
Robotics: Science and Systems 2020
Corvalis, Oregon, USA, July 12-16, 2020

1

Frequency Modulation of Body Waves to Improve
Performance of Limbless Robots

Baxi Chong∗, Tianyu Wang†, Jennifer M. Rieser∗, Abdul Kaba‡, Howie Choset† and Daniel I. Goldman∗
∗Georgia Institute of Technology
†Carnegie Mellon University

‡Morehouse College

Abstract—Sidewinder rattlesnakes generate movement through
coordinated lateral and vertical traveling waves of body curva-
ture. Previous biological and robotic studies have demonstrated
that proper control and coordination of these two waves enables
robust and versatile locomotion in complex environments. How-
ever, the propagation of the vertical wave, which sets the body-
environment contact state, can affect static stability and lead
to undesirable locomotion behaviors, especially for movement at
low speeds. Here, we propose to stabilize gaits by modulations
of the spatial frequency of the vertical wave, which can be
used to tune the number of distinct body-environment contact
patches (while maintaining a constant overall contact area). These
modulations act to stabilize configurations that were previously
statically unstable and therefore, by eliminating dynamic effects
such as undesired turning, broaden the range of movements and
behaviors accessible to limbless locomotors at a variety of speeds.
Specifically, our approach identifies, for a given lateral wave, the
spatial frequency of the vertical wave that statically stabilizes the
locomotor and then uses geometric mechanics tools to identify
the coordination (i.e., the phase shift) between the vertical and
lateral waves that produces a desired motion. We demonstrate
the effectiveness of our technique in robot experiments.

I. INTRODUCTION

Many biological limbless locomotors successfully maneuver
over complex terrain, partially because of their capability to
regulate the body contact pattern with the environment [1,
4, 8, 9, 12, 18]. Proper coordination of dynamics in the
lateral plane via body contact regulation can lead to a variety
of effective locomotion behaviors, such as sidewinding [12],
sinus-lift slithering [8], rapid turning (for example, reversal
turning [4] and frequency turning [1]), and gradual turning
(differential turning [1]).

Despite the potential benefits to maneuverability, lifting
certain body segments can often result in the loss of static
stability, as the locomotor’s center of mass can leave the
support polygon [14]. When locomotors are operating at
high speed, the loss of static stability can be compensated
by dynamic stability such that the duration of the unstable
configuration is too short to affect the robot’s overall dynamics
[13]. However, at low speed, the loss of static stability can lead
to unexpected body contact and change the ground reaction
force distribution, which often leads to undesirable deviations
from the expected locomotion performance.

Marvi et al. [12] demonstrated that on granular media,
modulating the amplitude of motions in the vertical plane
can increase the amount of the body in contact with the

Fig. 1. Theoretical Model and Experimental Robots (a) The theoretical
model for the sidewinder robots. The filled black ovals indicate the ground
contact phase while the white ovals indicate a no ground contact phase. The
contact state is labelled in black (c(i)). The joint angle in blue indicates
vertical joints and the joint angle in red indicates lateral joints. (b.1) The
Dynamixel robot [2] used to test the effect of static stability on the sidewinding
gaits. (b.2) The serial elastic actuated (SEA) robot used to test the effectiveness
of our stabilization approach.

environment and therefore stabilize the gaits. However, on flat
hard ground, amplitude modulation does not directly change
the contact length and therefore cannot stabilize gaits on non-
deformable flat substrates. We propose an approach to stabilize
the statically unstable gaits by modulating the distribution of
the body contact pattern (frequency modulation). However, the
changes in the body contact distribution can change the dis-
tribution of the ground reaction forces and therefore produce
motions in undesired directions [1]. To address the change in
the contact distribution, proper coordination of motions in the



Fig. 2. Examples of Statically Stable and Unstable Configurations (a)
The contact state pattern and an example of statically stable configuration for
gaits with high spatial frequency in both the lateral wave and the vertical
wave. (b.1) The contact state pattern and an example of the statically unstable
configuration for gaits with low spatial frequency in both the lateral wave
and the vertical wave. (b.2) Stabilizing the statically unstable configuration
by increasing the vertical spatial frequency. The label and the axis in panel
(b) are the same as in (a). (c) Example of an unstable configuration (left) and
an unexpected touchdown (right)

lateral and vertical planes are required.
In this paper, we apply geometric mechanics tools [5, 11,

19, 3] to coordinate motions in the lateral plane and the contact
pattern regulation and therefore produce motions in a desired
direction. We use our approach to stabilize the statically
unstable sidewinding gaits. As a result, we obtain effective
and statically stable sidewinding gaits in the desired directions
(lateral or rotational). We validate our theoretical predictions
through a series of experiments with a 15-DoF Dynamixel
motor limbless robot (Fig. 1b.1) and a 16-DoF serial elastic
actuated (SEA) limbless robot (Fig. 1b.2) locomoting on flat
hard ground.

II. RELATED WORK

A. Sidewinder Locomotion

Sidewinding locomotion has been described as the super-
position of two traveling waves: one in the lateral direction
and another in the vertical direction [1, 12]. To allow for
motion in 3D environments for limbless robots, the motors that

form robots were connected such that the orientation of the
plane of actuation was offset by 90◦ with respect to adjacent
modules. Each module has one rotational degree of freedom,
with angular orientation ranging from −90◦ to 90◦. For an N -
DoF limbless robot, the links are labeled from 0 to N ; joints
are labeled 1 to N , where joint i immediately precedes link i
and therefore moves link i and all other links distal to joint i.
Odd numbered joints are lateral and therefore produce motion
in the horizontal plane (and their axes are vertical). Even
numbered joints are vertical and therefore produce motion in
the vertical plane (and their axes of rotation are horizontal).
The joint angles are described using the following functions:

θ(2i− 1, t) = Al sin (2πKl
2i− 1

N
+ 2πft), (1)

θ(2i, t) = Av sin (2πKv
2i

N
+ 2πft+ φ0), (2)

where θl(2i− 1, t) and θv(2i, t) refer to the lateral (odd)joint
angles and the (even) vertical joint angles respectively; Kl

and Kv are the spatial frequency of the lateral wave and the
vertical wave respectively; Al and Av are the amplitude of
the lateral wave and the vertical wave respectively; f defines
the temporal frequency; and φ0 is the phase lag between the
lateral and the vertical wave.

The contact state of link i is represented by c(i), where
c(i) = 1 indicates that link i is on contact and c(i) = 0
indicates that link i is not in contact. The links between
two consecutive vertical joints have the same contact state,
i.e., c(2i) = c(2i − 1). Therefore, the contact state can be
approximated by [16]:

c(2i− 1, t) = c(2i, t) = σ(sin (2πKv
i

2N
+ 2πft+ φ0)),

(3)

where σ(x) = 1
1+e−γx , with the parameter γ modulating the

smoothness of the contact state transition. In this paper, we
take γ = 4 unless otherwise stated.

Previous work [12] demonstrated that during sidewinding
locomotion, where the locomotors have lateral translational
displacement with no significant turning, Kl = Kv and
φ0 = π/2. Manipulation of the vertical amplitude Av can
change the body contact ratio (average percentage of the
body that is in contact with the environment), and therefore
enables climbing on sandy slopes. Hu et al. [8] showed that
snakes lifted the body portion with the largest curvature during
slithering locomotion, so this locomotion has Kv = 2Kl and
φ0 = 0. In addition to the translational motions, modulating
the ratio of the spatial frequency in the vertical and lateral di-
rections, Kv/Kl, can yield turning gaits [1]. Either increasing
(Kv = 1.3Kl) or decreasing (Kv = 0.6Kl) the vertical spatial
frequency will both lead to clockwise turning. We summarize
previous work on wave modulation in Table 1.

B. Geometric mechanics

In this subsection, we provide a concise overview of the geo-
metric tools, which we use to design the coordination between



Kv Kv/Kl φ0 Behavior Source

1.5 1 π/2 Sidewinding [12]

2 1 π/2 Sidewinding [1]

1.5 0.6 π/2 Clockwise turning [1]

1.5 1.3 π/2 Clockwise turning [1]

1.5 2 0 Slithering [8]

TABLE I
SUMMARY OF PREVIOUS WORK ON SIDEWINDER LOCOMOTION.

the lateral wave and the vertical wave. For a more detailed
and comprehensive review, we refer readers to [5, 11, 19, 3].
The geometric mechanics gait design framework separates the
configuration space of a system into two spaces: a position
space and a shape space. The position space represents the
location (position and rotation) of a system relative to the
world frame, while the shape space denotes the internal shape
of the system. The geometric mechanics framework then
establishes a functional relationship to map the velocities in
the shape space to the velocities in the position space; this
functional relationship is often called a connection.

1) Kinematic reconstruction equation: In kinematic sys-
tems where inertial effects are negligible, the equations of
motion [11] reduce to

ξ = A(r)ṙ, (4)

where ξ = [ξx ξy ξθ]
T ∈ g denotes the body velocity

in the forward, lateral, and rotational directions; r denotes
the internal shape variables (joint angles); A(r) is the local
connection matrix, which encodes environmental constraints
and the conservation of momentum. As shown in [7], the local
connection matrix,A, can be numerically derived by force and
torque balance. It is challenging to model the friction precisely,
especially when there is a variety of contact surfaces. However,
as shown in [16], modeling movement on hard ground using
a kinetic Coulomb friction force model has produced good
agreement with experimental data.

2) Connection vector fields and height functions: Each
row of the local connection matrix, A, corresponds to a
component direction of the body velocity. Each row of the
local connection matrix over the shape space then formed a
connection vector field. In this way, the body velocities in
the forward, lateral, and rotational directions are respectively
computed as the dot product of connection vector fields and
the shape velocity ṙ.

A periodic gait can be represented as a closed curve in the
corresponding shape space. The displacement resulting from
a gait, ∂χ, can be approximated by:

∆x

∆y

∆θ

 =

∫
∂χ

A(r)dr. (5)

Fig. 3. Height functions to design gaits to produce motion in the desired
direction. The height function in the lateral (b) and rotational (a) height
functions for (a) lateral spatial frequency Kl = 1.5, V-L ratio Kv/Kl = 1.3
and (b) lateral spatial frequency Kl = 1.0, V-L ratio Kv/Kl = 1.2. The
purple curve in each plot maximizes the surface integral enclosed in the upper
left corner (marked in solid lines) minus the surface integral enclosed in the
lower left corner (marked in the dashed lines). The units and the axis labels
in all panels are the same.

According to Stokes’ Theorem, the line integral along a
closed curve ∂χ is equal to the surface integral of the curl of
A(r) over the surface enclosed by ∂χ:∫

∂χ

A(r)dr =

∫∫
χ

∇×A(r)dr1dr2, (6)

where χ denotes the surface enclosed by ∂χ. The curl of
the connection vector field, ∇×A(r), is referred to as the
height function. The three rows of the vector field A(r) can
thus produce three height functions in the forward, lateral and
rotational direction, respectively.

With the above derivation, we simplify the gait design
problem to drawing a closed path in a Euclidean shape space.
Displacements can be approximated by integral of the surface
enclosed by the gait path.

3) Torus shape space: In the sidewinder gait prescription,
with both shape variables being cyclic, the shape space is
toroidal, (T 2) [10]. Some examples of height functions on
toroidal shape spaces are shown in Fig. 3. The shape variable,
τ = [τ1, τ2]T ∈ T 2, has a cyclic structure, where one axis
represents the phase of the lateral wave, and the other axis
represents the phase of the vertical wave. While the gait path
(solid purple curve Fig. 3) is a closed curve in the toroidal
shape space, there is no obvious surface enclosed by the gait
path.



Fig. 4. Discrepancy between Dynamixel robot experiments and sim-
ulation at low spatial frequency. (top) The trajectories of body motion
in 6 gait cycles. The colors represent gait periods. Initial positions of the
Dynamixel robot indicated by the black circles. (Bottom) Comparisons of time
evolution of displacement of the simulation and Dynamixel robot experiments.
We compared the low spatial frequency gait (a) and high spatial frequency gait
(b). The simulation-experiment discrepancy occurs in low spatial frequency
gaits. The unit and the axis labels in all panels are the same.

To form an enclosed surface, Gong et al. [5] introduced
the notion of two “assistive lines” in the Euclidean parame-
terization of the toroidal shape space. As a result, the surface
integral can be calculated as the surface enclosed in the upper
left corner (see the surface labeled by solid lines in Fig. 3)
minus the surface enclosed in the lower right corner (see the
surface labeled by dashed lines in Fig. 3). Finally, we refer
readers to [5, 3] for a detailed derivation and proof of motion
planning in toroidal shape spaces.

Fig. 5. Effect of spatial frequency on the static stability. The figure on
top panel shows the relationship between the spatial frequency (Kv = Kl =
K) and the static stability (top panel). Dynamixel robot experiments showed
significant turning were observed in gaits with low static stability and the
turning vanished at gaits with high static stability (bottom panel).

III. FREQUENCY MODULATION TO STABILIZE GAITS

A. Sidewinder Gait Formula

1) Vertical Wave Prescription: As mentioned in Sec. II, the
contact pattern can be approximated by Eq. 3 for the traveling
wave (Eq. 2) in the vertical joint angles. In Fig. 2, we showed
the example of the contact sequence for Kv = 1.5, 1.0 and 1.1.
To produce the contact pattern that can be precisely described
in Eq. 3, we replace the vertical joint angle formula by:

θ(2i, t) = Av(−c(2i, t) + c(2i+ 1, t)). (7)

Note that in our experiments on the SEA robot, joint N (the
last joint) always orients link N (the tail link) into the air so
the tether does not interfere with its motion.

2) Static Stability: Static stability is defined as the fraction
of a period that the center of mass is inside the support
polygon. The support polygon is defined as the convex hull
of all the links in contact with substrate. In Fig. 2, we show
the example of stable configurations (Fig. 2a) and unstable
configuration (Fig. 2b). We observe that gaits with high ver-
tical spatial frequencies have more distinct body-environment
contact patches, and are therefore more statically stable than



Fig. 6. Temporal frequency dependency of unstable gaits. Dependence
of the rotation angle (per cycle) on the temporal frequency of (a) statically
unstable sidewinding gaits and (b) statically unstable turning gaits on SEA
robot experiments. The subplots (i) and (ii) show the snapshots of the SEA
robot implementing gaits in low temporal frequency (0.2Hz, red) and high
temporal frequency (1.4Hz, blue) over three gait cycles.

gaits with low spatial frequency in the vertical wave. We will
use this observation to stabilize the original unstable gaits.

3) Gait Stabilization: We stabilize the sidewinding and
turning gait by increasing the spatial frequency of the vertical
wave. In other words, we gradually increase the V-L ratio,
Kv/Kl, until the satisfactory static stability is reached. In this
paper, we consider a gait as statically stable when its static
stability is greater than 0.5. Note that this threshold is manually
selected for our experiments on flat terrain. We can raise the
static stability threshold in the applications where the robots
need to traverse rough terrain.

4) Coordination of the Lateral and the Vertical Wave: We
decomposed the motion of sidewinder gaits as two independent
traveling waves: the lateral traveling wave and the vertical
traveling wave. The lateral traveling wave is prescribed by:

θl(j, τ1) = Al sin (2πKl
j

N
+ τ1), (8)

where τ1 is the phase of the lateral wave. Similarly, the contact

Fig. 7. Robustness of statically stable gaits over temporal frequency.
Dependence of the rotation angle (per cycle) on the temporal frequency of
(a) the stabilized sidewinding gait and (b) the stabilized turning gait on SEA
robot experiments. In both cases, the rotation angle is steady over a range of
temporal frequencies. The unit and the axis labels in all panels are the same.
The subplots (i) and (ii) show the snapshots of the SEA robot implementing
gaits in low temporal frequency (0.2Hz, red) and high temporal frequency
(1.4Hz, blue) over three gait cycles.

state is prescribed as:

c(2i− 1, τ2) = c(2i, τ2) = σ(sin (2πKv
i

2N
+ τ2)) (9)

where τ2 is the phase of the vertical wave that can uniquely
determine the contact pattern. c(i, τ2) = 0 represents that no
ground reaction force appears at link i at phase τ2 .

The phases of the lateral wave and the vertical wave then
comprise the shape variable, τ = [τ1, τ2]T . Using the
geometric mechanics gait design tools mentioned in Sec. II, we
can calculate the height function and visualize the kinematics
in the desired directions (lateral and rotational).

A gait that coordinates the lateral and vertical wave can be
described as {Φ : τ1 −→ τ2}. From the pattern of the height
functions (see Fig. 3), we observed that in the parameterization
of the torus (where the edges are properly identified with each
other at 0 and 2π), a straight line path gives rise to a optimal
path; this is seen by the integral of the surface in the upper
left minus the integral of the surface in the lower right being



maximized. In this way, we characterize the coordination of
the lateral and the vertical wave by the relative phase lag:
φ0 := (τ2 − τ1 mod 2π)

B. Numerical Simulation

We performed the numerical simulation to predict the lo-
comotion performance and compared it to the robots experi-
ments. Specifically, in the simulation, we prescribed the lateral
amplitude and the contact state of the robot using Eq. 1 and
Eq. 3. In other words, we take τ1 = 2πft and τ2 = 2πf +φ0.
Thus, the shape variable and shape velocity can be prescribed
as:

τ =

 2πft

2πft+ φ0

 , τ̇ =

2πf

2πf

 (10)

Then we simulate the locomotion with the standard ordinary
differential equation [6]:

g(T ) =

∫ T

0

TeLg(t)A(τ )τ̇ dt

=

∫ T

0

TeLg(t)A(

 2πft

2πft+ φ0

)

2πf

2πf

dt,
where g = (x, y, α) ∈ SE(2) represents the body frame

position and rotation [15], TeLg =


cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1


is the left lifted action with respect to the coordinates of g.
Kinetic Coulomb friction friction were used to derive the local
connection matrix, A.

Solving the ordinary differential equation throughout one
period (from t = 0 to t = 1/f ), we obtain the trajectory
of locomotor and can determine the predicted displacements
in the forward, lateral, and rotational directions over one gait
cycle. Note that we neglect the inertia effect in the simulation.

Note that we assume that the friction force dominates the
motion and we neglect the inertia in the simulation. However,
the inertia can be important in the gait stability. That is, when
the statically unstable gaits are implemented on robots with
low temporal frequency (i.e., no gained dynamic stability),
the robot often cannot reach the prescribed configuration;
therefore, simulation-experiment discrepancy is expected (see
Fig. 3a). On the other hand, when operated at high temporal
frequency, inertia effects can make the statically unstable gaits
dynamically stable. In the case where the gait can be stably
(either statically stable or dynamically stable) implemented
on robots, the inertia has a relatively small contribution to the
motion (i.e., friction dominates the motion), as we showed in
Fig. 3b.

C. SEA robot and Dynamixel robot experiments

We carried out experiments with a Dynamixel robot (Fig.
1b.1) and a serial elastic actuated (SEA) robot (Fig. 1b.2).
The Dynamixel robot is a modular snake robot composed

of 15 identical actuated modules (Dynamixel AX-12A servo
motors) connected with 3D printed plastic brackets; the SEA
robot is a modular series elastic actuated robot composed of
a chain of 16 identical modules that are capable of precise
torque, velocity and position control [17]. The arrangement of
modules in the SEA robot and the Dynamixel robot makes
sure that the rotation axes of neighbouring modules were 90◦

rotated in a torsional manner. Note that during the experiments,
the connection wire is lifted to avoid the additional force by
the connection wire. Thus, the joints were divided into two
groups: yaw joints (odd modules from head to tail), which
control the lateral body wave, and pitch joints (even modules),
which control the vertical body wave.

Experiments were conducted on the flat hard ground, where
we assume the ground reaction forces are given by kinetic
Coulomb friction. The SEA robot and the Dynamixel robot
were controlled directly by joint angle commands. For each
sidewinder gait tested, we conducted 5 trials. In each trial,
we commanded the SEA robot to execute three complete gait
cycles and collected the SEA robot motion data starting from
the first command being sent out until the SEA robot stop
moving.

To track the motion of the SEA robot in the environment,
we uniformly attached 8 IR reflective markers along the body
of the SEA robot and the Dynamixel robot. An OptiTrack
motion capture system was employed, and 4 OptiTrack Flex
13 cameras were installed to track the three-dimensional
positions of the markers at 120 FPS frame rate. We recorded
the trajectory of the markers over 3 cycles, from which we
calculate the forward, lateral and rotational displacements.

The Dynamixel robot and the SEA robot are used in
different experiments. Specifically, we used the Dynamixel
robot to test the effects of spatial frequency on static stability.
In these experiments, different gaits are implemented on the
robot at the same temporal frequency. Note that the maximum
allowable torque of the Dynamixel motors is 1.5 N-m. To
avoid large torques on the motors, we ran experiments on the
Dynamixel robot at relatively low temporal frequency. In our
efforts to stabilize gaits, we measured the stability of a gait
by testing it over different temporal frequency. In this case,
we unavoidably need to run experiments in relatively high
temporal frequency and therefore large torque is expected on
motors. The insufficient torque can restrict the capacity of the
robot to form the desired shape. In this way, we used the SEA
robot, which has the maximum allowable torque 7 N-m, to test
the effect of temporal frequency on static stability. Examples
of the SEA robot and the Dynamixel robot experiments can
be found in the supplementary video.

We summarize our steps to stabilize the sidewinding gaits
in Algorithm 1.

IV. RESULTS

A. Effect of Spatial Frequency on Static Stability

Previous work [16] suggested that for sidewinding gaits with
1.5 spatial waves (Kl = 1.5, Kv/Kl = 1.0) are in general
faster than the sidewinding gaits with 2.0 spatial waves (Kl =



Algorithm 1: Stabilizing sidewinding and turning gaits

1 Initialization: Kv/Kl = 1.0;
2 while Static Stability < 0.5 do
3 Kv/Kl ← Kv/Kl + 0.1;
4 Calculate height function (HF);
5 Take φ0 to maximize HF surface integral
6 end
7 Perform numerical simulation
8 Implement robot experiments

2.0, Kv/Kl = 1.0). In both cases, the gaits are statically
stable and the simulation can well predict the trajectory of
body motion and have good agreement with Dynamixel robot
experiments. With this knowledge, we proceed to study the
locomotion performance of the statically unstable sidewinding
gaits.

We calculated the static stability for sidewinding gaits with
different spatial frequencies (Kv = Kl = K) in Fig. 5.
High spatial frequencies will lead to dense distribution of
short contact patch (Fig. 2a) and often is statically stable.
On the other hand, low spatial frequencies will lead to sparse
distribution of long contact patch (Fig. 2b.1) and is often not
statically stable.

To investigate the behavior of statically unstable sidewind-
ing gaits, we performed the similar experiments on sidewind-
ing gaits with 1.0 spatial wave and 1.5 waves on our Dy-
namixel robot (Fig. 1b.1). We take lateral amplitude Al =
0.15Kv rad and vertical amplitude Av = 0.7Kv rad, temporal
frequency f = 1Hz for all the Dynamixel robot experiments.
Snapshots of Dynamixel robots implementing gaits are shown
in Fig. 4. Good agreement between experiment and theory
was observed in sidewinding gait with 1.5 spatial waves.
However, we observed significant discrepancies between the
simulation and Dynamixel robot experiments (see Fig. 4). We
hypothesized that at low spatial frequency, the configuration
of the robot would not be statically stable (static stability =
0.48 for 1.0 spatial wave, static stability = 0.78 for 1.5 spatial
waves) and this led to the falling down of robot (see Fig.
2b,c). The unexpected touchdown can change the distribution
of ground reaction forces and therefore leads to turning.

To verify our hypothesis, we ran Dynamixel robot ex-
periments across a range of spatial frequencies. Dynamixel
robot experiments showed that such discrepancies (stability
related turning) vanished at high spatial frequencies. From
the Dynamixel robot experiment result, we observed that, in
this experiment set-up, the cut-off static stability that leads to
unexpected behavior is around 0.5.

B. Temporal Frequency Dependency

Although some gaits are not statically stable, it is possible
that increasing the temporal frequency can make gaits dy-
namically stable. Thus, we tested the effect of the temporal
frequency on the performance of gaits.

We first evaluate the effect of temporal frequency on the

sidewinding gait with 1.0 spatial wave (Kl = 1.0,Kv/Kl =
1.0). We take Av = 75◦ and Av = 50◦ for all the SEA robot
experiments. At low temporal frequency (see Fig. 7), rotations
with high mean and high standard deviation were observed in
SEA robot experiments, which suggested that the locomotion
performance for static unstable gaits was not predictable and
controllable when operating at different speeds. However,
both the mean and the deviation of the rotation significantly
decreased when the SEA robot operates at high temporal
frequency. It suggested that the loss of static stability can be
compensated by the obtained dynamic stability at high speed.

Next, we evaluate the temporal frequency dependence of
the frequency turning gait from [1]: Kl = 1.5, Kv/Kl = 0.6,
φ0 = π/2. From our static stability analysis, the frequency
turning gait is not statically stable (static stability = 0.46). In
addition, numerical simulation suggested that the frequency
turning gaits should lead to counterclockwise rotation, in
contradiction with the experiments. Therefore we speculate
that the frequency turning gait is driven by the unexpected
touchdowns and therefore will be strongly temporal frequency
dependent. SEA robot experiments verified that locomotion
performance in the frequency turning gait is strongly cor-
related with the temporal frequency. Higher rotation angles
were achieved when the SEA robot operated at low temporal
frequency.

C. Stabilization by Modulation of the Vertical Waves

We followed the algorithms proposed in section III to
stabilize the statically unstable sidewinding and turning gait.
As discussed earlier, the sidewinding gait with 1.0 spatial wave
is not statically stable. We showed that we can stabilize this
gait by increasing the V-L ratio Kv/Kl to 1.1. From the lateral
height function (Fig. 3b), we take φ0 = 1.29 to optimize
the surface enclosed in the lateral height function. The static
stability analysis suggested that this gait is statically stable
(static stability = 0.62). We implemented this gait on SEA
robot experiments. SEA robot experiments (Fig. 7a) showed
that no significant turning was observed over a range of
temporal frequencies.

Note that the stabilized sidewinding gait (Kl = 1.0,
Kv/Kl = 1.1) exhibited excellent lateral speed. SEA robot
experiments shows that the average lateral displacement per
gait cycle is 0.45 ± 0.03 body length, significantly greater
than the displacement (0.37 ± 0.01 body length per gait
cycle) of sidewinding gait with 1.5 spatial waves (Kl = 1.5,
Kv/Kl = 1.0).

We next stabilized the frequency turning gait with 1.5
spatial waves, Kl = 1.5. We showed that we can stabilize it
by raising the V-L ratio Kv/Kl to 1.3. From the rotational
height function (Fig. 3a), we take φ0 = 1.02 to optimize
the surface enclosed in the lateral height function. The static
stability analysis suggested that this gait is statically stable
(static stability = 0.62). We implemented this gait on the SEA
robot. SEA robot experiments showed that the locomotion
performance (rotation per gait cycle) is robust over a range
of temporal frequencies.



V. DISCUSSION

A. Sidewinding Gait Family

In previous work [1, 12], sidewinding gaits have been
described as the superposition of the body wave in the lateral
and the vertical directions of the same spatial frequency
(Kv = Kl). This equality limits the availability of sidewinding
gaits, especially at low temporal frequency. In this work,
we have shown that Kv = Kl is not necessary to produce
sidewinding locomotion. In fact, for almost any V-L ratio,
Kv/Kl, we can always find a φ0 to produce sidewinding. This
result greatly expands the effective sidewinding gait family
operating at a wide spectrum of temporal frequencies.

In our expanded sidewinding gait family, greater V-L ratio in
general corresponds to faster but less stable locomotion; less
V-L ratio in general corresponds to slower but more stable
gaits. By modulating the V-L ratio, we can systematically do
the trade-off between the speed and stability.

B. Mechanisms of Frequency Turning Gaits

Turning motions of limbless robots have been less studied
than translational motion. Frequency turning (modulating the
V-L ratio with fixed phase lag φ0 = π/2) is one of the
effective in-place turning strategies for limbless locomotors
[1]. However, the mechanism of frequency turning gaits was
not identified.

In this paper, we studied frequency turning gaits. Static
stability analysis shows that the frequency turning gaits with
V-L ratio greater than 1 are statically stable. Moreover, SEA
robot experiments showed that the locomotion performance
of frequency turning gaits with V-H ratio greater than 1 is
not temporal frequency dependent. Geometric height functions
indicate that it is the changes in the symmetry of ground
reaction forces that lead to the changes in the direction of
motion.

However, in the simulation and geometric mechanics predic-
tion, the frequency turning gaits should lead to counterclock-
wise turning when the V-L ratio is less than 1, which con-
tradicts the experimental results. Furthermore, static stability
analysis shows that the frequency turning gaits with V-L ratio
less than 1 are not statically stable. SEA robot experiments also
suggested that their locomotion performances are not robust
over the temporal frequencies. In this way, we speculate that
the frequency turning gaits with V-L ratio less than 1 are
driven by the additional ground reaction forces induced by
static instability.

VI. CONCLUSION

This paper provided the first observations of the impact of
temporal frequency on the locomotion performance of limbless
locomotors. As with previous work, we prescribed the motion
of limbless locomotors by two waves: one wave in the vertical
plane and the other in the horizontal. We show that, at low
temporal frequency, statically unstable sidewinding gaits have
undesirable locomotion performance and deviated from model
expectations. In other words, some gaits were effective only
at high temporal frequency, where the static instability can be

compensated by the gained dynamic stability. In fact, the loss
in static stability limits the feasible choices of sidewinding
gaits at low temporal frequency.

We proposed an approach to stabilize these statically un-
stable sidewinding gaits by modulating the spatial frequency
of the vertical wave. We used height functions, analytic tools
previously described from the geometric mechanics literature,
to coordinate the lateral wave and vertical wave to produce
effective motion in the desired directions. Robot experiments
verified that the temporal frequency dependence were elimi-
nated in statically stable turning gaits.

In this way, we greatly expanded the range of statically sta-
ble sidewinding gaits by introducing another control variable
Kv/Kl to trade-off between the static stability and the speed.
Robots in real world need not only effective performance
at high speed, but also stable operation at low speed. For
example, in the control of load-bearing robots and navigation
through cluttered search and rescue environments, stability is
often more important than speed. In our proposed framework,
we observed a lower bound of the temporal frequencies where
the dynamic stability fails to compensate for the loss of
static stability. Therefore, it is important to stabilize the gaits
to allow effective locomotion performance at low temporal
frequencies.

In the future, we will study the gait optimization with the
combined effect of static stability and dynamic stability and
further improve the gait adaptations in response to the changes
in speed. In addition, we will expand our model to advance
hypotheses for further study of biological sidewinder snakes
at varying speeds.
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