, Figure 39 (b). We also note that some symbol combinations are topologically

equivalent, in the sense that they yield the same group actions. For example, the

short jump sf is topologically equivalent to fs, because the particle ends up in the

same copy of fundamental domain before the next collision.

Our next task is to generate all topologically distinct itineraries from {s, `, f}. We

can immediately realize a partial list of the equivalence relations:

fs = sf ,

f`f = `f` . (21)

All longer equivalence relations in Figure 39 can be reduced to the above primitive

ones:

fs` = sf` ,

`f`s = f`sf . (22)

There are also some pruning rules to keep in mind. Because a free flight cannot

cross the same border twice, sequences including ``, ff, ss are forbidden. C3 (and all

higher orders) is also pruned as the particle cannot cross the center hard disk; nor

swirl around it.

While the string description of flight is mathematically rigorous, it is practically

impossible to be encoded into programs for computing the orbits, because the number

of equivalent strings increases exponentially when the length of the orbit (and also

the string) increases. However, there is a more physically intuitive way to organize

the symbols, by means of “topological flight”, Figure 40 (a). In this representation, a
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equivalence relation like sf ≡ fs can be uniquely identified by a combination of a disk

number and a partition number {0, 6}. Longer flight such like `f`s`f ≡ f`fs`f ≡

f`sf`f ≡ f`s`f` that cross many boundaries now yields a very simple symbol pair

{1, 5}.

Because this compact representation only takes into consideration the starting

and ending points of a free flight, the exponentially long list of equivalent strings are

eliminated. The topological flight leads to a straight forward numerical scheme to

find cycles. The disk number fixes the two ends of the free flight while the partition

number limits the range of angles on the disk. Similar to searching cycles in the

elementary cell, we now have a constrained version of convex minimization problem

which can be solved using standard non-linear optimization approach.

4.5 Periodic orbit theory

Periodic orbit theory of deterministic diffusion, introduced in refs. [14, 54], exploits the

fact that the periodic Lorentz gas can be constructed by putting together translated

copies of an elementary cell. Therefore quantities characterizing global dynamics,

such as the Lyapunov exponents and the diffusion tensor, can be computed from

the dynamics restricted to the elementary cell, as shown numerically in ref. [55]. In

refs. [14, 54, 55, 15, 16] it was shown that deterministic diffusion tensor in the periodic

Lorentz gas can be expressed in terms of (relative) periodic orbits, and exact formulae

for such global dynamical averages as Lyapunov exponent and diffusion tensor were

derived, using only the dynamics in the elementary cell, which we discuss now.

Previous works by Machta and Zwanzig [141] have given numerical results for the

diffusion constant in Lorentz gases, as well as estimates based on a random walk

approximation. We shall follow their notation and fix the radius of the disks to 1,

and assume unit particle speed.

Let x̂(t) = φ̂t(x̂0) denotes the point in the full space M̂ reached by the flow in

83



time t. x(t) = φt(x0) denotes the corresponding flow in the elementary cell; the two

are related by

n̂t(x0) = φ̂t(x0)− φt(x0) ∈ T , (23)

the translation of the endpoint of the global path into the elementary cell M. The

diffusion tensor, by definition, is the temporal and ensemble average of the displace-

ment:

Dij = lim
t→∞

1

2dt
〈n̂t(x0)in̂t(x0)j〉M̂ , (24)

where the index i and j are restricted to spatial components qi of the state space

vectors x = (q, p), i.e., if the dynamics is Hamiltonian, the sum is over the d degrees

of freedom.

Following the general definition (24), one can numerically compute the diffusion

coeffcient for various systems (which is not limited to the Lorentz gas). However,

little insight is gained in the dynamics of the system. Instead, [14, 54, 55, 15, 16]

suggest we study the quantity

Q(β) = lim
t→∞

1

t
log〈eβ·n̂t(x)〉M̂ , (25)

where β is an auxiliary vector quantity. The interesting dynamical averages such like

mean drift and diffusion can be easily obtained by taking derivatives of Q(β) and set

β = 0, e.g.:

2dDij =
∂

∂βi

∂

∂βj
Q(β)

∣∣∣∣
β=0

(26)

= lim
t→∞

1

t
〈n̂t(x)in̂t(x)j〉M̂ ,

yields a diffusion matrix. The diffusion tensor matrix can, in general, be anisotropic

(i.e., have d distinct eigenvalues and eigenvectors). The spatial diffusion constant is

then given by the Einstein relation

D =
1

2d

d∑
i

∂2

∂β2
i

Q(β)

∣∣∣∣
β=0

= lim
t→∞

1

2dt
〈(q̂(t)− q)2〉M̂ , (27)
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Because of the translational invariance, it was shown in ref. [55] that the ensemble

average in (25) can be written as an integral over the elementary cell

〈eβ·(x̂(t)−x)〉 =
1

|M|

∫
x,y∈M

dxdyLt(y, x), (28)

given the evolution operator

Lt(y, x) = eβ·(x̂(t)−x)δ(y − x(t)) , (29)

for the flow. It is a linear operator such that it satisfies the semi-group property:

Lt1+t2(y, x) =

∫
dx′Lt2(y, x′)Lt1(x′, x) (30)

and when β = 0 it reduces to the Ruelle-Perron-Frobenius operator.

We may also introduce the same operator for discrete maps, after we have chosen

the appropriate Poincaré section and study the dynamics restricted to the intersec-

tions of the flow on the hyper-surface:

Ln(y, x) = eβ·(f̂
n(x)−x)δ(y − fn(x)) . (31)

For the Lorentz gas system, consider the Poincaré section to be the edge of the

disk. The finite horizon guarantees that the particle will collide with a disk in finite

time and the Poincaré map is truly a “return map”. Once we have specified the arch

length ϕ at which the particle hits the disk and the incident angle ψ (which gives the

tangent velocity component at the collision point), the dynamics is fully determined.

There are two other marginal directions along which the dynamics is trivial, because

the system is Hamiltonian.

The dynamical average we are interested does not belong to any particular finite

time (or a finite number of returns on the section). As t→∞ (or n→∞ for the map),

the average quantities are dominated by the leading eigenvalue of Lt, λ0 = es(β)t, i.e.,

it is straightforward to show that in the limit Q(β)→ s(β).
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For sake of simplicity, we will proceed with the derivation for the return map

and in the end generalize to the continuous flow. While the evolution operator (29)

and (31) act on a functional space of infinite dimension, their spectrum may still be

extracted by the trace formula:

det (1− zL) = exp

(
−
∞∑
n=0

zn

n
trLn

)
, (32)

where z is an auxiliary variable, and the trace:

trLn =

∫
M
dx eβ·(f̂

n(x)−x)δ(x− fn(x)) . (33)

With the δ functon inside, eq. (33) picks up a contribution whenever x = fn(x),

e.g. when x is a periodic point of the map f . When n is not a prime number, it is

possible that x belongs to a periodic orbit p of period np, and satisfies the multiplicity

npr = n, where r is the number of repeats.

We may now restrict the integral only in the vicinities of the prime periodic orbits

(i.e., those who are not the repeat of other periodic orbits) of the return map, and

write:

trLn =
∑
p

δn,npr
∑
x∈p

erβ·n̂p(x)

|det
(
1− Jrp(x)

)
|
, (34)

where Jp(x) = Dfnp(x) is the Jacobian. Using the chain rule of differentiation, it

follows that Jp(x) = Jp, i.e., the Jacobian is independent of the point x on the cycle.

We can also show that n̂p(x) = n̂p, by summing all the free flights along the cycle:

because translations are commutative, the order at which individual displacements

are added stays irrelevant.

With (35) and (33), we finally obtain:

det (1− zL) =
∏
p

exp

(
−
∞∑
r=1

znpr

r

erβ·n̂p

|det
(
1− Jrp

)
|

)
, (35)

where the product runs over all prime periodic cycles in the elementary cell.

Generalization to continuous time [29, 53] amounts to the replacement znp →

e−sTp , where Tp is now the (not necessarily integer) period of the prime cycle p for the
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flow. One has to distinguish the period of the return map, np, which is the number

of collisions for the cycle, and the period of the flow, Tp, which represents the time

traveled after finishing the cycle once. The spectrum determinant for the continuous

time is:

Z(β, s) =
∏
p∈P

exp

(
−
∞∑
r=1

1

r

e(β·n̂p−sTp)r

|det
(
1− Jrp

)
|

)
, (36)

and the associated dynamical zeta function:

1/ζ(β, s) =
∏
p

(
1− e(β·n̂p−sTp)

|Λp|

)
, (37)

when one approximates the det
(
1− Jrp

)
with the product of expanding eigenvalues

of the cycle, Λp.

The determinant (36) has many resonances (zeros) on the complex s plane, even

for the simplest systems. According to previous literatures [52], extracting the

leading eigenvalue of the evolution operator amounts to solve the implict equation

Z(β, s(β)) = 0. By taking derivatives with respect to β we arrive at

ds

dβ
= −∂Z

∂β
/
∂Z

∂s
. (38)

The final piece needed now is to determine the actual value s(β) at β = 0. The

Lorentz gas system is infinite and yet bounded such that the particle can never exist

the lattice. In other words, the flow is conserved, and the escape rate s(β = 0) = 0.

The problem at hand is automatically resolved, and also provides us a sanity check

Z(0, 0) ≈ 0, if the cycle expansion formula is correct and all cycles are included.

The dynamical zeta function cycle averaging formula for the diffusion constant,

zero mean drift 〈x̂i〉 = 0 (because the system is symmetric), is given by

D =
1

2d

〈x̂2〉ζ
〈T〉ζ

=
1

2d

1

〈T〉ζ

∑′ (−1)k+1(n̂p1 + · · ·+ n̂pk)
2

|Λp1 · · ·Λpk |
, (39)

where 〈T〉ζ = ∂Z/∂s|s=0, and the sum is over all distinct non-repeating combinations

of prime cycles. The derivation is standard, still the formula is strange. Diffusion
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is unbounded motion across an infinite lattice; nevertheless, the reduction to the

elementary cell enables us to compute relevant quantities in the usual way, in terms

of periodic orbits.

4.6 Fundamental domain diffusion tensor

If a quantum system has an underlying symmetry, its Hamiltonian can be block-

diagonalized by the irreducible representations of the symmetry group, with each

block spanned by a set of degenerate states. In fact, this standard approach is not

specific to quantum mechanics. Once we describe the classical dynamics in terms of

the evolution operator, the algebra follows in a similar way, and the group factor-

ization applies. The quotiented state space, i.e., the fundamental domain, is more

compact, as understood by the one-to-many map of periodic orbits. The conver-

gence of cycle expansion formulae improves and less cycles are required. In previous

works [55, 52] fundamental domain cycle expansion for scalar quantities such like

Lyapunov constant was obtained. However, for reasons mentioned in sect. 4.4.1,

an exact formula for the diffusion constant (an average over displacement, a vector

quantity) was not given.

We start from the trace of elementary cell evolution operator (33) and project it

into the irreducible representations IG. We first derive the map version:

trLn =
∑
α∈IG

trLnα

trLnα =
dα
|G|

∑
h∈G

χα(h)∫
M̃
dx̃
∑
σ∈G

δ(h−1x̃− fn(σx̃))eβ·(f̂
n(σx̃)−σx̃) ,
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where dα is the dimension of irrep α and χα(h) the group character. Using equivari-

ance relations (11), (12), and noting that the little group is closed, we have:

trLnα =
dα
|G|

∑
σ∈G

∑
h∈G

χα(h)∫
M̃
dx̃δ(h−1x̃− fn(x̃))eβ·σ·(f̂

n(x̃)−x̃) . (40)

As in the analysis of sect. 4.5, the δ-function part δ(h−1x̃− fn(x̃)) in the integral

selects points on fundamental domain relative periodic orbits p̃. In addition, after

completing the cycle r times, the cumulative group action should also satisfy hrp̃(x̃) =

h. It follows that the integral in (40) can be written as a sum over fundamental

domain cycles ∫
M̃

=
∑
p̃

δn,npr
∑
x̃∈p̃

δhrp̃(x̃),h
eβ·σ·L̂p̃(r,x̃)

|det
(
1− Jrp̃(x̃)

)
|
, (41)

where the r−repeats displacement L̂p̃(r, x̃) along the orbit takes the form computed

in (18), and Jrp̃(x̃) absorbs the cycle group element hrp̃(x̃). The spectral determinant

for the α−irrep is:

Zα(β, z) = exp

(
− dα
|G|

∑
σ∈G

∑
p̃

1

np̃

∑
x̃∈p̃

∞∑
r=1

tp̃(r, x̃)

)
, (42)

where

tp̃ =
znp̃rχα(hrp̃(x̃))eβ·σ·L̂p̃(r,x̃)

r|det
(
1− Jrp̃(x̃)

)
|

, (43)

is the weight associated with the orbit. The corresponding zeta function ζα is obtained

by replacing det
(
1− Jrp̃(x̃)

)
with expanding eigenvalues Λp̃. Eq. (42) takes a more

complicated form than its counterpart (36) in the elementary cell. As a sanity check,

note that if the little group contains only the identity element e, i.e. there is no

additional symmetry, it is reduced to (35). Generalization to continuous flow is also

different. Besides replacing znp → e−sTp̃ , the summation is changed to an integral

1

np̃

∑
x̃∈p̃

→ 1

Tp̃

∮
P
dτx̃(τ) , (44)
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which runs along the tangent (marginal) direction of the orbit. Here comes an inter-

esting discovery (to which we return in sect. 4.7): changing the sum to the integral will

produce different results for any non-trivial symmetry (the group of which contains

more than e). For consistency, we denote 〈〉p̃ as the average over the cycle p̃.

The important long term dynamics is contained in the one-dimensional, symmetric

representation: dα = 1 and all χ(h) = 1. The cycle averaged mean drift vanishes,

〈x̂〉ζα = − ∂Zα
∂β

∣∣∣∣
β=0,s=0

(45)

= Zα(0, 0)
∑
p̃

∞∑
r=1

1

|G|
∑
σ∈G

〈
σ · L̂p̃(r, x̃)

〉
p̃

r|Λp̃|r
≡ 0 ,

because directions of σ · L̂p̃(r, x̃) cancel each other when we sum the group elements

σ. Observing that the length |σ · L̂p̃(r, x̃)| does not change under isometric transfor-

mations, the cycle averaged mean squared displacement (MSD) is:

〈x̂2〉ζα =
∏
p̃

(
1− 1

|Λp̃|

)∑
p̃

∞∑
r=1

〈
|L̂p̃(r, x̃)|2

〉
p̃

r|Λp̃|r
. (46)

The formula contains infinite series with exponentail tail. In numerical computa-

tions we keep the auxillary variable z in (42), expand (46) as a polynormial and

then truncate it accoording to the topological length of the longest periodic orbit

found [52].

There is one last piece before we apply (46) to numerically compute the diffusion

coefficients of the Lorentz gas system. There generally exist the “boundary cycles”

which completely lie on the symmetry lines. An example of such cycles in the Lorentz

gas is 06 (in elementary cell). Boundary cycles remain unchanged when we apply the

group action that reflects about the symmetry line, thus simultaneously contribute to

multiple terms in (41) (Remember, we absorbed the group element into the Jacobian).

Because under axial reflection the eigen-values does not flip sign (see the Jacobian

matrix for in chapter 9 of ref. [52]), in our system the boundary oribts contribute
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normally and does not need special treatment (see formulations in chapter 25 of

ref. [52]).

4.7 Numerical results

Table 1: Elementary cycle expansion results (39) computed Schreiber 1992 calcu-
lation [55] (and this paper) in the elementary cell.

np # cycles ζ(0,0) λ D

1 0 - - -
2 24 -0.31697 1.330 0.375
3 64 -0.54152 1.435 0.339
4 168 -0.09764 1.902 0.284
5 516 0.02334 2.324 0.215
6 1589 -0.00481 1.975 0.133
7 5700 -0.01241 1.885 0.184
8 20729 -0.01006 1.785 0.247

Elementary cycles and the corresponding cycle expansion calculation results are

listed in Table 1. Although the diffusion coefficient computed using elementary cycles

up to np = 8 is close to the numerical experiment value 0.25, the convergence is not

promising, as have pointed out in ref. [55, 155].

Table 2: Results for w=0.3. Calculation in the fundamental domain . Gaspard
1992 note: “My numerical estimate for the Lyapunov exponent when w = 0.3 is
λ = 1.760± 0.002, which supports the result of this table.” The numerical diffusion
coefficient is calculated using Green-Kubol method.

Tp # cycles ζ(0,0) λ D

1 5 -0.2169759 1.39193 0.37795
2 10 -0.0248233 1.74541 0.23118
3 33 -0.0221962 1.72235 0.25257
4 108 -0.0002192 1.74450 0.24165
5 373 0.0023463 1.76079 0.24468
6 1378 0.0096330 1.75610 0.24068

numerical experiment 1.760 0.25

We list the numerical results computed using the fundamental domain orbits

(Equation (46)) in Table 2. Compared with other methods, the symmetry-reduced
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Figure 41: (A) The convergence of diffusion coefficients calculated using cycle ex-
pansion in elementary cell (green squares), fundamental domain(orange squares). We
also show the convergence of “periodic orbit expansion” method, with and without
Shanks transformation (circles and diamonds) discussed in ref. [155]. Here w = 0.3.
(B) Diffusion coefficients as a function w. Figure generated using data from vari-
ous resources. Diamonds are results from Green-Kubo numerical experiments [141];
stars [20] and circles [80] are calculated from escape rate; and triangles are given by
Hausdorff fractal dimension calculation [80]; dashed line is a statistical approximation
from [11].

cycle expansion method converges the fastest, see Table 2 and Figure 41A. Diffusion

coefficient computed from ∼ 2 000 fundamental domain cycles of topological length

up to 6 converges to two significant digits, while the elementary cell calculation needs

over ∼ 10 000 cycles in order to converge.

We also compute the diffusion coefficient for w = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30.

The results are compared with previous numerical experiments and a recent statis-

tical estimation, see Figure 41. In Green-Kubo velocity auto-correlation method the

diffusion coefficient can be extrapolated to the accurate reference value 0.250 (at

w/r = 0.30), using ensembles of 106 ∼ 107 random trajectories that fly for an exten-

sive period (T > 20) [141]. The number of bounces for each trajectory are typically

greater than 20 (as compared to 6, the topological length of longest periodic orbit

we used). On the other hand, while statistical approach yields a smooth analytical

formula [11], the diffusion property in such systems is fundamentally never a smooth
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function of parameters [50]. Unfortunately, for the 2D system we do not have enough

numerical precision to monitor the fractal behavior of diffusion coefficient observed

in ref. [50].

4.8 Conclusion

We have thus obtained a description of global diffusive properties of an infinite peri-

odic dynamical system, such as the Lorentz gas, in terms of periodic orbits restricted

to the elementary cell. These formulas have been tested extensively in refs. [55, 20]

on the Lorentz gas, and in ref. [14] on 1-dimensional mappings. Related trace for-

mulas have been independently introduced and tested numerically in ref. [214]. The

formalism has been generalized to evaluation of power spectra of chaotic time series

in ref. [56].

Honesty in advertising requires disclaimer; no such fractal behavior of the con-

ductance has been detected experimentally so far. In practice, the periodic orbit

evaluations of the diffusion constant converge poorly compared with averages over

scalar quantities such as the Lyapunov exponents. These difficulties are due to sev-

eral reasons:

1. the diffusion coefficient is not a mean but a variance which is always more

difficult to evaluate than mean quantities like Lyapunov exponents;

2. until this work, there was no formula for the diffusion coefficient in terms of the

periodic orbits of the fundamental domain;

3. systems like the Lorentz gas do not have simple symbolic dynamics and the

analyticity of the associated zeta functions may also be affected by the flow

discontinuities associated with the grazing trajectories (trajectories tangent to

the disks).
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CHAPTER V

SNAKE LOCOMOTION AND CONTROL IN

HETEROGENEOUS ENVIRONMENTS

Results and discussions here are based on unpublished work. Snake experiments were

conducted by Perrin Schiebel.

5.1 Introduction

Snakes maneuver in nearly all natural terrains. They use versatile locomotion modes

such as lateral undulation and sidewinding. During lateral undulation (i.e. slithering),

the snake contracts its muscles to create horizontal waves propagating from head to

tail. The body bends provide thrust forces through frictional contacts with the ground

and/or by pressing against irregularities in the environment. On sand surfaces, some

snake species (e.g. the rattlesnake Crotalus cerastes) use the peculiar sidewinding

gait, in which the body adopts an elliptical-helix shape composed of both horizontal

and vertical traveling waves [144]. While principles for lateral undulation [104] and

sidewinding [18] were proposed and tested on robotic platforms [86], such templates

cannot fully capture the complexity and richness observed in snake locomotion [90,

112, 77, 154]. While snakes were assumed to use various sensing mechanisms during

locomotion, to our surprise, there have been no systematic studies on this topic. We

posited that, by studying the relation between sensing information and changes in

snake behavior during locomotion, we can better understand why snakes are adaptive

to various heterogeneous environments.

We chose the shovel-nosed snake (Chionactis occipitalis, 18±2 g, 36.6±3.4 cm) as
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our model animal. This sand-dwelling snake can perform low-slip subsurface swim-

ming in homogeneous granular media [193]. Recently, Schiebel et al. studied1 the

undulatory locomotion of C. occipitalis on granular media both with and without

obstacles (pegs), and found that snake individuals used regular traveling waves of

fixed parameters through all experimental trials. In this dissertation, we studied the

locomotion of C. occipitalis on a featureless substrate, a white board. We then in-

corporated a lattice of pegs into the board and studied how the animal controlled its

body to effectively generate thrust.

5.2 Materials and methods

5.2.1 Animal experiment

BA ~1 cm

Figure 42: (A) C. occipitalis resting on 0.3 mm diameter glass particles. (B) C.
occipitalis moving in a 9 cm spacing square lattice of pegs on a white board.

C. occipitalis dwell in the Mojave and Sonoran deserts. Individuals were collected

in Arizona (by Kevin and April Young) in accordance with a scientific collection

permit (no. SP591773) approved by the Arizona Game and Fish Department. All

snakes were housed in the Georgia Tech Physiological Research Laboratory (PRL)

and experiments were conducted (by Perrin Schiebel) at the Crab Lab under the

Georgia Institute of Technology IACUC protocol A11066 and A14067. In both the

1unpublished work
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test and holding areas, the temperature was maintained at 26.7 ± 1◦, which is the

ideal active range for C. occipitalis [125].

Rigid, cylindrical pegs of 0.635 cm diameter were 3D-printed using ABS plastic

material and arranged into square and hexagonal lattices affixed to white boards. We

tested snakes in lattices where the center-to-center distances between nearest pegs

varied from 2 to 16 cm. In a 2 cm spacing lattice the gap between pegs was ∼ 1.2

cm, comparable to the snake body width at ∼ 1 cm; for lattice spacings greater

than 16 cm, C. occipitalis had a low chance of contacting pegs. All experiments

were conducted between 3 PM and 6 PM. Between consecutive runs snakes had 5

minutes to rest, and the total number of trials were limited to 3 per day. Dorsal-view

videos were recorded by high-speed cameras (AOS S-Motion) at the frame rate of 250

fps. In order to analyze the kinematics, the videos were digitized in MATLAB, using

a custom-written GUI software [193] which tracked the ∼ 1 cm spaced black body

bands.

5.2.2 Multibody simulation

B

θn

θn+1

x

z

μt μn

A

Figure 43: (A) The snake model in simulation. Adjacent rigid bodies (rounded
rectangles) are connected by motors (circles). All motions are restricted in the x− z
plane. θn is the n-th motor actuation angle. µn and µt are friction coefficients for the
normal and tangential directions of each segment. (B) The simulated snake moved in
a peg lattice. The distance between two nearest pegs are 0.26 BL, comparable to C.
occipitalis in a 10 cm spacing lattice.
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We used Chrono::Engine [146], a multi-body framework written in C++ to model

the actuation and dynamics of a snake in simulation. The simulated snake consisted of

N = 30 cuboid rigid bodies (Figure 43B), and had a length-to-width ratio L/w = 24.

Adjacent segments were linked with motors which only allow relative rotation about

y-axis. In the basic, template control scheme, motors were commanded to generate

sinusoidal rotations with uniform phase delay from head to tail segments, i.e.:

θn(t) = A sin(
2π

T
t+

ξn

2π
) , (47)

where θn was the angle of the n-th motor, A the maximal rotation angle, T the

undulation period and ξ the number of waves along the body. This template scheme

produces a serpentine wave [99]. We also introduced a feedback controller to model

the snake behavior when they interacted with pegs (see Section 5.3).

In experiment, C. occipitalis moved laterally on a flat surface with no significant

lifting (such as climbing over pegs) observed, we constrained the simulated snake to a

2D plane, allowing translations in x and z directions, and rotations about y direction.

The ground-belly interaction was modeled using anisotropic Coulomb friction. An

anisotropy ratio (defined as the ratio between µn, the friction coefficient along the

normal direction of the slender body, to µt, the friction coefficient in the tangent

direction) that was greater than 1 allowed the slender body to propel forward [104].

At µn/µt = 3 the simulated snake moved at an undulation efficiency η = 0.25 (the

traveled distance in a cycle divided by the body length), which quantitatively matched

snake experiment results on the white board. We added frictionless, rigid, cylindrical

pegs, separated at the same relative spacings d/L as in experiment (Figure 43A and

B).
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Figure 44: C. occipitalis traveled in a square lattice of 8 cm spacing. (A) Sequential
positions of the snake. The temporal interval between two frames are 0.02 s. Blue dots
indicate peg positions. Color represents time. (B) and (C) are isolated subsequences
from (A). Arrows indicate the pegs being contacted. See text for details.
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5.3 Results and discussions

5.3.1 Kinematics

Currently, there is no universal way to quantitatively characterize the undulatory wave

pattern of snake, partly because it is mathematically challenging to parameterize a

continuous curve of unknown class using only a few meaningful variables. Stephans et

al. have explored the “eigenworm” decomposition [200], using time-correlated princi-

ple component analysis (PCA) to project the high-dimensional spatial configuration

of nematodes (C. elegans) into a low dimensional behavior hyperplane. The method

worked well when the movement pattern was regular and repeatable. As Schiebel

et al. demonstrated, C. occipitalis undulation shape on sand surface can be recon-

structed with 95% accuracy, using the first two eigen shapes.

In contrast, when C. occipitalis moved on a white board in peg lattices, a sub-

stantially wide range of waveforms were observed (Figure 44 A). A number of fac-

tors contributed to the resulting complexity of the snake’s movement patterns: the

smooth, featureless substrate (as a rough analogy, compare to humans walking on

ice); the limited free space imposed by the presence of obstacles; and the non-trivial

interaction between the animal body and pegs. When interacting with pegs located

posterior to the body’s traveling wave, the snake can modulate its axial bending at

the point of contact to generate thrust and propel the body forward (Figure 44 B).

When a peg stood anterior to the body, the wave shape had to deform (i.e. compress),

and the body slipped back (Figure 44 C). Worried that the temporal integral in the

PCA covariant analysis may erase such subtle behaviors, we decided to analyze the

motion of C. occipitalis case-by-case in this study. Specifically, we were interested in

the detailed kinematics and control strategy when the snake first encountered a peg.
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Figure 45: Snapshots of the body shape when (A) C. occipitalis touched the peg
and (B) when the simulated snake had contacted a peg and was deflected. The time
intervals between consecutive plotted frames are ∼ 0.1 s in experiment and ∼ T/8 in
simulation, respectively. Color indicates time.
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5.3.2 Snake interaction with a single peg

As observed in various literature [90, 77], a snake can propel itself by throwing its body

into a “S” shape and pressing on the anterior surface of a single contact site. There

have been a few experiment studies on snake movements facilitated by pegs [90, 112,

77, 154]. Qualitatively similar kinematics were documented for different snake species

(Natrix natrix, Elaphe obsoleta, Python regius, and Pituophis melanoleucus affinis)

during the interaction with a single peg. Force measurements were performed [90, 77]

and showed that snakes were able to generate forward thrust from the contact that

counteracted the frictional drag from the substrate. Although correlations between

muscle activity and the kinematics were discussed, no concrete conclusion or testable

hypotheses were made. In this study, we connected the propulsion dynamics of C.

occipitalis with its shape change, and inferred the control mechanism behind the

scene.

In our experiment, C. occipitalis demonstrated similar maneuverability when it

interacted with a single resistance site (Figure 45 A). When the snake touched a peg

posterior to its moving direction, the body posture was adjusted to wrap around the

peg. The head section of the snake maintained contact while the rest of the body

was pulled forward (Figure 45 A, blue to orange lines). After the contact normal

was aligned to the desired traveling direction, new bends were generated (Figure 45

A, dark red line) and propagated backward (in the body frame) to continuously

press against the peg while the center of mass (CoM) moved forward in the lab

frame. Such peg-grabbing behavior may not be explained by a single-mode lateral

undulation gait. With only the open-loop serpentine wave template, we found that

the simulated snake was deflected to the side immediately and could not effectively use

the peg to push its body (Figure 45 B, dark blue to dark red lines). The results were

not surprising because the contact force was not initially aligned with the traveling

direction. Without a control mechanism, the body was pushed to the perpendicular
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Figure 46: The body shapes adopted by C. occipitalis when they began to wrap
around the peg. We plotted 14 tracked runs of 3 indivudals from 29 instances where
grab behavior was observed. Color distinguishes individual snakes. All shapes were
aligned to peg positions. Some curves were rotated and reflected. The actual moving
direction shall not be inferred from the snapshots.

direction of motion and also rotated away from the peg.

In previous studies, researchers qualitatively characterized the “S” shape being

used during the snake-peg interaction. However, little was understood on how snakes

were able to create such shapes and rotate the initially misaligned contact normal to

its movement direction. To answer this question, we examined∼ 150 experiment trials

of C. occipitalis moving in the peg lattice, and identified 29 instances of single peg

interaction. The duration of the grab phase, defined as the elapsed time from when

the snake had just touched the peg, to when the snake had aligned the body and was

ready to generate a new bend, was 0.24±0.08 s (60±8 frames). For each instance, we

extracted the body trajectory at the middle of the grab phase ( Figure 46). Although
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the body shapes can vary significantly between runs, we observed stereotyped, “C”-

shaped conformations near the contact site. Because the shapes were clipped and

rotated manually, the exact moving directions are not represented in Figure 46.

The universality in C. occipitalis postures suggest that (at least partially) a shape-

based control may be used during the grab phase. The C-shape can be achieved by

a modulation on top of the normal serpentine wave. To see this, we computed the

signed curvature κs, which was related to the motor angle in simulation by κs ≈ θn/l,

where l is the length of a segment. For the representative run (Figure 47), when

the snake had just touched the peg (Figure 47A), the curvature at the point right

behind the contact site was still increasing (Figure 47D, at t = 0.04 s). If the motion

followed the serpentine wave template, the signed curvature would increase with a

sinusoidal pattern until it reached the positive maximum. However, between t = 0.05

s and t = 0.16 s, the curvature speed changed sign and κs decreased from −0.1 cm−1

to −0.7 cm−1. We examined the perturbed wave form at t = 0.15 s (Figure 47D,

the vertical dashed line in the middle) and observed the C-shape pattern near the

head portion (Figure 47B). At t ≈ 0.16 s, κ̇s changed sign again from negative to

positive. κs increased for the next ∼ 0.1 s until a new bend was generated at t ≈ 0.25

s (Figure 47C).

We noticed that the sign change of the curvature speed occurred at all tracking

points between the contact location and the center of the first bend (indicated by the

maximum of the absolute curvature max |κs|) behind the contact. By modulating the

motor angle θ in a similar way to the snake, we may create a similar C-shape in the

simulated snake. We hypothesized that using the C-shape was a key ingredient to

successfully grip the peg.
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Figure 47: A representative trial showing the shape and curvature changes of C.
occipitalis during the interaction with a peg. Top row, the snake shape in configu-
ration space when (A) it just contacted a peg, (B) when it actively modulated the
wave to grab the peg, and (C) when the grab phase finished and the wave resumed
the nominal form (serpentine wave). The spacing between nearest pegs (blue dots)
was 9 cm. (D) the curvature κ vs time plot for the representative point (blue empty
circle in A, B and C). Dashed vertical black lines indicate the time frame at which
the snapshots in the top row were taken. κ was computed by fitting circles at the
selected point.
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5.3.3 Improved controller

To test our hypothesis, a feedback controller was introduced to monitor contacts in

real time and adjust the curvature accordingly. Instead of interpolating the kinematics

directly from the snake data, we were inspired by the “lateral inhibition” method,

an evasive control mechanism proposed by Hirose et al. [99], which enabled ACM

(a snake robot built on wheels [99]) to generate adaptive propulsions in a winding

tunnel. In our control scheme, we applied forces to the curvature:

θ̇n = −sign(θ̇n)Θ(n,m)− kp(θn − θ(d)
n )− kd(θ̇n − θ̇(d)

n ) , (48)

to modify the motor bending angles near the segment in contact with a peg, and

introduced proportional kp and derivative kd terms to stabilize the motion pattern

near the serpentine wave template which was prescribed by θ(d) (Equation 47).

The term Θ(n,m) denoted the contribution of a contact at the segment m near

the head portion (m < N/3) to the angle of n-th motor. We chose

Θ(n,m) =


K exp

(
−1

2

(
n−m
σ

)2
)

m < N/3,

0 otherwise,

(49)

where K controls the strength of the extra bending, and σ indicates the scale of

non-locality. In simulation we set σ = 4, so the length scale of the Gaussian function

matched the quarter wavelength of N
2ξ

= 5 segments. This allowed simultaneous

modification of ∼ 5 motors between the contact position and the center of the first

bend behind it.

5.3.4 Simulation results

We tested the prototype controller in simulation (Figure 48). With touch sensing

enabled, the simulated snake generated the C-shape while interacting with the peg

(Figure 48, green line), and was able to drag the rest of the body forward (Figure 48,

blue to orange lines). There was less change in the snake orientation after the peg
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Figure 48: Touch sensitive controller enabled the simulated snake to grab. Filled
black markers show the location of the peg.

ϕ = 0

ϕ = π/4

ϕ = π/2

Figure 49: Diagrammatic illustration of the effects of initial positions on the first
contact point along the body. Filled black markers show the relative positions of the
pegs.
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interaction. Instead of being deflected as in the open-loop passive case, the next

bend propagated from the head portion and subsequently pushed the snake forward

(Figure 48, dark red line).

We then systematically ran simulations to quantify the performance of the new

controller. In the setup, a single peg was set at (0, 0). At the beginning of each

simulation we placed the snake at (−L, 0), and aligned the body axis towards the

peg. By varying L we can control φ, the phase of the serpentine wave at the instance

the simulated snake encountered a peg (Figure 49). L was chosen such that the snake

can touch the peg soon (within T/6) after simulation started and there were enough

variations in the contact phase φ to cover (0, π/2)—because of the mirror symmetry

about x-axis, only φ ∈ (0, π/2) were considered. We tested two anisotropy factors

µn/µt = {3, 1}. When µn/µt = 3 the simulated snake moved at a mean speed of 0.25

BL/cycle without pegs, close to the observed performance of C. occipitalis on white

board. At µn/µt = 1 (i.e. isotropic friction) the simulated snake could not move for-

ward because the average thrust and drag forces always balanced within a undulation

cycle. Thus any extra movements in x-axis were generated from interactions with the

peg.

We plotted ∼ 400 simulation trajectories in Figure 50. For anisotropic ground

friction and an open-loop controller (Figure 50A, dashed trajectories), the simulated

snakes did not have any chance to manipulate the peg and were deflected towards −z

direction at similar angles, regardless of initial contact positions. The results were

thus insensitive to the contact phase, and all trajectories converged to the location

xe ≈ 0.18 BL at the end of simulation. The situation was worse when friction forces

were isotropic (Figure 50B, dashed lines). The simulated snake was not only pushed

perpendicular to the target x-direction but also slightly backwards, resulted in xe < 0

(Figure 51, the right red bar).
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Figure 50: The center of mass (CoM) trajectories in simulation when the feedback
controller was enabled (solid lines), and disabled (dashed lines) for (A) µn/µt = 3 and
(B) µn/µt = 1. For each combination of controller condition and anisotropy factor,
∼ 100 simulation runs were conducted. We subtracted the initial CoM position from
each run to compare the relative displacements. Color represents the phase at the time
of contac, see details in Figure 49. The simulation time for the plotted trajectories
was 1 undulation cycle (T).

108



0

0.2

0.4

0.6

x
 d

is
p
la

ce
m

en
t 

(B
L

)

C. occipitalisμ
n
/μ

t
=3 μ

n
/μ

t
=1

Figure 51: The performance of the simulated snake (measured by the displacement
in x direction after a cycle) with (blue bars) and without (red bars) the controller.
Error bars show the standard deviation. The green bar shows the performance of C.
occipitalis in a single cycle using active grab.

In contrast, the performance of the feedback-controlled snake had a sensitive de-

pendence on the contact phase (Figure 50A and B, solid lines). The controller intro-

duced non-trivial interactions between the snake the and peg. The grab phase began

when the simulated snake first touched the peg. Due to the nature of LCP solvers

used in Chrono::Engine and the stiffness of rigid bodies being used, the contact forces

were over-estimated. As a result, the contact broke shortly while the controller was

still modulating the body shape. Within a single cycle, multiple collisions can occur

(Figure 50A and B, turning points on solid lines), and the controller may issue more

grab commands if the contact point is still near the head.

When µn/µt = 3, the total x-displacement, xe, in a undulation cycle (after the

initial collision) was 0.40 ± 0.05 BL (Figure 51, the left blue bar). Compared with

the passive case where xe = 0.18 ± 0.07 (Figure 51, the left red bar), the increase

in performance was over 100%. Additionally, the simulated snake achieved similarly
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x-displacement as the real snake at 0.45± 0.05 BL (Figure 51, green bar).

For the isotropic condition µn/µt = 1, the feedback controlled snake was able to

manipulate the peg and generate thrust for φ . 1.0 (Figure 50 B, blue and green solid

lines). For simulation with φ > 1.2, xe decreased to ∼ 0 BL, and the trajectories (

Figure 50B, red solid lines) were similar to the passive case (Figure 50B, dashed lines).

The results were not surprising, because at first contact, the portion of the snake

body ahead of the peg decreased with increasing φ (Figure 49B). When only the first

segment (behind the head) touched the peg, a subsequent grip action may force the

entire body to slip off the edge (Figure 51, the right blue bar and dashed horizontal

line). Detailed sequential snapshots indicate that, with the current controller, the

simulated snake failed to rotate the contact normal effectively when there was little

thrust from the substrate.

5.4 Conclusion

We studied the locomotion of C. occipitalis in a heterogeneous setting. To generate

thrust on the featureless substrate (white board), C. occipitalis actively manipulated

its contact with a single resistance site (i.e. a peg). From a kinematics analysis, we

hypothesized that C. occipitalis modulated its wave template using a shape-based

control method. Based on our experimental findings, a close-loop controller using

touch feedback was proposed and tested in simulation. We observed that the feedback

controlled snake was able to grab pegs and improved its mobility.

While simulation has provided insight into the use of closed-loop undulatory con-

trol around pegs, certain features of simulation, i.e. intermittent contacts between

rigid bodies, resulted in unrealistic conditions that a robotic snake would not en-

counter. Thus, we next intend to test the controller in a robot snake (Figure 52).

Also, the observations and results in this chapter are limited to a single contact sce-

nario. It remains to be studied how snakes control their bodies when multiple contacts
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capacitive touch sensors

Figure 52: The snake robot with touch sensing capability. The body was built
with 12 Dynamixel XL-320 motors. Adjacent motors were linked by 3D printed
brackets (yellow square parts). All motors were connected to a serial bus and can be
controlled individually using the Ardiuno Mini board. We taped copper foils to the
side of motors to detect the capacitance change upon touching. Sensing information
was gathered by a MPR121 breakout board (SparkFun parts) and processed by the
Ardiuno.
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are presented.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Summary

In this dissertation, we developed predictive models for legged and limbless locomo-

tion on dry, homogeneous granular media. The vertical plane Resistive Force Theory

(RFT) for frictional granular fluids accurately predicted the reaction forces on intrud-

ers (with complex geometries) translating and rotating at low speeds (. 0.5 m/s). Us-

ing RFT and multibody simulation, we predicted the forward moving speed of legged

robots. During the locomotion of lightweight robots and animals where instantaneous

limb penetration speed can reach values greater than ∼ 0.5 m/s, a Discrete Element

Method (DEM) simulation was developed to capture the limb-ground interaction. We

showed that hydrodynamic-like forces generated by accelerated particles can balance

the robot weight and inertia, and promote the rapid movement on granular media.

Forces from the environment can not only determine locomotion dynamics, but also

affect the locomotion strategy. We studied and simulated the limbless locomotion

of snakes in a heterogeneous environment and demonstrated how touch sensing was

used to adjust the movement pattern. In heterogeneous environments, the long-term

locomotion dynamics is also poorly understood. We presented a theory for transport

and diffusion in such settings.

Our studies indicated that it is possible to create high-fidelity models for move-

ment on flowable terrains, by understanding the interaction between the locomotor

and the environment. In heterogeneous environments where uncertainties (to the

locomotor) are present, it is important to actively sense the interactions and inte-

grate the feedback information to the locomotion strategy. Because we used a hybrid

113



approach including multibody simulations and robots (i.e. robophysics), these re-

sults can be immediately applied to legged and limbless devices moving in complex

environments.

6.2 Future Directions

6.2.1 From RFT to plasticity theory

While RFT had many successes, there are regimes in which the theory showed dis-

crepancy/did not apply. The current formulation of granular RFT assumes that the

forces acting on elements are described by steady state drag forces. This approxima-

tion is valid at low Reynolds numbers, since, upon a sudden movement of a body to

a constant speed, the accompanying flow fields are developed rapidly (the so-called

instantaneity assumption [91]) and are thus time independent for such an interac-

tion. However, in granular media, even for low constant intrusion speed, the material

can change state over timescales relevant to the intrusion event. The ∼30% over-

prediction of sand-swimming speeds in RFT compared to the DEM in Ref. [65] was

attributed to such a transient effect.

Several aspects of interaction with surfaces were not incorporated into the granular

RFT. For example, unlike fluids, soft materials like sand can display memory effects:

for example, GM can form sand craters upon impact [221, 213], which will not be

removed (as in a fluid) by the spontaneous fluctuations of particles or by further

flow (since the material solidifies post-impact). We have discovered that such effects

in which surface properties change due to disturbances can play significant roles in

locomotor performance. In studies of the locomotion of a flipper-based robot, drag

and penetration forces were found to decrease substantially if an intrusion occurred

close to previously disturbed ground [148]. Such memory effects of disturbed ground

were posited to be the cause of locomotor failure [148, 135] during surface movement.

Recently, the group led by Kamrin has made progress in developing a plasticity
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theory for intrusion forces in granular media [17]; Aguilar and Goldman have ex-

plained, for the first time, the “added-mass effect” during rapid impact on granular

media [2]. The promising new theories may help us understand both the transient

phenomena and hysteresis. In future studies, we could integrate the new models to

our multibody simulation. We expect that this approach can predict locomotion dy-

namics more accurately for a broader terrains conditions, and also explain the failure

modes observed in experiments.

6.2.2 Locomotion on wet granular media

In this dissertation we did not discuss locomotion on and/or within wet granular

media. Although there have been scattered efforts to understand the mechanisms that

nematodes [117] and polychaetes [66] used to burrow in mud, this topic remains largely

unexplored due to the complexity of the media. In wet granular media, water can

form bridges between adjacent particles [152] and introduce long-ranged, attractive

inter-particle forces. Depending on the water content, the rheology and resistive

properties of the material can significantly vary [163]. Recently in our lab, a novel

experiment method was developed to control and prepare wet granular media into

a repeatable state [194]. With this new technique, principles of lizard burrowing

in moisturized granular media (when water volume is below ∼ 15%) were revealed.

However, theories and simulations are still lacking. In future studies, we may modify

the force model in DEM simulation to include long-ranged, attractive force from the

water bridge. Once validated, we can simulate locomotion on moisturized granular

media. For high water content substrates such as sea sediments and muds, a particle-

fluid co-simulation can be considered to understand the complicated physics of such

interactions.
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6.2.3 Control of limbless locomotion using multiple contacts

In this dissertation we have studied the locomotion of Chionactis occipitalis on smooth

substrates, and revealed how the snake generated propulsions from a single contact

site. However, the mechanism by which C. occipitalis interacts with multiple contacts

is still unclear, When moving in a (relatively) dense lattice of pegs, depending on

contact locations and their normal directions, the snake may compress part of its

body to avoid collisions with certain pegs, while pushing against other sites to gain

thrust. Understanding the control scheme behind such behavior may not only advance

our knowledge in snake locomotion, but also help design robotic arms that manipulate

in cluttered environments. In future studies, we will investigate snake control in peg

lattices in simulation, and build touch-sensitive snake robots to test the controller’s

performance.
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APPENDIX A

DETAILS IN RESISTIVE FORCE THEORY

This chapter was published in [136].

A.1 Depth-only force models and their limitations

Previous studies of intrusion forces in granular media focused on simple intruders

(e.g. plates, rods, and spheres) moving with simple kinematics (e.g. vertical pene-

tration and horizontal drag). For example, the vertical force Fz on a horizontal plate

element (β = 0) moving vertically (γ = ±π/2) in granular media was observed to be

proportional to the plate’s depth |z| and area A [135, 98]:

Fz = αz(0, sgn(ż)π/2)|z|A . (50)

Similarly, the horizontal force Fx on a vertical plate element (β = ±π/2) moving

horizontally (γ = 0) in granular media was proportional to plate depth |z| and plate

area A [7, 147, 87]:

Fx = αx(π/2, 0)|z|A . (51)

where ż is the velocity of the plate in the vertical direction, and αz(0, sgn(ż)π/2) and

αx(π/2, 0) are vertical and horizontal stresses per unit depth for (β, γ) = (0,±π/2)

and (π/2, 0) (determined from measurements in Figure 21, B and C).

Both the vertical penetration and horizontal drag force models only account for

the dependence of stresses on the intruder’s depth (|z|), but not the dependence on

its orientation (attack angle β) or movement direction (intrusion angle γ). Hereafter

we refer to these force models as the “depth-only force models”.

In previous studies of legged locomotion on granular media [134, 135, 147], due to

the lack of the resistive force model, the forces on a complex intruder were estimated
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|z|
z (β, γ), left) and horizontal (α

|z|
z,x(β, γ), right)

stresses per unit depth as a function of attack angle β and intrusion angle γ for
loosely packed poppy seeds, calculated from Equation 54 using αz(0, sgn(ż)π/2) and
αx(π/2, 0) measured in experiment (Figure 21, B and C). See Figure 20 schematic of
the experiment and definition of variables.

from the depth-only force models, using the flat-plate approximation: The vertical

force on a leg element of area dAs and arbitrary β and γ was approximated by that on

a horizontal leg element whose area was the element area projected into the horizontal

plane [134, 135]:

dAzs = |cosβ|dAs . (52)

Similarly, the horizontal force on the leg element was approximated by that on a verti-

cal leg element whose area was the element area projected into the vertical plane [147]:

dAzs = |sinβ|dAs . (53)

The effective stresses per unit depth calculated from these depth-only force models

using flat plate approximation were then:
α
|z|
z (β, γ) = αz(0, sgn(ż)π/2)|cosβ|

α
|z|
x (β, γ) = αx(π/2, 0)|sinβ|

(54)
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Comparing the α
|z|
z,x(β, γ) calculated using Equation 54 (Figure 53) to our resistive

force measurements αz,x(β, γ) (Figure 2, C and D) for loosely packed poppy seeds, we

found that these depth-only force models did not capture most of the measured stress

profiles. In particular, the depth-only vertical penetration force model over-predicted

αz(β, γ) for all β and γ except when the plate was horizontal (β = 0) and moving

vertically (γ = ±π/2). Contrary to experimental measurements, the α
|z|
z,x calculated

from the depth-only models were symmetric to β = 0 (horizontal orientation), and

α
|z|
z (or α

|z|
x ) was always opposing the plate’s vertical (or horizontal) velocity (the

shaded regions shrank to a line).

We used these depth-only force models to calculate the net lift Fz and thrust Fx

versus leg angle θ for the three model legs rotated through all media tested, by the

integration of stresses over the legs (Equation 7) using α
|z|
z,x(β, γ). We found that they

not only significantly over-predicted peak Fz (by up to 1400%) but also erroneously

predicted similar peak Fz,x for the c-leg and reversed c-leg (Figure 54).

A.2 Generality of resistive force model for a variety of gran-
ular media

Table 3: Physical properties of the three granular media (in different compactions)
for which resistive forces were measured. *Angle of repose for 3 mm glass spheres
courtesy of Sarah Sharpe.

Granular
medium

Particle
diameter

(mm)

Particle
material
density
(g/cm3)

Compaction
Volume
fraction

Angle of
repose (◦)

poppy seeds 0.7± 0.2 1.1
LP 0.58 36
CP 0.62 47

0.3 mm glass
spheres

0.27± 0.04 2.5
LP 0.58 25
CP 0.62 35

3 mm glass
spheres

3.2 ± 0.2 2.6 CP 0.63 21*
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Figure 55: The three granular media tested in our study. Top: regular images.
Bottom: microscope images. The length of each scale bar is 1 mm. Photo credit of
(A) and (C): Sarah Sharpe.
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To test the generality of our resistive force model and provide a database for

future studies, we performed resistive force measurements for three granular media—

poppy seeds, 0.3 mm glass spheres, and 3 m glass spheres (Figure 55), which have

different particle size, shape, density, and friction (measured by angle of repose)

(Table 3). We prepared these granular media into well-defined compactions which

affected stresses [135, 87]. We prepared poppy seeds and 0.3 mm glass spheres into

both a loosely packed (LP) and a closely packed (CP) states, and prepared 3 m glass

spheres into a closely packed (CP) state (Table 3).

Despite differences in magnitudes and fine features, we observed similar profiles

of the vertical and horizontal stresses per unit depth αz,x(β, γ) for all media tested

(Figure 56). Our resistive force model predicted the net lift Fz and thrust Fx versus

leg angle θ on the three model legs rotated through granular media (Figure 57).

Compared with predictions from the depth-only force models (Figure 53), our resistive

force model had a significant improvement in accuracy.

A.3 Scaling routine for easy use of the resistive force model

To provide a means for practical use of our resistive force model and comparison with

new theories of dense granular flow [119], we performed a fitting approximation to the

stress per unit depth data αz,x for all media tested, and developed a scaling routine

based on the data fits.

We first performed a discrete Fourier transform of the αz,x(β, γ) data (Figure 56)

over −π/2 ≤ β ≤ π/2 and −π ≤ γ ≤ π to obtain a fitting function. We examined

the Fourier coefficients and found that the αz,x(β, γ) data of all media tested could

be well approximated by the following fits:
αfit
z (β, γ) =

1∑
m=−1

1∑
n=0

[Am,ncos2π(
mβ

π
+
nγ

2π
) +Bm,nsin2π(

mβ

π
+
nγ

2π
)]

αfit
x (β, γ) =

1∑
m=−1

1∑
n=0

[Cm,ncos2π(
mβ

π
+
nγ

2π
) +Dm,nsin2π(

mβ

π
+
nγ

2π
)]

(55)
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using nine zeroth- and first-order terms (whose magnitudes are larger than 0.05A0,0)

(Table 4):

M =

(
A0,0 A1,0 B1,1 B0,1 B−1,1 C1,1 C0,1 C−1,1 D1,0

)T
(56)

Table 4: Zeroth- and first-order Fourier coefficients M (in N/cm3) for all media
tested. These coefficients are 0.05A0,0. M0 is a generic coefficient curve to which the
M for each granular medium can be collapsed onto by division of a scaling factor ζ
(ζ = 1 for M0). We choose the magnitudes of M0 such that for all media tested the
values of ζ are nearly the same as the values of αfit

z (0, π/2) (this becomes useful later
in the scaling routine). CP and LP indicates closely packed and loosely packed states.

granular
medium

poppy seeds 0.3 mm glass spheres
3 mm
glass

spheres

generic
coeffi-
cients

compaction LP CP LP CP CP n/a
matrix no-
tation

MpoppyLP MpoppyCP M0.3mmLP M0.3mmCP M3mmCP M0

A0,0 0.051 0.094 0.040 0.081 0.045 0.206
A1,0 0.047 0.092 0.030 0.063 0.031 0.169
B1,1 0.053 0.092 0.045 0.078 0.046 0.212
B0,1 0.083 0.151 0.077 0.133 0.084 0.358
B−1,1 0.020 0.035 0 0.024 0.012 0.055
C1,1 −0.026 −0.039 −0.031 −0.050 −0.031 −0.124
C0,1 0.057 0.086 0.066 0.087 0.060 0.253
C−1,1 0 0.018 0 0 0 0.007
D1,0 0.025 0.046 0.017 0.033 0.015 0.088
scaling fac-
tor ζ

0.248 0.488 0.194 0.371 0.214 1

By symmetry, αz(β ≤ 0, π/2) = αz(β ≥ 0, π/2), and αx(β ≤ 0, π/2) = −αx(β ≥

0, π/2). However, the data slightly deviated from this equality because the initial

positions of the plate were close to one of the boundaries of the container. Therefore,

before the Fourier transform, we averaged the raw data for γ = ±π/2 to restore

symmetry by αz(β ≤ 0, π/2) = αz(β ≥ 0, π/2) = 1
2
[αz(β ≤ 0, π/2) + αz(β ≥ 0, π/2)].

The raw data were also not uniformly sampled in the γ direction; we found that this

only resulted in small errors in data fitting.
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We found that for all media tested (denoted by i = poppyLP, poppyCP, 0.3mmLP,

0.3mmCP, and 3mmCP), the Fourier coefficients Mi could be collapsed onto a generic

coefficient curve, M0, by dividing Mi by a scaling factor ζi (Table 4, Figure 58):

Mi/ζi ≈M0 (57)

A0,0 A1,0 B1,1 B0,1 B-1,1 C1,1 C0,1 C-1,1 D1,0

−0.2

0

0.2

0.4

Scaled

Fourier coe"cients

Mi/ζi (N/m3)

 

 

Poppy seeds LP

Poppy seeds CP

0.3 mm glass particles LP

0.3 mm glass particles CP

3 mm glass particles CP

Generic coe"cients

Figure 58: Scaled Fourier coefficients Mi/ζi of all media tested (thin colored curves)
can be approximated by a generic coefficient curve M0 (thick black curve).

This enabled us to scale stresses per unit depth (αz,x) and thus forces (fz,x and

Fz,x) for all media tested. By Equation 55, using the generic coefficient curve M0 (ζ =

1) from Table 4, we calculated generic stress (per unit depth) profiles αgeneric
z,x (β, γ)

(Figure 59). We found that, by multiplication by the scaling factor ζ, these generic

stress profiles well approximated the measured αz,x(β, γ) (Figure 56) for all media

tested:

αz,x(β, γ) ≈ ζαgeneric
z,x (β, γ) . (58)

Using Equation 7 and αgeneric
z,x (β, γ), we calculated the generic force profiles F generic

z,x (θ)

on the three model legs rotated through granular media (Figure 60). We found that
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See Figure 2, A and B for schematic of the experiment and definition of variables.

in all media tested and for both the c-leg and the flat leg, these generic force profiles

captured the measured Fz,x scaled by the scaling factors ζ:

F generic
z,x (θ) ≈ Fz,x(θ)/ζ . (59)

However, the agreement was worse for the reversed c-leg. Our resistive force model

revealed that this was because by using F generic
z,x (θ), stresses were significantly overes-

timated for the reversed c-leg’s elements that reached large depths.

We further observed that the ratio of the maximal vertical stress (which occurred

on a horizontal plate moving downward) between the measurements (αz(0, π/2)) and

fits (αfit
z (0, π/2)) was similar for all media tested (Table 5):

χ = αz(0, π/2)/αfit
z (0, π/2) = 1.26± 0.14 , (60)

where χ is in mean ± s.d.

Therefore, we propose that for a sufficiently level and uniform dry granular medium

composed of near-monodispersed, near-spherical, rounded particles of ∼ 0.1 to ∼

1 mm in diameter, one can simply measure its maximal vertical stress αz(0, π/2) by
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Table 5: Comparison of the measurements and fits of maximal vertical stress per
unit depth (in N/cm3) for all media tested. CP and LP indicates closely packed and
loosely packed states. χ = αz(0, π/2)/αfit

z (0, π/2).

Granular
medium

poppy seeds 0.3 mm glass spheres
3 mm glass

spheres
Compaction LP CP LP CP CP
αz(0, π/2) 0.35 0.56 0.24 0.40 0.29
αfit
z (0, π/2) 0.26 0.47 0.19 0.38 0.22
χ 1.37 1.19 1.27 1.05 1.33
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pushing a horizontal plate downward to infer the maximal value of the fit vertical

stress αfit
z (0, π/2):

αfit
z (0, π/2) = αz(0, π/2)/χ ≈ 0.8αz(0, π/2) . (61)

The value of αfit
z (0, π/2) in N/m3 then gives the scaling factor ζ for this granular

medium, because we choose the magnitudes of the generic curve M0 so that the values

of ζ and αfit
z (0, π/2) are nearly the same for all media tested:

ζ ≈ αfit
z,x(β, γ) . (62)

Note that this equation only equates the numeric values on both sides, because ζ is

dimensionless. Then, from Equation 58, by scaling the generic stress profiles αgeneric
z,x

(Figure 59) by the determined scaling factor ζ, we can obtain an approximation of

stress profiles for this granular medium:

αz,x(β, γ) ≈ αscaled
z,x (β, γ) = ζαgeneric

z,x (β, γ) . (63)

This scaling routine provides an alternative to measuring αz,x for all β and γ (at

the cost of model accuracy). As demonstrated by the model leg rotation experiments

(Figure 60) and robot locomotion experiments (see Figure 65 in the next section), our

scaling routine only suffers a small loss in accuracy for much of the leg morphology and

stride frequencies tested. This technique can be particulary useful in a field setting,

because only a single force measurement is needed. We summarize these practical

steps to use our resistive force model in Figure 61.

A.4 Applicability of resistive force model to natural sands

To test the predictive power of our resistive force model for natural sands, we chose

two natural sands of higher polidispersity and angularity than those of the granular

media tested, and examined whether the scaling routine (Figure 61) could predict the

net forces Fz,x(θ) on the three model legs during rotation through the natural sands.
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Use α
z,x        (β, γ) to calculate forces and dynamics by Eqs. 2 and 3

Push a horizontal plate downward to measure α
z
(0, π/2) 

Scaling factor ζ ≈ α
z,x (0, π/2) 
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Figure 61: A scaling routine to easily apply our resistive force model.
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The two natural sands, referred to as “Yuma sand” and “29 Palms sand” (Table 6,

Figure 62), were collected from the Mojave Desert in the southwest United States, one

from Yuma, Arizona and the other from 29 Palms, California. The Yuma sand had

most particles (70% by mass) in the 0.06–0.3 mm particle size range, and the 29 Palms

sand had most particles (91% by mass) in the 0.3–3 mm particle size range. Both

naturals sands were fluidized by the fluidized bed before each force measurement was

performed. We further tested modified 29 Palms sand with reduced polydispersity to

examine the effect of polydispersity on model accuracy.

Yuma sand 29 Palms sand

A B

m
ic

ro
sc

o
p

e

29 Palms sand

(reduced polydispersity)

C

D E F

Figure 62: The natural sands used to test the predictive power of our scaling routine.
Top: regular images. Bottom: microscope images. The length of each scale bar is
1 mm.

During downward penetration (γ = π/2) into both the Yuma and 29 Palms sands,

the vertical stress σz on a horizontal plate (β = 0) increased nearly proportionally to
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Table 6: Particle size distribution of the natural sands tested.

natural sand particle diameter (mm) mass percentage (%)

Yuma sand
< 0.06 2

0.06–0.3 68
0.3–3.0 17
>3.0 13

29 Palms sand

< 0.3 5
0.3–0.6 36
0.6–0.7 55
0.7–3.0 3
>3.0 1

29 Palms sand with re-
duced polydispercity

0.6–0.7 100

depth |z| at low enough depths (Figure 63, solid curves), similar to observations in

the granular media tested. However, for both the natural sands, σz vesus |z| displayed

nonlinearity as depth further increased sooner than observed for the granular media

tested. This was because both natural sands had larger internal stresses (larger αz,x

magnitudes) and likely suffered boundary effects at much shallower depths as com-

pared to the granular media tested. In addition, for the Yuma sand which had more

particles in the 0.06–0.3 mm particle size range, this nonlinearity due to boundary

effects was more pronounced. Therefore, to minimize possible errors from boundary

effects, we perform linear fits with zero intercept to the σz versus |z| data (Figure 63,

dashed curves) over the linear regime (0–2 cm for the Yuma sand; 0–3 cm for the

29 Palms sand) to obtain αz(0, π/2) (slopes of dashed lines) for both the natural

sands. This gave us their scaling factors ζ and estimates of their stress profiles from

αscaled
z,x (β, γ) = ζαgeneric

z,x (β, γ) (Equation 63).

For the three model legs rotated through both the Yuma and 29 Palms sands,

both the net lift Fz and thrust Fx versus leg angle θ displayed asymmetric profiles

similar to those observed for the granular media tested (Figure 64, solid curves).

Using the αz(0, π/2) obtained from the vertical penetration experiment (Figure 63),
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Figure 63: Maximal vertical stress σz(0, π/2) versus depth |z| measured in the
natural sands using a plate element horizontally oriented and penetrating vertically
downward (β = 0, γ = π/2). Dashed lines are linear fits with zero intercept to
the data in the linear regime at shallow depths. See Figure 21 for schematic of the
experiment and definition of variables.

our scaling routine significantly overpredicted Fz,x(θ) on the c-leg for both the Yuma

and 29 Palms sands (both by 35%). Nevertheless, the shape of model predictions were

similar to experimental observations (Figure 64, dashed curves). The model accuracy

was best for the flat leg, and worst for the reversed c-leg.

There are two major differences between the natural sands and the granular media

tested: The natural sands have higher polydispersity, and are also less spherical and

more angular. To probe where the overprediction (of forces on the c-leg) stemmed

from, we further tested the 29 Palms sand with reduced polydispersity (obtained by

sieving the sand to obtain only the 0.6–0.7 mm particles). We found that while both

αz(0, π/2) and Fz,x(θ) dropped by 14% (figs. 63 and 64), the model overprediction of

forces on the c-leg remained the same (35%). This suggested that the non-spherical

and angular shape of the natural sand particles, rather than their higher polydisper-

sity, was likely the cause of the model overprediction.
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A.5 Comparison of model accuracy in predicting legged lo-
comotion

To evaluate the accuracy of our scaling routine in predicting legged locomotion, we

used our multibody dynamic simulation to simulate the robot’s movement on loosely

packed poppy seeds using the scaled generic stress profiles (αscaled
z,x = ζαgeneric

z,x ). We

calculated the robot’s average forward speed vx versus stride frequency f and leg

curvature 1/r (Figure 65), and compare it with experimental measurements and re-

sistive force model predictions (without using the scaling routine). As a comparison,

we also calculated vx(f, 1/r) using α
|z|
z,x obtained from the depth-only force models

(Figure 53).

We found that the simulation using scaled generic stress profiles (ζαgeneric
z,x ) only

suffered a small loss in accuracy as compared to that using the measured αz,x. By

contrast, the simulation using stresses α
|z|
z,x from the depth-only force models suffered a

larger loss in accuracy (by up to 150% error), and in particular, erroneously predicted

that the robot moved at similar speeds using both c-legs and reversed c-legs.

In addition to the predictions locomotor kinematics, our resistive force model and

multibody dynamic simulation also allowed us to calculate ground reaction forces

(Figure 66) during locomotion on granular media (which would be otherwise difficult

to measure), in a similar fashion as calculations of lift, drag, thrust, traction, and

resistance in studies of vehicle mobility in fluids and terramechanics studies. Notice

the larger vertical ground reaction forces produced by the C-legs relative to those by

the reversed c-legs. This allowed the robot to maintain higher lift above the granular

medium, reducing drag on the belly.
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Figure 65: Average forward speed vx of the robot as a function of stride frequency
f (left) and leg curvature 1/r (right) on loosely packed poppy seeds. Solid curves:
experimental measurements. Dashed curves: simulation predictions. Top: using the
measured stresses (αz,x). Middle: using the scaled generic stress profiles (αscaled

z,x =

ζαgeneric
z,x ). Bottom: using stresses from the depth-only force models (α

|z|
z,x). The drop

of vx vs. f at near R′/r = 1 using α
|z|
z,x was due to pitch instability of the robot

in simulation (the robot became upside down). (A) and (B) are reproduced from
Figure 23, C and D.
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Figure 66: Vertical (Fz, top) and horizontal (Fx, bottom) ground reaction forces
versus time t on both tripods of the robot during locomotion on loosely packed poppy
seeds, calculated from the simulation using the resistive force model. Solid and dashed
curves correspond to forces on the two tripods of legs, respectively. Results are for
the two representative runs shown in Figure 23B. Note that these ground reaction
forces do not include those on the robot body (which were also calculated but not
plotted here).
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