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Materials and Methods 

1.  Ant Experiments 

Ten S. invicta nests were collected during the spring, summer and autumn of 2014, 2015 and 

2016 at the Research and Education Garden of the University of Georgia, GA, USA, and the 

Chattahoochee-Oconee National Forest, GA, USA. Nest collection and colony extraction were 

performed according to methods found in (35). Ants were housed in plastic bins for 2–3 months at 

an ambient room temperature of 23±3°C with a relative humidity of 30±2%, and fed Vespula larvae 

and supplied with tap water twice a week. 

 

1.1 Primary Ant Digging Experiments 

Small groups of 30 ant workers from the laboratory-housed colonies were isolated in 

transparent containers filled with simulated cohesive soil made of 0.25 mm diameter wetted glass 

spheres (Ballotini glass particles). The experiments were conducted for 48 hours in W=0.01 and 

W=0.1 wet soils (3 trials for each soil moisture). All the experiments were repeated for 3 different 

colonies. The abdomens of the workers were marked in different colors. A plastic insert separated 

ants from cohesive soil and featured a single entry point next to the transparent wall of the 

container. A small (~ 5 mm) indentation was made next to the transparent wall of the container to 

prompt excavation. In each experiment, ants constructed a single tunnel. The top portion of the 

container was used by the ants for excavated soil deposition.  

The container was fixed on the motorized stage and the camera was focused on the first 2 cm 

of the tunnel at a distance of approximately 3 ant body lengths. As the tunnel grew in length, the 

relative positions of the tunnel and the camera were adjusted such that the tip of the tunnel was 

always visible. The camera was streamed, during which real-time processing detected the presence 

of ants based on pixel intensity. When an ant entered the camera's field of view, the camera was 

triggered to record 60 seconds of video at 15 fps.  

Work among excavators was characterized by manually counting the number of occurrences 

in which an ant visited the tunnel. Ants were classified as visitors if they appeared within the 

camera’s view of the tunnel at any point within the duration of the experiment. Non-visitors were 

those ants that were never detected by the camera. Lorenz curves described the workload 

distribution by linking the cumulative share of visiting workers in the population (ranged from the 

least to the most hardworking individuals) to the cumulative share of work performed by the 

excavating group.  

The Gini coefficient (a measure of statistics dispersion) (15) derived from the shape of the 

curve reflected the inequality in the workload distribution within visiting group. In general, when 

the Gini coefficient is close to 0, the effort of the ants during the excavation is nearly equal. In 

contrast, a Gini coefficient close to 1 indicates highly unequal workload distribution with a few 

active diggers in the visiting group carrying out the bulk of the workload. To calculate the Lorenz 

curves and Gini coefficients of the 48-hour experiments, the only ants that were included were 

those that were detected as having visited at least once during those 48 hours. To calculate the 

Lorenz curves and Gini coefficients for 12-hour epochs within those 48-hour experiments, we only 

considered the ants that visited within those 12-hour time-frames. This ensured that the calculated 

workload distributions only ever considered the working population of that measured time-period. 

Note that visitors, which did not successfully dig and reversed without a pellet were also counted 

in the excavation effort, because non-excavating visitors still expend energy in an excavation 

attempt and contribute to tunnel traffic. The 48 hour experiments revealed no significant effects of 

epoch (1-way ANOVA F3, 20=0.85, p=0.48) or soil wetness W (1-way ANOVA, F1, 23=2.54, p=0.13) 
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on the Gini coefficients obtained from Lorenz curves. Similar workload inequality characteristics 

are observed from the first 3 hours, by which point the tunnel length has typically not yet exceeded 

2 cm. A summary of Gini coefficients extracted from the experiment is provided in Table S1. 

 

1.2 Active Removal Ant Experiment 

To determine how the removal of top 5 most active diggers from the colony affects the 

workload distribution and efficiency of tunnel construction, groups of 30 ants were set to excavate 

cohesive granular media. Rarely, an ant would lose its colored marker during the experiment, 

appearing indistinguishable from the black marked ant in the camera. Thus, to avoid 

misidentification, instead of tracking all 30 ants, we omitted the ant marked black from analysis. 

The excavation process was recorded for 3 hours. The ants were removed from the container and 

set to rest for at least 12 hours. The recorded data was analyzed to determine the 5 excavators that 

most contributed to tunnel construction. These active excavators were removed from the group 

and the experiment was repeated for an additional 3 hours. The rates of tunnel construction and 

the Gini coefficients were measured and compared for the first (before removal) and the second 

(after removal) parts of the experiment. The results were obtained in the experiments with three 

different colonies and averaged.  

Tunnel construction rates varied little between the two phases of the experiment. In fact, the 

individual growth rate increased slightly: 0.58 ± 0.2 mm/ant within the first part of the experiment 

versus 0.67±0.3 mm/ant in the second part. The workload distribution also did not change and the 

Gini coefficient was 0.73±0.15 for control (first phase of experiment) and 0.62±0.06 for active 

removal (second phase), see Table S2. After the most active excavators from the first part were 

removed, several idle diggers increased their contribution to the excavation task. The contribution 

of the most active excavators within the first and the second parts of the experiment was 

comparable: 74±21% versus 74±5% of all observations in the tunnel. The most active diggers of 

the second part of the experiment had contributed to only 10±11.4% of total observations 

(546±65.8) during the first part of the experiment. Thus, individual ants were able to modify their 

behavior in response to the changing traffic dynamics of the tunnel. 

 

 

1.3 Calculation of tunnel-width normalized ant occupancy 

The control experiments from the active removal experiments were used for calculating tunnel-

width normalized ant occupancy, λ̅ ((average number of ants in the tunnel)/(tunnel width)). Each 

frame in the video (15fps*(60*60*3s) = 162000 frames) was analyzed in MATLAB to identify 

each colored ant using image processing techniques. The number of color blobs identified in each 

frame was representative of the number of visiting ants in that particular frame. The tunnel width 

was approximated to be 2 ant body widths (BW) following results from a previous study (20).  The 

occupancy was then temporally averaged over 3 minutes chunk (15fps*(60*3s) =2700 frames) at 

3 different time points in the experiment. This was repeated for 3 different experiments and the 

average experimental ant occupancy across these experiments is projected on the fundamental 

traffic diagram in Fig. 3E with shaded areas representing standard deviation from 3 experiments. 

1.4 X-Ray reconstruction of ant nest 

A colony of S. invicta fire ants excavated a 3D nest in a 25 cm wide cylindrical container 

filled with 240-270 𝜇m glass beads over the course of a week. The nest was then X-ray scanned 

(135 keV, 2.5 mA) and CT reconstructed in 3D (Fig. 1A). 
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2. Cellular automata model 

We used a cellular automata model to elucidate the effects of collective actions on traffic 

during tunnel construction. In a rectangular tunnel lattice, each cell could take one of four possible 

states: soil, empty/excavated space, ascending excavator, and descending excavator. The initial 

conditions of the simulation included the number (𝑛) of ants excavating in a group each with body 

length, BL, and body width, BW , as well as the width of the tunnel (𝑊𝑇),  the initial length of the 

tunnel, and the protocol of social organization of the group. At every simulation step, the ant was 

characterized by its 2D position (x,y), the direction of motion, whether or not they were carrying a 

pellet, and probability P to return back to the tunnel after pellet deposition. 

The state of the cells in the model changed by a discrete time step according to a simple set of 

rules. At each iteration step, a CA ant located in the tunnel moved one CA cell forward or 

diagonally forward (“walked”) with a probability p unless the destination cell was occupied. This 

probability affected the duration of ant clusters and was chosen from experimental observations 

(9). Also, when in a cluster, a descending ant had a probability to turn back and exit the tunnel 

without excavation (“reversal”). Due to the geometrical constraints of the CA model, the reversal 

behavior was an essential to prevent jamming for infinitely long times for populations 𝑛 > 2 ·
𝑊𝑇/ 𝐵𝑊. In the absence of the reversal behavior, unresolvable clogs consisting of 𝑛 ≥ 2 ·
𝑊𝑇/𝐵𝑊 ants may form which span the width of the tunnel and disrupt the excavation process. 

Thus, reversal behavior was implemented for all CA simulations regardless of workload 

distribution. 

When the ant reached the tip of the tunnel, it spent several time steps excavating. The excavated 

pellet was transported to the entrance of the tunnel and expelled from the tunnel (“pellet 

deposition”). After a predefined number of pellets were collected the tunnel grew in length by 1 

cell. After pellet deposition, the ant would return to the tunnel with probability P or switch to 

resting mode. During the pellet deposition or resting mode, the ant was neither contributing to the 

excavation, able to cause clogs, nor increasing tunnel density. The exit from the resting mode was 

also defined by probability P. 

The unequal workload distribution was achieved by introducing the probability, P, to return to 

excavate in the tunnel after a pellet deposition. To simulate fully active ants, workers attempted to 

reenter the tunnel immediately after pellet deposition (𝑃 = 1). In groups with unequal workload 

distributions, the probability of the ant to return to try and return to the tunnel was unique, fixed 

and derived from the experimental ant workload distribution measurements as 𝑃(
𝑛𝑖

𝑛
) = 𝑓 (

𝑛𝑖

𝑛
) −

𝑓(
𝑛𝑖−1

𝑛
), where 𝑛𝑖 was the number of ants in a sequence from the least to the most active; n was 

the excavating group size, and 𝑓 was a Lorenz function. 

 

 

All parameters describing ant behaviors were found via experimental observation; the only 

parameter varied to allow the system to match experiment was the excavations to grow tunnel size 

by 1 cell. The rates were calculated from the slope of the tangential lines fitting the initial portion 

of the tunnel growth curve. The tunnel excavation rates in simulations differed greatly depending 

on excavation scenario. In general, the groups of active diggers (𝑃 = 1) were most efficient when 

the number of excavators in the group was small. The increase in the number of active excavators 

led to the formation of ant clusters, which eventually slowed the nest construction down. The 

unequal workload distribution 𝑃(
𝑛𝑖

𝑛
) in large groups of excavators allowed for reduction of ants 

density in the tunnel throughout the experiment and, thus, produced high nest construction rates 
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even when the number of diggers in the excavating group was large. In large groups of diggers 

with unequal workload distributions, the excavation rates were insensitive to the addition of 

excavators.  

 

2.1 Occupancy and flow in CA model 

The CA simulations were carried out for ant groups of different sizes. The width-normalized 

ant occupancy and the flux were measured in LT = 5 cell long tunnel (~2.5 cm actual length). The 

flux and occupancy were measured at 𝑖 = floor (
𝐿𝑇

2
) + 1 position in the simulated tunnel (Fig. 

S4). We calculate ant occupancy as the time-averaged number of ants in the tunnel divided by the 

tunnel width, WT, in ant body widths, BW: 

�̅� =
1

𝑇
∑ 𝑛𝑖(𝑡)𝑇

𝑡=1 /𝑊𝑇       (1) 

where 𝑛𝑖(𝑡) = 1 if the site is occupied at time 𝑡 and 0 otherwise.  Occupancy at a fixed site 𝑖 
was averaged over a time period 𝑇=3 hours. The average bi-directional flux �̅�𝑇 between site 𝑖 and 

neighboring sites 𝑖 + 1 and 𝑖 − 1 was defined as 

�̅� =
1

𝑇
∑ [𝑛𝑖,𝑖+1(𝑡) + 𝑛𝑖,𝑖−1(𝑡)]𝑇

𝑡=1 /𝑊𝑇     (2) 

 

where 𝑛𝑖,𝑖+1(𝑡) = 1, if the ant moved between sites 𝑖 and 𝑖 + 1, and 𝑛𝑖,𝑖−1(𝑡) = 1 if the motion 

occurred between 𝑖 and 𝑖 − 1, and zero if the motion was not detected. The flux was averaged over 

time T corresponding to 3 hours of experiment. The flux was normalized by the tunnel width. 

We introduced these definitions to compare traffic in groups of different sizes governed both 

equal and unequal workload distributions. The fundamental flow diagrams (tunnel flow �̅� vs 

occupancy, λ̅) for each experimental condition are provided in the main text. 

 

2.2 Clustering characterization in CA model 

The implementation of unequal workload distribution reduces the immediate density of the 

ants in the tunnel in simulations. As a result, the number of clusters (𝐼𝑐), their spatial extension 

(an) and time duration (𝑇𝑐), as well as the number of ants involved in the jams 𝐶 decrease, allowing 

for stable traffic formation (Fig. S5). 

To analyze traffic, the jam was defined as agglomerations of 2 or more ants located in the 

neighboring cells at a simulation step k. The number of clusters was defined as the total number 

of agglomerations observed over 50,000 simulation steps. Each simulation step was considered 

independently. The site occupancy time 𝑇𝑐 was defined as the time it takes for a particular cell 

occupied by an ant involved in a jam to change its value from “occupied” to “vacant”. The average 

spatial extension of the jam was defined as the number of cells occupied by the ants sequentially 

along the tunnel length.  The number of ants involved in a cluster, the cite occupancy time and the 

spatial extension of a jam were averaged over all simulation steps and results are reported on Fig. 

S5. 

 

2.2.1 Cluster Size and Frequency Dynamics in CA model 

We characterized how cluster severity was affected by reversals and unequal workload 

distributions through an analysis of cluster formation. Clusters in 30-ant simulations were 

identified at each simulation time point and categorized by the number of CA ants that comprised 

the cluster. Any group of ants that blocked the entire tunnel width was considered a cluster. We 
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found a prevalence of large clusters for extremely low reversal probabilities in both equal (Fig. S26 

A) and unequal (Fig. S26 B) workload distributions. A minimal increase in reversal probability 

reduced the prevalence of the largest clusters from forming. However, even accounting for higher 

reversal probabilities, equal workload distributions resulted in wider distribution of cluster sizes, 

whereas the optimized workload distribution produced a sharper concentration of small clusters, 

which were more easily dispersed. Thus, cluster mitigation is most effective using both reversals 

and unequal work probabilities in combination. 

 

 

2.3 Optimal distributions CA using a genetic algorithm 

A genetic algorithm (GA) was used to search for entrance probability distributions that 

produced optimal digging rates. The GA is a biologically inspired optimization technique used 

typically to find solutions where the parameter space is large. GAs modify or evolve populations 

of solutions at each generation, through processes known as reproduction and mutation, towards 

the optimal solution. Each probability distribution for a single simulation is known as a 

“chromosome”, and each probability for a single ant are called “genes”. The set of all 

chromosomes at each generation is called a population. The reproduction phase requires each 

chromosome to be run, and depending on the on the output of the objective function, the metric by 

which each chromosome is measured, certain chromosomes are selected to be parents for the next 

generation. Our implementation used the digging rate as the objective function. The best 

performing chromosomes, known as the elite percent go unchanged to the next generation. The 

rest of the chromosomes are paired up, and a percentage, known as crossover percentage, are 

crossed over. Crossover is where a random site is chosen along the length of a chromosome and 

the genes of the paired chromosomes are switched around that point. After crossover, all genes 

belonging to the non-elite group of chromosomes have a chance, known as mutation probability, 

to be assigned a new random value. This helps to mitigate chances of becoming stuck in local 

minima (or maxima) of the optimized quantity. 

We used MATLAB’s genetic algorithm toolbox (36). Our selection type was the default used 

in MATLAB’s GA toolbox, stochastic uniform. The specific values for our reproduction and 

mutation rates were as follows: 5% for the elite selection, 0% for the crossover fraction, and a 

variable number of gene was subjected to mutation according to an adaptable mutation rate, the 

default option for MATLAB. We used a population size of 200 probability distributions per 

generation, and ran 50 generations. 

 

2.4 One at a Time (OAT) Model 
2.4.1 Introduction 

We model a tunnel as a one-dimensional lattice of 𝑍 sites; an ant occupies one lattice site. The 
tunnel has an open boundary at the left (site 0) where ants can enter and exit, and a closed boundary 
at the right (site 𝑁) that represents the end of the tunnel. Note that for simplicity we keep 𝑁 fixed: 
in this model, the tunnel does not change length in time.  

Each ant can move toward to the next site at rate 𝑣. Ants enter the tunnel at rate 𝛼𝑣, which may 
be the same for each ant or variable. Once an ant enters the tunnel it moves to the right at rate 𝑣, 
but can reverse and move to the left. If an ant is blocked by another ant in front of it, it cannot 
move. Ants reverse at rate 𝑆 either when they reach the end of the tunnel, or when they are adjacent 
to another ant going the opposite direction. At site 0 in the tunnel, ants moving to the left exit with 
rate 𝛽𝑣.  

Once an ant reaches the end of the tunnel (site 𝑍), reverses, goes back, and exits the tunnel, it 
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completes one cycle of digging. Since the model only allows one ant to occupy a given site (ants 
sterically exclude each other), the ant that completes a digging cycle is the first ant to enter the 
tunnel when it is empty. The ants that follow only hinder the digging process. We call this the One-
at-a-Time (OAT) model (Fig. S13).  

We define excavation rate in this model as the number of completed digging cycles over a certain 
time. We used kinetic Monte Carlo (kMC) simulation (see section 2.4.4 for details) methods 
developed in our previous work (25) to do simulations of this model. In simulations, we measure 
the total number of ants, and count events in which the tunnel has no ants in it. Model parameters 
that produce higher excavation rate lead to more events during which the tunnel is empty (Fig. 
S14).  

If the inward flux leads to a time between ants entering the tunnel that is longer than the time for 
an ant that has already entered to reach the end of the tunnel and exit, then increasing 𝛼 increases 
the excavation rate. However, if the time between ants entering is shorter than the digging time, 
most ants that enter the tunnel create traffic jams that block the digging ant from retreating. This 
decreases the excavation rate. Simulating the OAT model at different values of 𝛼 (whereby all ants 

in a simulation are given an identical 𝛼) results in an intermediate peak in excavation rate as a 
function of 𝛼 (Fig. S15). Giving all excavators an identical 𝛼 is akin to the equal workload 
distribution in Active ants of the CA model, whereby varying 𝛼 modulates the overall level of 
activity of all ants. 

We analytically derive the excavation rate by estimating the typical time of one digging cycle. 
The time to complete one cycle is the sum of (a) the time for the first ant to enter the tunnel, (b) 
the time it takes for the digging ant to walk to the end of the tunnel and back to the entrance, and 
(c) the time required for all ants in the tunnel to reverse their direction. The typical time to wait for 

the first ant to enter the tunnel is 1
𝛼𝑣⁄ , the inverse of the entry rate. The typical time for an ant to 

walk to the end of the tunnel and back is 
2𝐿𝑇

𝑣⁄ , where 𝐿𝑇 is the length of the tunnel. The additional 

time due to waiting for ants to reverse direction we estimate by noting that the typical reversal time 

is 1 𝑆⁄ . If the tunnel were infinitely long, then the typical distance between two ants in the tunnel 

would be the typical time between ants entering the tunnel times the typical speed of an ant, which 

is 1 𝛼𝑣⁄  × 𝑣 = 1
𝛼⁄ . However, because the tunnel is not infinite, this distance is reduced by the 

ants that change direction. The typical distance an ant moves during a switching event is 𝑣 𝑆⁄ . Thus, 

on average, the ant moving forward and the switching ant will meet when they each have traveled 

half of the distance between them, 1 2⁄ (1
𝛼⁄ − 𝑣

𝑆⁄ ). This is the typical distance that an advancing 

ant moves before switching because it hits another ant. This must be scaled by 𝐿 to account for all 

the ants in the tunnel, and an additional time of 1 𝑆⁄  must be added to account for the first ant to 

reverse at the end of the tunnel. The overall time of a digging cycle (Fig. S20) is thus: 
 

𝑇 =
1

𝑣𝛼
+

2𝐿𝑇

𝑣
+

1

𝑆
(

𝐿𝑇
1

2
(

1

𝛼
−

𝑣

𝑆
)

+ 1) . 

 (3)  
Note that disagreement between the theoretical curve and the kMC simulation (Fig. S15) occurs 

for relatively short tunnels when there are large jamming effects: in our model, we didn't consider 

the size of the ants and the longest distance an advancing ant could move. Note as well that our 

model becomes ill defined when 𝑣
𝑆⁄ > 1

𝛼⁄ , because the term in the denominator becomes 

negative. This occurs for small 𝑆, which physically occurs when reversal is so slow that the 
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excavation rate is dominated by waiting for reversals to occur. If the switching rate at the end of 

the tunnel has a unique rate, 𝑔, the rate at which an excavator completes an excavation, the overall 

time of a digging cycle becomes: 

 

𝑇 =
1

𝑣𝛼
+

2𝐿𝑇

𝑣
+

1

𝑆
(

𝐿𝑇−
1

2
(

1

𝛼
−

𝑣

𝑔
)

1

2
(

1

𝛼
−

𝑣

𝑆
)

+ 1) +
1

𝑔
 .  

 (4)  
 

2.4.2 Training an unequal workload distribution 

The above model assumes that every ant has the equal workload 𝛼, and demonstrates that the 
excavation rate actually deteriorates if ants are too diligent (large 𝛼). This suggests that system 
excavation rate might be sensitive to the workload distribution. We implemented a training 
algorithm with the following rules: 
 

1. The total number of ants is fixed.  
 

2. If an ant completes a digging cycle after it goes into the tunnel (in other words, it reaches the 
end of the tunnel), then it increases its workload, 𝛼, by a factor of 𝑞 (𝛼𝑛𝑒𝑤 = 𝑞𝛼).  

 
3. If an ant enters the tunnel but is hindered (i.e., it reverses before reaching the end), it decreases 

its workload by a factor of 𝑞 (𝛼𝑛𝑒𝑤 = 𝛼
𝑞⁄ ).  

 
4. There is a maximum workload 𝛼𝑚𝑎𝑥, which is necessary to prevent super-diligent ants from 

taking over all the work. 
 
In our simulation algorithm, each ant has equal probability to be selected to attempt to enter the 

tunnel, but the 𝑖th ant has its own probability 𝛼𝑖 to decide if it “wants” to enter or not. 
Using these above rules to train simulated ants in our model, we find nearly identical workload 

distributions (Lorenz curves), Gini coefficients (Fig. S16), and digging rate (Fig. S17), regardless 
of 𝛼𝑖 for the population. The workload distribution of the trained ants is unequal; the Lorenz curves 
reveal that only about half of the ants are working, while the others are idle. Further, the 
populations reliably converge to their final workload distribution rapidly (Fig. S23). Since traffic 
jams in the tunnel are controlled by the total number of ants, the model predicts that (a) a larger 
ant population results in a more idle ants and a higher Gini coefficient (Fig. S18), and (b) the higher 
the maximum workload 𝛼𝑚𝑎𝑥, the higher the Gini coefficient (Fig. S19). This occurs because the 
overall work has a maximum, and more working ants won't increase the work. Thus, the optimal 
scenario in this model is for one ant to do all the work by returning into the tunnel immediately 
once it goes out (i.e., 𝛼𝑚𝑎𝑥 = ∞). 
 

2.4.3 Occupancy and flow in the OAT model 

The time-and-spatial-average occupancy, λ̅, (average occupancy) and the time-average flow, �̅�, 
(average flow) in the OAT model are similar to (23): 

𝜆̅ = 1

𝑇
∑ 𝑛𝑖(𝑡)∆𝑡𝑇

𝑡=1      (5) 

 �̅� =
1

𝑇
∑ 𝑛𝑖,𝑖−1(𝑡)𝑇

𝑡=1 ,     (6) 

 

where 𝑛𝑖(𝑡) is 1 (or 0) if the site is occupied (or unoccupied) at time 𝑡 at site 𝑖, and 𝑛𝑖,𝑖−1(𝑡) is 

1 (or 0)  if the ant moved (or didn't move) between site 𝑖 to 𝑖 − 1. The parameter ∆𝑡 is 1 and 
∑ ∆𝑡𝑇

𝑡=1 = 𝑇. Measuring occupancy at the midpoint of the tunnel (𝑖 = 𝐿𝑇/2) yields:  
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λ̅ = 2
(

𝐿𝑇
2

1
2(

1
𝛼−

𝑣
𝑆)

+1)

𝑣
[

1

𝑣𝛼
+ 2𝐿𝑇

𝑣
+ 1

𝑆
(

𝐿𝑇
1
2

(
1
𝛼

−𝑣
𝑆

)
+ 1)]

−1

 or    (7) 

 

λ̅ = 2

(

𝐿𝑇
2

−1
2

(
1
𝛼−𝑣

𝑔)

1
2(

1
𝛼−

𝑣
𝑆)

+2)

𝑣
[

1

𝑣𝛼
+ 2𝐿𝑇

𝑣
+ 1

𝑆
(

𝐿𝑇−1
2(

1
𝛼−𝑣

𝑔)

1
2

(
1
𝛼

−𝑣
𝑆

)
+ 1) + 1

𝑔
]

−1

 ,  (8) 

 

where (
𝐿𝑇
2

1

2
(

1

𝛼
−

𝑣

𝑆
)

+ 1) is the number of ants that pass site 𝑖 = 𝐿𝑇/2. The term 
1

𝑣
 is due to the 

corresponding staying time of an ant that stays in the site 𝑖 (the length of an ant is the same as the 

length of a site). The last part of the equation is 1/𝑇, where 𝑇 is the digging cycle. The second 

equality of the equation is the scenario of the unique switching rate at the end of the tunnel. 
 

The average flow depends on the site as well. We defined it at the end of the tunnel, which is 
the same as the flow of the successfully working ant. The average flow is:  
 

�̅� =
1

𝑇
= [

1

𝑣𝛼
+

2𝐿𝑇

𝑣
+

1

𝑆
(

𝐿𝑇
1

2
(

1

𝛼
−
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1
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 ,   (10) 

 
where the second equality of the equation is the scenario of the unique switching rate at the end of 
the tunnel. The numerator is 1 since there is only one successfully working ant in a digging cycle. 
Figures S21 and S22 show the occupancy-flow curves (fundamental diagram) when considering 
both a unique and identical switching rate for excavation at the end of the tunnel.  

Agreement was achieved between the OAT model and the CA simulation for the fundamental 
diagram. However, some parameter tuning and scaling was required to account for differences 
between the models. Namely, in the CA model, unlike in the OAT model, not only are there 
multiple lanes, but CA ants are able to switch lanes to resolve clogs, whereas an ant in the OAT 
model must exit the tunnel. Additionally, for the flow-rate calculation, the CA model considers 
the flow of a successfully excavating worker twice, once on the way to excavate and again on the 
return to deposit. Whereas, in the OAT model, the flow of an excavating worker is considered 
only once. For fundamental diagram calculations, a tunnel length of 5 was used, as in the CA 
simulations. 
 

2.4.4 The kinetic Monte Carlo simulation 
We performed kinetic Monte Carlo (kMC) simulations of a discrete model with the time step t 

and the following rules at each time step for a one-dimensional lattice with 𝑍 sites: 
 

1. Randomly choose a direction (towards the excavation site or towards the tunnel entrance) 
and site 𝑖.  
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2. If the site is occupied and the next site in both directions are empty, the ant steps forward 
with probability 𝑣∆𝑡. 

 
3. If the chosen site is occupied with an ant moving towards the excavation site and the next 

site over is occupied (or the chosen site is at the excavation site), the ant switches direction 
with probability 𝑆∆𝑡. 

 
4. If site 1 in the excavation direction is chosen, and it is empty, the ant occupied the site with 

the probability 𝑣𝛼.  
 

5. If site 1 in the exiting direction is chosen and is occupied, the ant leaves with the probability 
𝑣𝛽 (we set 𝛽 = 1 in the simulations).  

 
6. Repeat steps 1-5 2𝑍 times total to sample all sites in both lanes.  

 
The tunnel length is 𝑍 = 20 in the simulations (unless otherwise stated). We typically choose 

∆𝑡 = 0.005 such that the speed of the ants is 𝑣∆𝑡 = 0.3125 sites per kMC cycle, and 𝑆∆𝑡 =
0.002175 per kMC cycles (unless otherwise stated). We ran 6 × 108 kMC cycles per condition 
(unless otherwise stated). The simulation reaches the steady state typically after 106 kMC cycles 
in the training simulations. We measured the data by averaging the last 3 × 108 kMC cycles. We 
started the simulations with empty tunnels. 
 
 
 

3. Robot Experiments 

Robophysical experiments were conducted to test the performance and clustering dynamics of 

robots following each of three different behavioral protocols. The first strategy (Active, Fig. S6) 

assigned equal maximal attempted activity to all diggers: after soil deposition, each robot 

immediately returned to the tunnel to excavate. In the second protocol (Reversal, Fig. S7) the 

robots were also programmed to immediately resume excavation after deposition but reversed after 

some time not being able to reach the excavation site. In the third protocol (Lorenz, Fig. S8), we 

implemented an unequal probability to excavate derived from experimental ant workload 

inequalities. 

Groups of robots operated in simulated environment that consisted of a table top testbed, 

featuring a quasi 2D tunnel and a pellet deposit area. The pellet deposit area was also used to 

accommodate inactive robots. The tunnel was partially filled with a cohesive simulated media 

made of loose rare-earth magnets (BYKES Technologies) contained in 3D-printed plastic shells 

1.8 cm in outer diameter. The width of the tunnel allowed for simultaneous side-by-side tunnel 

excavation by two robots. In our previous laboratory experiments (12), S. invicta constructed ~ 1.5 

body length wide tunnels  

3.1 Robot design 

Robots were designed to create an inexpensive yet functional robophysical system which could 

be used as a tool to study the effect of social protocols on collective excavation in confined spaces. 

The design of the robotic workers implements readily-available off-the shelf and open-source 

parts. A list of major components is shown in Table S4 [below, adopted from appendix B (37)]. 

Discussion of core components below provides insight into robot functionality and capabilities. A 

maximum of 4 robots was used in the experiments.   
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3.2 Microprocessors 

Each robot utilized an Arduino Due microcontroller to handle sensor I/O, computations, and 

logic. The microcontroller software was set up to have three user programmable behavioral modes 

described in the paper: Active (Fig. S6), Reversal (Fig. S7), and Lorenz (Fig. S8). Each item in the 

flow chart has low-level control schemes responsible for obtaining sensor data, performing state 

estimation, and controlling the actuators. An Arduino Fio microcontroller was also used to handle 

data logging. Current, voltage and the state of the behavior mode was recorded and stored on a 

micro SD card for post processing. 
 

3.3 Sensors 

3.3.1 Navigation sensors 

A low-cost camera system (Pixy CMUcam5) was used to accomplish most of the navigation. 

The camera located the simulated pink pheromone trail and supplied the Arduino Due with 

centroid coordinates and the size of the detected pheromone trail object. A lane following algorithm 

was used to guide the robot between the excavation and the deposit sites.  

A magnetometer further improved navigation. A robot could be pushed off course in the event 

of a collision with another robot and lose sight of a simulated pheromone trail. The magnetometer 

would be used to recover correct heading. A priori knowledge of the test bed layout was exploited 

and thus the robot knew in which direction it needs to orient itself to get towards a current goal. 

The magnetometer simulated the sense of gravity in animals. A magnetometer was also used in 

conjunction with a gyroscope to obtain turning feedback. Robots would alter their turning strategy 

if no progress was measured while attempting to turn around. 

 

3.3.2 Collision sensors  

Two short range (15cm) infrared sensors were used to detect objects and obstacles directly 

ahead. In the event of an obstacle detection, the robot would attempt to steer around. The robot 

could detect physical interactions with the other robots or the environment using mechanical 

switches embedded beneath a segmented robotic shell. Each shell segment rested on a mechanical 

switch which was triggered by physical contacts within the environment. Thus, not only the 

contact, but also its approximate direction was sensed.  

 

3.3.3 Environment manipulation sensors 

An infrared proximity sensor was mounted near the robotic gripper. The sensor was occluded 

in the event of a successful collection of model media making this event distinguishably 

recognizable.  The same sensor was also used to trigger excavation behavior.  

 

3.3.4 Power management sensors  

A bidirectional current sensor, along with a battery voltage level sensor were used to monitor 

power consumption. The robot relied on these sensors to determine if it needs to get to the charging 

station and recharge its single cell 3.7V Li-On battery.  

 

3.4 Actuators 

The robot locomotion was enabled by a differential wheeled drive system. The robot could 

drive with speeds up to 18cm/s. Two servo motors were used to operate a robotic arm used for 

manipulation of the simulated granular media. One servo motor actuated a robotic gripper while 

the other motor could raise or lower the pitch of the arm.   
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3.5 Mechanical Design  

Figure S9 illustrates mechanical design. The robot’s body was made with parts manufactured 

with a 3D printer. The design was modular, allowing easy access to and replacement of 

components. Most of the electronics (microcontrollers, power circuits, etc.) were safely hidden 

inside the robotic shell because the robots were expected to engage in many physical contacts.  

 

3.6 Robot Tracking 

The robots were tracked via an image intensity threshold routine (Fig. S10). For each 

experimental trial, an overhead camera recorded the tunnel area for about 30 minutes at 10 frames 

per second. For a given frame of video, the image was subtracted from an averaged background 

image. A threshold was then applied to identify pixels corresponding to the robots. Initial robot 

positions were manually approximated at the beginning of the video. The robot pixels were then 

divided into different regions using Voronoi cells generated with the initial robot position. The 

centroids of these regions were then used to recalculate the robot positions, which were 

subsequently used as approximations for the next frame.  

 

3.7 Global Traffic Analysis 

Excavation rate and energy expenditure where measured for excavation trials (3 trials of each 

experimental condition) of 2 to 4 robots and 3 different protocols as described in the beginning of 

supplemental Section 3. Each digging strategy produced distinct trends in tunnel density and 

energy expenditure (Fig. S12 B). The Reversal strategy exhibited peak excavation performance 

with two robots, and monotonically increasing density and energy cost for trials with more diggers. 

During Active strategy trials, robots would clog more frequently at the excavation site with edition 

of a fourth robot, resulting in a dramatic decrease in tunnel density and increase in energy 

expenditure. While dynamically allocating tasks through local feedback (38) or even controlling 

for equal workload (39) have proven useful in achieving robotic swarming goals such as foraging 

and construction, the simple Lorenz strategy was effective in lowering tunnel density and energy 

cost. Therefore, particularly for large populations, simply modulating the distribution of individual 

work effort and likelihood of giving up in the face of traffic jams are effective strategies in targeting 

optimal traffic densities. 

 

3.8 Local cluster relaxation times 

Tracking data was used to identify clusters of robots, defined as groups of robots whose center 

positions were within a robot length’s proximity of each other. Robot lateral positions were 

represented as intensity potentials in a space-time intensity map, I (Fig. S12 A). Each robot was 

given a lateral intensity potential function (a half-cycle sine wave with one body length half-period 

was chosen) centered at the robot’s lateral position. Clusters were identified as contiguous 

potentials. The local dynamics of these clusters were evaluated using a technique often used to 

study dynamic heterogeneities in non-biological active matter (40).  At each time step, clusters 

were identified and evaluated using a correlation function derived from PIV cross-correlation 

techniques (41): 

𝒒(𝝉) =
∑ (𝑰(𝝉,𝒙)−�̅�)(𝑰(𝟎,𝒙)−�̅�𝟎)

𝒙𝟐
𝒙𝟏

√∑ (𝑰(𝝉,𝒙)−�̅�)𝟐𝒙𝟐
𝒙𝟏 ∑ (𝑰(𝟎,𝒙)−�̅�𝟎)𝟐𝒙𝟐

𝒙𝟏

 .    (11) 

The correlation overlap function, 𝑄(𝜏) =  〈𝑞(𝜏)〉 (where the brackets indicate a time average 

from time, 𝑡 = 0 𝑡𝑜 𝜏, whereby t = 0 corresponds to the time step in which the cluster is identified), 
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compares the spatial overlap of an aggregation (or cluster) at a specific time to the overlap of the 

aggregation’s original lateral segment at a later time, 𝜏 (Fig. S12 B). 

 

 

Fig. S1. Experimental Lorenz curves of ant workload distribution for individual 12-hour epochs 

of 48-hour trials. Error bars indicate standard deviation from multiple trials averaged over 6 trials 

(3 trials in ~0.25 mm diameter glass particles at W=0.1 moisture content and 3 trials in W=0.01). 

  

13



 

 
 

 

Fig. S2. Log-Log plots of Lorenz curves representing workload distributions in ant experiments 

(A) for different moisture contents and (B) for active removal experiment. Black dashed lines are 

power-law curve

B 

A 

14



 

 

Fig. S3. Dynamic activity pattern of individual ants over different time epochs. The ants are 

arranged by their overall activity for 48-hours descending from bottom upwards. Excavation 

activity, a(i,t) is the number of tunnel visits per 12-hour epochs for an ant i divided by the total 

number of tunnel visits within that epoch.  
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Fig. S4. Schematic of the tunnel in CA model. The occupancy of ants and the flux in the tunnel 

were measured at the highlighted cell i. The possible directions of ant motion are shown with red 

arrows. 
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Fig. S5. Simulation results: Average number of ants involved in a jam 𝐶 (A), site occupancy time 

𝑇𝑐 (B), total number of jams Ic over 50000 simulation steps (C), and average spatial extension of 

the jam an (D) plotted versus the size of the group for groups governed by equal workload 

distribution (red) and unequal workload distribution protocols (magenta).  
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Fig. S6. Active logic flow chart. 
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Fig. S7. Reversal logic flow chart.  
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Fig. S8.  Lorenz logic flow chart. Note that this logic is identical to Active if P=1. Otherwise the 

robot has a chance to enter resting mode outside the tunnel which last for a specified amount of 

time. 
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Fig. S9. Mechanical design of robots. Microcontroller and circuitry are inside the shell 
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Fig. S10. Robot tracking routine. (A) Initial position estimates. (B) Threshold of background-

subtracted image. (C) Voronoi divided robot regions. (D) Centroid calculated positions. 
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Fig. S11. Robot performance for 2 (smallest marker) to 4 (largest marker) robots using the Active 

(green), Reversal (maroon) or Lorenz (light blue) protocol. (A) Fundamental diagram; excavation 

rate, �̅�, vs excavator occupancy, �̅�, where Nt is the number of robots in the tunnel area and WT is 

the width of the tunnel area in robot body widths, RW. (B) Energy expenditure vs tunnel density. 
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Fig. S12. Analysis of local robot clusters. (A) Sample space-time intensity map. (B) The 

correlation function Q(t) is calculated from the 3 robot cluster in the first frame in (A) (top panel) 

using image correlation algorithms used in PIV (41). 
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Fig. S13. Schematic of the OAT model. The red circles indicate ants moving to the right, and green 
moving to the left. Only one ant can occupy each site. Red ants reverse (switch to green) if they 
meet another green ant in front of them in the direction they move, or if they reach the end of the 
tunnel. The inward flux is 𝛼, which controls the average occupancy at site 0, and 𝛽 is the exit rate. 
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Fig. S14. Results of a simulation showing the total number of ants in the tunnel as a function of 
time. In this portion of the simulation, three complete digging cycles occur, because the tunnel is 
empty four times). 
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Fig. S15. Excavation rate as a function of 𝛼. Simulation results use 𝑣 = 0.3125 sites per kMC 
cycles, and 𝑆 = 0.002175 per kMC cycles. The blue curve is the simulation (kMC) results, and 

the red curve is the theoretical prediction (1
𝑇⁄ , see Eq. (3)). The theory is valid if 1 𝛼⁄ − 𝑣

𝑆⁄ > 0, 

and the critical point in this case is 𝛼∗ = 0.00456. 
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Fig. S16. The Lorenz curves and Gini coefficients that result from training with different values 

for the population initial workload 𝛼𝑖𝑛𝑖. The training factor 𝑞 is 1/0.9, and the maximum workload 

is 0.01 (in the same units as 𝛼). The total number of ants is 30. 
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Fig. S17. Excavation rate after training. The final rate is independent of the initial population 

workload. 
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Fig. S18. The Gini coefficients with 60 ants total and 𝛼𝑚𝑎𝑥 = 0.02. The Gini coefficient is 

larger than that found in Fig. S18. 
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Fig. S19. Lorenz curves with different initial workload 𝛼𝑖𝑛𝑖. The maximum workload is 𝛼𝑚𝑎𝑥 =
0.1, where their Gini coefficients are approximately 0.93. 
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Fig. S20. Schematic of the number of ants versus time in a digging cycle. The y-axis is the overall 
number of ants in the tunnel, and T is the digging cycle. The delayed time d denotes the time of 
the first ant enter into the tunnel. The overall number of ants in the digging cycle is the area of the 
trapezoid, where 1=S denotes the time for the last ant to return its direction. 
  

32



 
 

 
 

Fig. S21. Fundamental diagram: Flow rate, �̅�, vs linear density, ̅, where the switching rate at the 
end of the tunnel (rate of completing excavation) is identical to the rate of reversal when impeded 
by a retreating excavator. 
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Fig. S22. Fundamental diagram: Flow rate, �̅�, vs linear density, ̅, with the unique switching rate 

at the end of the tunnel g = 0.005v. 
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Fig. S23. Gini coefficient vs. time for different initial values of α during kMC simulation of the 

OAT model in which α changes over time as individual ants increase or decrease their likelihood 
of reentering the tunnel depending if they reversed before successfully digging. 
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Fig. S24. Diagram illustration of genetic algorithm. 
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Fig. S25. Measured Gini vs. assigned Gini coefficient for system where initial tunnel length L=5 

BL, with 30 ants digging for 24 hours. Each point is mean of 5 simulations with error bars shown 
 

 

Fig. S26. Proportional number of CA ant clusters, 𝐼𝐶 = 𝐼𝐶/𝐼𝑡𝑜𝑡𝑎𝑙, of different sizes, C, measured 

over 24 hours for (A) equal and (B) unequal (optimized for 30 CA ants) workload distributions at 

different reversal probabilities (blue: 0.01, red: 0.2, yellow: 0.4, purple: 0.6, green: 0.8). Sample 

illustrations for different cluster sizes in (A) inset. 
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Table S1: Gini coefficients for primary ant digging experiment by epoch 

Colony Moisture Gini(0-12) Gini(12-24) Gini(24-36) Gini(36-48) Total 48h 

12 10 0.74 0.75 0.76 0.78 0.67 

12 1 0.53 0.71 0.77 0.70 0.58 

16 10 0.80 0.79 0.80 0.67 0.71 

16 1 0.85 0.82 0.83 0.87 0.81 

3 10 0.77 0.87 0.90 0.91 0.82 

3 1 0.62 0.79 0.70 0.67 0.56 

 

Table S2: Gini Coefficients for ant removal experiments 

Colony Moisture Removal Gini 

1 10 before 0.85 

1 10 after 0.57 

2 10 before 0.76 

2 10 after 0.69 

3 10 before 0.56 

3 10 after 0.62 

 

Table S3: Parameters for CA Simulation 

Time step, Dt 0.5 s 

Ant size 1 cell 

Tunnel width (𝑤) 2 

Reversal probability (𝑅) 0.34 

Sim length 172800 steps (24 hrs) 

Time to drop pellet 20 steps 

Probability to move sideways (p) 0.52 

Probability to move forwards 1 

Excavations to grow tunnel size by 1 cell 200  

Rest Time  600 steps 

 

Table S4: Robotic ant components 

Core components Purpose 

Pixy Camera Navigation 

Magnetometer Navigation 

Gyroscope Navigation 

DC gearmotors Locomotion 

IR Distance Sensors Obstacle avoidance 

Contact Switches Collision detection 

Servo Motors Environment manipulation 

Proximity Sensor Simulated media feedback 

Li-On Battery, Single cell Power source 

Voltage Sensor Power management 
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Current Sensor Power management 

Arduino FIO Data logging 

Arduino DUE Sensor I/O, robot control 
 

Supplemental Movie Captions  

 

Movie S1  

Ant activity experiments: Video of an ant (yellow-orange) giving up/reversing when faced with 

heavy traffic in tunnel. 

 

Movie S2 

Ant simulation: Animation of a Cellular Automata (CA) simulation of ants with Active protocol 

(equal workload distribution) vs. Lorenz protocol (unequal workload). Cell colors denote soil 

(light grey), tunnel (white). CA ants moving towards the excavation site (orange) and exiting the 

tunnel (dark grey). 

 

Movie S3 

Single robot excavation: Video of a robophysical excavator following a pink line (a guidance trail) 

and excavating model cohesive granular media; the plastic hollow shells are filled with loose 

magnets enabling clumps to form. 

 

Movie S4 

Collective clogging in robot excavation: Video of robophysical excavators encountering and 

resolving a clog while excavating model cohesive granular media. 

 

Movie S5 

Robophysical experiments comparing excavation protocols: Video comparing Active (top), 

Reversal (middle) and Lorenz (bottom) protocols implemented on excavating robots. Each Active 

robot exhibited maximum levels of activity. Reversal robots had a small probability to abandon 

the excavation attempt if the excavation area could not be reached within pre-defined time interval. 

Each Lorenz robot was assigned a distinct probability to re-enter tunnel after excavation. The 

proportion of idle and active robots is similar to observations of ant behavior. 
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