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SUMMARY

Granular materials are abundant in the natural and industrial environments. Typical

granular materials are collections of inert, passive particles in which the constituent grains

of the material are macroscopic; thus they fill space, are a-thermal, and interact through

only local contact forces. This definition can be broadened to include non-inert particles as

well–active particles–in which the grains of an active granular material possess an internal

energy source which drives motion. Active granular materials are found in many areas of

the biological world, from cattle stampedes and pedestrian traffic flow, to the subterranean

world of ant colonies and their collective motion within the nest.

We study the rheology and dynamics of inert granular material, and an active granular

system of collections of fire-ants, which together we call matter with granularity. In both

of these systems we observe bifurcations in the force and flow dynamics which results from

confinement effects of the effectively rigid granular materials. In inert granular systems,

the onset of flow among particles that are closely packed together causes them to dilate as

particles must separate away from each other to accommodate flow. Dilation is a property

unique tomatter with granularity and other complex fluids in which particles interact locally

and occupy space. We explore how dilation influences the inert granular system in situations

of local and global forcing: drag of an immersed intruder and avalanche flow respectively.

We next study collections of fire ants which also interact with each other locally through

contact forces and exclude volume. We study the construction of, and locomotion within

subterranean tunnels by groups of fire ants. We find that the traffic dynamics of ants within

confined tunnels are significantly affected by tunnel diameter. Reducing tunnel diameter

increases the formation of traffic jams due to the inability of ants to pass each other easily.

However, we show that jamming within tunnels may have beneficial effects on subterranean

locomotion. Individual ants jam there their bodies, limbs and antennae against the walls

of vertical tunnels to resist falling. From biophysical studies of fire ant mobility in confined

xvi



spaces, we show that subterranean tunnel size has a significant effect on the stability and

mobility of ants within these environments.
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CHAPTER I

INTRODUCTION

1.1 Matter with granularity

We interact with systems of inert, macroscopic particles almost everyday. For example, at

breakfast we may shake salt, grind coffee, and pour cereal into a bowl (Fig. 1.1). These

systems—which we define as granular materials—have the common properties that they are

composed of macroscopic, discrete, dissipative, and athermal particles. Granular materials

are interesting to scientists and engineers alike because they exhibit complex rheological

properties while consisting of potentially simple individual elements with simple interactions

[1, 2, 3, 4]. As such, research in granular materials has been performed across a broad range

of disciplines.

Granular materials have significant importance in industry, engineering, and fundamen-

tal science study. Granular matter is the second-most-manipulated material by man (behind

water) [5]. It is estimated that the processing of granular materials such as phamaceuticals,

coal, and other raw materials, accounts for 10% of the worlds energy consumption [4]. Be-

cause of the prevalence of granular materials in industry and life, advancing our knowledge of

the granular state of matter has much practical industrial importance. Additionally, granu-

lar materials are a paradigmatic non-equilibrium system [5]. Physics studies of granular ma-

terials have advanced our understanding of numerous fundamental non-equilibrium physics

processes such as self-organized criticality [6, 7, 8, 9], pattern formation [10, 11, 12, 13], and

the glass transition [14, 15, 16, 17].

Increasingly—through both biological and industrial inquiry—granular materials re-

search has turned its focus on particles that move through their own internal energy sources

[19, 20, 21, 18]. In contrast to dissipative, passive, granular materials, “active” granular

materials operate according to both their interactions with the external environment, and

their internal degrees of freedom [20]. Many examples of of active materials are found in the
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c) d)

a) b)

Figure 1.1: Examples of passive and active granular materials. a) Balls from a children’s
playground b) Lentil grains c) The bacteria Myxococcus. Image reproduced from [18] d) A
school of fish. Image courtesy of the National Oceanic and Atmospheric Administration.

natural world: bacteria aggregations, bird flocks, and fish schools (Fig. 1.1). Thus, physics

study of active granular materials may have increasing significance in the understanding of

group animal behavior, across many scales of organism size [22, 23, 24, 25]. Furthermore,

collective biological systems inspire more than just scientific curiosity and the processes that

lead to collective behavior such as self-organization and system robustness may lead to new

design paradigms for engineered systems [26, 27, 28].

The work presented in this thesis is focused on the study of collective, particulate,

systems—both active and passive—which we define as matter with granularity.

1.2 A case study in active and passive granular materials

To begin to acquaint ourselves with granular phenomena, and to illustrate the symbiotic

relationship between active and passive granular materials, we begin with the following case
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study. A common phenomena experienced when handling granular media is the flow and

jamming of particles as they exit through a small hole. When we invert a salt shaker to

flavor our food we experience this phenomena (Fig. 1.2). The inert salt grains begin to

flow from the small holes until without fail the flow is halted by particles that jam in the

holes. To relieve this jam we shake the salt shaker which removes the jammed particles and

re-initiates flow.

In a similar fashion to that of the inert salt grains, panicked crowds of humans (and in

recent analogous experiments, ants [29]) also experience jams when attempting to exit from

a larger room through a narrow corridor (Fig. 1.2) [30, 31]. Such jams have been illustrated

in laboratory experiment [32], field observation [33, 34], and computer simulations [30, 31]

of pedestrian traffic flow (Fig. 1.2). The consequences for jam formation in pedestrian flow

through an exit can be devastating and lead to injuries or even fatalities.

a) b)

c) d)

Figure 1.2: Examples of identical jamming phenomena in active and passive granular
systems. a) Flow of inert granular salt through small holes can lead to particle jams. b)
An example of a jammed granular flow in a 2D experiment. Colored particles indicate high
stress. c) Jams are also formed by pedestrian crowds egressing through narrow exits) [35],
b) Jammed active particles simulating a crowd exiting a narrow exit [30]

Granular jamming is a phenomena in which through small changes in “particle” density

smooth flow of the material can be arrested and resist further motion. In the previous two
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examples of jamming of active and passive systems, the situations are nearly identical: a

large system of similarly shaped “particles” interact locally through contact forces, exclude

volume from each other, and thus squeeze together and form force-chains which jam the

flow (Fig. 1.2). The similarity of these situations suggests that to mitigate the formation of

potentially harmful human traffic jams, we may draw on insights learned from the study of

passive granular materials flowing through narrow exits.

Hoppers and silos are used frequently in industry to transport and store granular ma-

terials. These structures are large containers which slope at the base leading to a narrow

exit (Fig. 1.2). Hoppers suffer similar problems of jam formation during outflow of granular

media [36] and the physics of spontaneous jam formation of granular flow through a narrow

exit has been a frequently-studied problem in granular materials [35, 4, 3]. A solution to

counteract the formation of exit jams in hopper flow has been to place a small obstruction

immediately prior to the outflow region of the aperture [37, 38, 39]. The obstruction directs

granular flow near the exit to resist the formation of arching jams. Recent physics studies

of this phenomena have shown that with the appropriate choice of obstructor geometry and

positioning, the probability to form an outflow jam is reduced by a factor of 100[37].

Inspired from the results of jam mitigation in passive granular materials this design

was employed in active granular systems. Computer simulations [40], experiments with

human subjects, and experiments with model organisms (ants leaving a nest [41]) have all

demonstrated that the placement of an obstructor near an egress alleviated pedestrian jams

as well. Thus architects have begun to employ this design in pedestrian walkways [] inspired

from the studies of passive granular materials.

Here I have illustrated an example of the symbiotic relationship between active and

passive granular systems research. The discovery of core principles of matter with gran-

ularity benefits from the simultaneous study of many different types of materials.

1.3 Organization of this thesis

The over-arching theme of the research presented here is that of the dynamics of granular

systems in which the grains exclude volume. When particles interact through rigid, nearly
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hard-wall, contact forces, their phases of matter display interesting phenomena. Granular

dilation, mechanical particle entanglement, and ant traffic-jams are all examples of phenom-

ena that occur because the constituent “particles” cannot freely pass through each other.

Instead these “particles” effectively interact with each other through local, hard-wall con-

tact forces and experience segregation, slowing down, and jams. In this thesis we explore

how particle shape, size, confinement, and forcing, influence the response of matter with

granularity.

I outline a program of research in which I study the principles of active and passive

matter with granularity to discover properties of biological systems that interact with, or are

composed of matter with granularity. In chapter 2, with a review of important phenomena

in active and passive granular systems. We then describe two complementary series of

experiments in which we study the properties of active and passive granular systems:

• In chapters 3-5 we study passive granular media

• In chapter 6 we study a passive granular material that is inspired by phenomena

observed in collections of living fire-ants, an active granular material.

• In chapters 7-9 we study the collective dynamics of collections of living fire-ant

groups.

• In chapter 10 we discuss and summarize our findings and outline areas for future

investigation.
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CHAPTER II

REVIEW OF MATTER WITH GRANULARITY

In chapters 3-9 we describe experiments to study the dynamics of active and passive gran-

ular materials; collectively denoted as matter with granularity. We define matter with

granularity as collections of discrete, rigid objects that exclude volume and (typically) in-

teract only through local contact forces. In this chapter we introduce the basic phenomena

associated with active and passive granular materials.

2.1 Passive granular phenomena

2.1.1 Introduction

Passive granular materials are assemblies of macroscopic particles that are typically of size

greater than 10 µm [5]. Particles smaller than 10 µm are subject to thermal effects while

granular materials are athermal [5]. and These particle assemblies are easily studied in

table-top experiments. Being of macroscopic size, granular materials are readily visual-

ized in the laboratory which allows for quantitative flow characterization through particle

tracking and image velocimetry. However, due to their opaque nature, imaging the three-

dimensional structure and flow of granular materials requires the use of X-ray [42, 43],

magnetic resonance imaging, or immersion in index of refraction matched liquid.

Granular materials come in many shapes and sizes [44], however in the majority of

physics studies granular materials are considered as convex (often spherical) particles (Fig. 2.1)∗.

Dry granular materials consist of particles that interact through frictional and repulsive

normal forces only [1, 2, 3, 4]. Because of the absence of particle-particle attraction, dry,

spherical, granular material cannot support tensile loading [3]. Since grain-grain interac-

tions are frictional, the force laws of granular flows are typically rate insensitive at low

speeds [3]. At higher flow speeds however, momentum transfer between particles becomes

∗In chapter 6 we will discuss how deviations from a convex shape affects behavior.
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Figure 2.1: (Left) Spherical 210 µm diameter glass beads. Scale bar is 1 mm. (Middle)
Poppy seeds. (Right) Beach sand from Jekyll Island, GA, USA. Photo credit (a) Sarah
Sharpe.

a) b)

Figure 2.2: Heterogeneous force chains in a granular material. a) Experiment demon-
strating force chains in granular material using photo-elastic disks. Photo courtesy of Bob
Behringer. b) Simulation of force chains (red lines) in a granular material using the discrete
element method.

important and force laws take on a velocity dependence (with a force law dependent upon

the packing density of the material [45]).

In certain cases grains may cohere, through electrostatic interaction between charged

grains [4], or through capillary forces from an intermediate wetting fluid [4]. The physics

of cohesive granular materials is of fundamental importance in many applications, such as

the study of soil stability for civil engineering. However in this thesis we focus only on the

study of dry granular materials. Dry granular material is well suited to experimental study

as it can be prepared in repeatable initial states in the laboratory.
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Because grains are of finite size, forces within a granular material are heterogeneously

distributed through filamentary force chains (See Fig. 2.2 and [46, 47]). These force chains

have been studied in two-dimensional granular materials using photo-elastic particles which

are bi-refringent and thus change the polarization of transmitted light in areas of high

stress (Fig. 2.2). The heterogeneous stress distribution within granular materials has made

the development of continuum mechanics models difficult [48, 49]. As such, computational

simulation of granular materials using the Discrete Element Method (DEM) [50] or other

energy-minimization based methods have made major advances in understanding and mod-

eling granular flows (Fig. 2.2). Computer simulation is an essential tool in granular physics

which we discuss further in chapter 6.

2.1.2 Phases of granular matter

A fundamental feature of granular materials is their ability to act like solids, fluids, or gases

[2]. The “phase” of the granular material may spontaneously change under perturbations.

A feature of granular flows is the rapid transition between the three phases [2]. For example,

a pile of granular materials (Fig. 2.3a) is considered a solid. Thermal effects of granular

materials are negligible because of their large size [5, 2] and thus the solid state will persist

until an external perturbation is applied. When a granular flow down a slope occurs,

rapidly moving grains are located on the surface while immobile grains remain solid below

the surface. Thus the granular flow exhibits a co-existence between the fluid-like surface

flow and the solid-like below supporting material below (Fig. 2.3b).

The phase-change and resultant flow in granular material induces a change in the micro-

structure of the grain contact network within the flowing region. This change in grain

contacts in turn alters the rheological properties of the granular material in the flowing

region, which creates a feedback process between granular flow and internal microstructure.

Dependent upon the conditions of forcing, this feedback feedback process can result in gran-

ular flows which reach a quiescent steady-state (See section 2.1.4) or alternatively exhibit

bifurcations and pattern formation (Fig. 2.3c and section 4).
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a)

b)

c)

Solid

Avalanche

Figure 2.3: a) A granular slope. b) False color image of an avalanche down a slope. The
color corresponds to the speed of granular flow with orange being high speed flow and black
being low speed flow. c) Drag of an immersed intruder (translated from the left to the
right) through closely packed granular media.
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2.1.3 Packing of granular material

One of the simplest granular experiments that can be performed is to pour particles of a

known density and mass into a container and measure the volume occupied by the assembly.

This experiment provides a measure of packing efficiency of the granular particles. We

measure packing of granular material as the fraction of total volume, V , occupied by solid

particles, Vp. We define volume fraction as

ϕ =
Vp
V

(2.1)

The volume fraction, ϕ, represents the fraction of filled space. ϕ is intimately related to

the dynamical response of the media when it is subjected to external perturbations such as

vibration [51, 52], shear [53], penetrator impact [45], or intruder drag [54].

Mechanically stable ensembles of spherical, monodisperse granular materials are found

in a range of ϕ from random loose-pack ϕrlp = 0.55 [55, 4] to random close-pack volume

fraction ϕrcp = 0.64 [4]. The term random in these definitions represents the fact that these

are not ordered configurations of grains. The maximum ϕ for ordered, uniform, spheres

is that of a face-centered-cubic lattice in which ϕfcc = 0.77. A loose, ordered, packing is

that of a simple-square lattice with ϕssl = 0.52. Although the packing fraction of ordered

ensembles (i.e. on a lattice) may be analytically solved for, the calculation of the maximum

ϕ of randomly distributed particles of arbitrary shape must be done computationally [56].

Physics study of the packing of granular media under mechanical [51] or air-fluidized [52]

perturbation has revealed that the evolution of ϕ is dependent upon the forcing parameters

such as peak mechanical acceleration, or air pressure (Fig. 2.4). The relaxation dynamics

of granular material are complex, exhibiting signatures of two-time scales (Fig. 2.4a and

[52]) or stretched exponential behavior (Fig. 2.4b and [51]). The common feature of these

experiments is that compaction of granular material, and subsequently the increase in ϕ,

occurs slowly, over many thousands of iterations. We will discuss in section 3 how the

packing of granular materials can be controlled rapidly for experimental application.
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φ φ

TapsAir pulses

a) b)

Figure 2.4: Results from packing experiments of granular media. a) Results from an air-
fluidized experiment. ϕ versus number of air pulses. Reproduced from [52]. b) Results from
a mechanical tapping experiment. ϕ versus tap number. Reproduced from [51]

δa) b)

Figure 2.5: Simple shear of a granular media. a) Before shearing. b) After shearing.

2.1.4 Critical state

As discussed at the end of section 2.1.1, granular flow induces a change in the microstructure

of the contact network between grains, which in turn may alter the flow in that region

through a feedback process. Thus we may ask whether this feedback process will result

in a stationary-state of granular flow? This is the subject of critical-state soil mechanics

[53, 57]. Critical-state theory is an important tool in soil mechanics yet has not fully been

appreciated by granular physicists.

In the prototypical critical-state experiment we subject granular material, placed be-

tween two (semi-) infinite, horizontal, planes to a simple shear (Fig. 2.5) while keeping the

top plate under constant pressure. The vertical height change of the top plate during shear,

δ, corresponds to an associated change in average ϕ of the granular material contained

within. The height changes according to the amount of free-space within the material and
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Figure 2.6: Cartoon model of dilation and compaction. a) Shearing a low ϕ material
compacts grains. b) Shearing a high ϕ material dilates grains. c) Expected height change
as a function of shear. Figure reproduced from [57]

may either increase or decrease depending on initial ϕ (Fig. 2.6).

Experiments show that independent of the initial ϕ0 the granular material is prepared

at, under shear it will evolve to a steady state ϕc which is only dependent on the grain

properties and the confining stress (Fig. 2.7 and [53]). In the evolution from ϕ0 to ϕc,

the net change in volume fraction, ∆ϕ, may be either positive or negative. Negative ∆ϕ

indicates that the granular media underwent compaction during shear as grains moved closer

together to fill voids. Positive ∆ϕ indicates that the granular media underwent dilation

during shear in which the material expanded to accommodate the motion of the granular

media. The critical state volume fraction, ϕc, is the state in which the granular material

neither expands nor contracts under further shearing. As we will see in subsequent chapters,

the initial volume fraction of the granular material strongly determines the response of the

media under forcing.

The value of ϕc is not a universal constant of the granular material but is instead a

function of both the magnitude of the normal stress on the material [53], and the coefficient

of friction between particles [59]. The relationship between ϕc and stress is given by the

12
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Figure 2.7: Evolution of granular volume fraction under shear. a) Original experiments
from Wroth, et al. [58] reported as voids-ratio, e, versus shear. b) Data re-plotted in terms
of ϕ = 1

1+e .
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Figure 2.8: Effect of stress and coefficient of friction on ϕc. a) Cartoon sketch of the
relationship between ϕc and the logarithm of the mean confining stress. b) DEM simulation
tri-axial tests on a dry granular material with varied particle-particle coefficient of friction.
Coefficient of friction influence on ϕc. Reproduced from [59]

Cam-Clay model of critical state soil mechanics in terms of the critical voids ratio ec. Voids

ratio is defined as the ratio of pore volume to solid volume and is related to volume fraction

by the relationship ϕ = 1
1+e . The Cam-Clay model states

ec = eΓ − λ log(p) (2.2)

where ec and e0 are the critical-state and zero-pressure voids ratios respectively, λ is a

compression parameter of the soil, and p is the confining pressure. Substituting ϕ for e we

arrive at the relationship

ϕc =
ϕΓ

1− ϕΓλ log(p)
(2.3)

where as with the voids ratio, ϕc is the critical state volume fraction at pressure p, and

ϕΓ is the zero-stress critical state volume fraction. In figure 2.8a we plot equation 2.3. ϕc

increases monotonically with the confining and is a function of the logarithm of the confining

pressure.

Experiments and DEM simulation also have found that ϕc is sensitive to the grain-grain

coefficient of friction, µ, in the granular material [59]. In 2.8b we show results from DEM

simulation which illustrate that ϕc decreases exponentially as a function of increasing µ.

The value of ϕc approaches that of random close pack as µ → 0. As µ → ∞, ϕc → 0.578

which the authors define as a dynamic random loose pack to distinguish this state from the

lower ϕ random loose pack.
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Figure 2.9: Shear localization in granular materials. a) Results from two triaxial tests:
ϕ > ϕc (right) and ϕ < ϕc (left). Figure reproduced from [60].

2.1.5 Shear localization

A novel feature of granular flows is the strong localization of flow that may occur when the

material is sheared. An example of shear localization is the formation of a narrow “shear-

band” in the material along which the flow (and shear) is concentrated. In figure 2.9 we show

granular material deformed in a tri-axial test exhibiting a shear band (left panel). A tri-axial

test is a measurement from soil-mechanics in which the granular material is placed into a

cylindrical rubber sleeve and immersed in a fluid held at constant pressure. Two plates on

the top and bottom push inwards at a constant stress and the plate displacement is recorded.

From this measurement a stress-strain profile of the granular material is measured.

As illustrated in figure 2.9 the formation of shear-bands is sensitive to the initial ϕ. The

left image of figure 2.9 is of a granular material prepared at ϕ > ϕc while the right image

of figure 2.9 is a material prepared at ϕ < ϕc. The crucial feature to the formation of

shear bands as stated in a recent review is “a mutual coupling between local flow and local

organization, in which flow induces the microscopic organization of the constituent units,

which feeds back on the flow properties and can cause instabilities” [61].

From granular rheology experiments, the formation of shear bands can be understood

as a bi-stability in the stress-strain rate relation (Fig. 2.10). In shear experiments in which
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Figure 2.10: Stress-strain is non-mononotic as a function of stress. Shear bands in granular
material can be understood through rheological measurements of the stress-strain relation.

the shear rate is between the range γ1 − γ2 (Fig. 2.10) stable flow will occur at either γ1

or γ2 and thus the flow separates into two regions, one at γ1 and one at γ2. Within this

shear band revion the stress is constant at σsb (Fig. 2.10). This process can is similar to

the Maxwell construction for phase transition in a Van der Waals gas.

A feature of shear-bands that has been relatively unexplored is the stability of these

flow regions. This is because most experiments of shear-band formation either probe the

initial shear-band bifurcation (like in tri-axial tests) or the steady-state shear band flow

(like in standard periodic boundary condition geometries such cone-plate rheology). We

will demonstrate in chapter 4 new studies to explore the stability of shear bands through

the use of drag measurements.

2.1.6 Vibrated granular materials

As introduced in section 2.1.3, the repeated mechanical agitation of granular materials is

a useful experimental method to explore the phases and relaxation dynamics of granular

material [51, 52]. Uniform sinusoidal vibration is employed to repeatedly inject kinetic

energy into the granular material. High-intesity vibration is essential for the study of

granular gases, pattern formation, and relaxation. Additionally it is possible to condense

vibrated granular systems from the gaseous state to an aggregated liquid or solid state using
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Figure 2.11: Pattern formation in granular materials. Left and right columns show exper-
iment and simulation results of surface patterns formed in sinusoidally vibrated granular
material. Image reproduced from [64].

vibration [62, 63].

Two parameters may be varied during vertical, sinusoidal vibration of a granular ma-

terial: the oscillation frequency, f , and the peak-peak amplitude of the oscillator, A. We

non-dimensionalize the peak vibration acceleration as

Γ =
A(2πf)2

g
(2.4)

In oscillation conditions of Γ < 1 the object(s) being vibrated will remain in contact with

the oscillator as the peak acceleration does not exceed g. In conditions of Γ > 1 the object(s)

will experience a ballistic period in which they lose contact with the oscillator. In this case

the object(s) will repeatedly collide with the oscillator.

Analogous to Faraday waves observed in vibrated fluids, granular materials also exhibit

surface patterns when a thin shallow layer is vibrated (See Fig. 2.11 and [64]). Vibration
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induced fluidization has been used to study the properties of wet cohesive beads by exploring

the solid-liquid, and liquid-gas phase transitions that occur as a function of oscillation

amplitude and frequency [65, 66, 67]. In wet cohesive granular material the energy scale

required to separate particles is set by the particle radius and surface tension of the liquid

forming the bridge. A liquid to gaseous phase transition occurs in wet cohesive granular

media when the injected energy from vibration exceeds the capillary bond energy [65] and

thus vibration induced fluidization is an effective means to explore the phases of granular

materials. Lastly, in avalanche experiments with dry granular media, vibration has been

used to mobilize particles and thus cause the granular materials to avalanche at lower

slope angles, dependent upon the amplitude and frequency of vibration [68, 69]. In one of

these experiments the authors showed that the vibration [68] was analogous to a thermal

energy source and illustrated that the granular slope relaxation followed a Boltzman-like

exponential function.

In chapter 6 we describe how we use sinusoidal vibration of a “u-shaped” granular

material to study the relaxation and stability of u-particle piles.

2.1.7 Force and flow surrounding intruders in GM

The drag and lift force experienced by intruders submerged within a granular material

have been of interest since the invention of the plow. The force and flow of a granular

material experienced by a submerged intruder is interesting from a physicists viewpoint

because it is a localized forcing. As discussed in section 2.1.4 shearing a granular material

will induce a change in the microstructure (and local ϕ) and this change will thus result

in a change in the rheology of the media in that location. By constantly translating an

object through a granular material which has been prepared at ϕ, we continually advect

undisturbed granular material into the shearing region and frustrate this feedback process.

Physics study of the forces on a submerged intruder in granular media have explored how

the shape of the intruder affects drag and lift force (Fig. 2.12). Force-fluctuations during

periodic stick-slip flow [70], or aperiodic self-organized criticality like flow [71, 72], have also

been studied to explore the statistics of un-jamming in granular material.
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a) b)

Figure 2.12: Localized intruder experiments in granular media. a) Different shapes of
submerged intruders dragged within a granular media. b) Depth dependence of drag force
for four different shapes of intruder. Shape had a small effect on drag force.

In general the shape of the intruder dragged through granular material did not have a

large effect on the drag force experienced [73] as compared to the comparable shape effects

in a fluid. Instead in a granular material what is important in determining drag important

is largely the intruder depth. Since granular flow is frictional the increase in hydrostatic

pressure as the intruder is submerged deeper increases the drag force proportionally [3].

Furthermore because granular material is frictional the drag force is velocity independent

below speeds of ≈ 0.5 m/s [74, 3].

2.1.8 Grain shape

The study of grain shape effects on granular materials has typically focused on convex

particles (See Fig. 2.1 and Fig. 2.13). These studies have practical application as many

granular materials found in nature are not perfect spheres [44]. Instead sand and gravel

particles typically have angular surfaces (Fig. 2.13). This angularity increases the peak

shear-strength of the granular material from that of ideal spheres[44, 75]. This can be

understood because the angular surfaces allow for particles to interlock, effectively increasing

the bulk friction of the granular material.

The packing properties of non-spherical granular material is also of fundamental interest.

Packing experiment, simulation, and numerics have been performed for regular platonic and

achrimedean solids [76, 77], ellipsoids of revolution [78, 79], and both oblate and prolate

spherocylinders [80, 81]. In a recent comprehensive study of particle packing, an effective
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Figure 2.13: Table illustrating granular materials of various angularity and roundness.
Figure reproduced from [44]

dictionary of shape effects on packing fraction has been constructed [56].

Numerous experiments have also been performed to study the packing of rods of length

L, and diameter D [82, 83, 84, 85, 86, 87, 88, 89]. Rods with large aspect ratio, defined

as α = L/W , are able to be formed into sandcastle-like vertical towers (Fig. 2.14). Thus

adding fluid to dry granular media is not the only way to create cohesive effects. Rods within

an ensemble lack rotational freedom and thus experience a rotational caging effect, which

generates an effective tensile strength in the granular material. The random contact model

is an important mean-free theory which describes the relationship between ϕ and particle

shape for rod-like granular material (Fig. 2.14). We will discuss non-spherical particles and

the random contact model at length in chapter 6.

2.2 Active granular phenomena

2.2.1 Introduction

The physics of swarm behavior [24], an emergent feature of many biological systems such as

slime molds [90], bacteria colonies [91, 92, 93], and bird flocks [94, 95], is a nascent field of

study (Fig. 2.15). Large collections of living, interacting, organisms are interesting from the

standpoint of physics because they may display emergent, seemingly coordinated behaviors
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a)

c)

Figure 2.14: Examples of rod packing experiments. a) Three images from [82]; Silica rods
(top), toothpicks (bottom left), and copper wire (bottom middle). b) Ensemble of wooden
rods used to measure rod-contact numbers [83]. c) Prediction of ϕ versus aspect ratio from
random contact model (line) and measurements from experiment [82].
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a) c)

b)

Figure 2.15: Examples of collective behavior in biology. a) A starling flock. b)A school of
fish. c) A culture of the bacteria Paenibacillus dendritiformis.

that often stem from simple behavioral rules among individuals (For comprehensive reviews

see [96, 24, 18, 20]). In this sense biological collectives such as fish schools, bird flocks,

and fire-ant colonies can be considered a form of active granular matter. Active matter

is a branch of soft matter physics which involves the study of non-equilibrium particulate

systems in which the particles have internal degrees of freedom [18].

Because many biological systems are intrinsically macroscopic, grainy, and non-equilibrium,

traditional thermodynamic descriptions of the phases and phase transition within active ma-

terials may not be sufficient. This is especially the case in macroscopic biological collectives

(ants, fish, birds) in which the constituent organisms in the group exhibit complex behav-

iors that are likely not fully described by simplistic ideal-gas derived models [97]. For such

systems state machine based models in which the constituents, called agents, act according

to defined behavioral rules are often necessary.

Many active matter systems are embedded in an interstitial fluid [18]. In the presence

of such a fluid active particles interact through hydrodynamic forces and thus can exhibit

collective behaviors through hydrodynamic coupling. Examples of such collective behavior
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are the synchronization of cilia [98, 99]. Furthermore, active matter systems in a fluid can

influence the bulk rheological properties of the fluid by changing the viscosity of the medium

[100, 101] or generating large scale turbulence [102].

Other active matter systems do not rely upon physical interactions through a fluid

medium, but instead rely on the chemical, tactile or visual sensation of neighboring in-

dividuals [25]. For example, bird flocking relies on the visual sensation and response of

individual flyers within the group [25]. Ant trail formation instead relies on the deposition

of a chemical signal (pheromones) within the environment which other ants respond to and

often reinforce by depositing more pheromones.

Collective motion of organisms that interact primarily through tactile responses, such as

many bacteria, are analogous to passive granular media in many ways ahutchinson2007usend

lend themselves to quantitative study because they can be modeled experimentally. As an

example, the collective motion of swarming Bacilus subtilis [92] bacteria exhibit “giant-

number fluctuations”, a phenomena originally described in a vibrated passive granular sys-

tem [103]. Giant-number fluctuations are a phenomena in which the density fluctuations

(measured as the standard deviation of density) of a group of N particles increases faster

than
√
N (as predicted for equilibrium systems) thus leading to the “giant” fluctuations in

particle density.

2.2.2 Flocking physics

The first physics model of flocking is that of self-propelled particles described by Viscek

in 1995 [104].†. The particles ignore interactions with the environment and only interact

with neighboring particles (defined within as those within a cutoff radius r). Each particle

has a given velocity specifying its direction and speed. Particle interactions are such that a

particle updates its orientation to the mean orientation of particles within a neighborhood

defined by radius, r. Particle orientation is also subject to some external noise and the noise

strength, η, is a tunable parameter of the simulation. It was found by Vicsek that noise

†In fact the boids implementation of self-propelled particles was originally introduced by Craig Reynolds
in 1986 [105]. However this model was introduced for computer graphics purposes and was not subject to
quantitative study.

23



e)

Figure 2.16: a-d) Examples of collective motion from the Vicsek model (From [104]). e)
Orientational order parameter as a function of noise strength (from [107]).

strength, η, controls a phase transition between a disordered phase to an ordered phase of

coherent flock motion (Fig. 2.16). Toner and Tu proved the existence of this ordered phase

using a renormalization-group approach [106].

The Vicsek model has been modified and updated a number of times to model different

update schemes and interaction rules among the flocking agents (See [108] for a review of

Vicsek variations). Some of these models have been introduced specifically to account for

various features observed in biological systems. One update to the Vicsek model, introduced

after experimental observation of flocks of the European Starling (Sturnus vulgaris) [109],

is the use of topological interaction rules instead of the original metric distance interaction

rule [110, 109, 111]. Under topological interactions particles interact with there nearest

neighbors, independent of the distance the neighbors are from them. The neighbors are

determined by partitioning the space with a voronoi tesselation. The voronoi tesselation

partitions a space into regions which surround each particle and whose boundaries determine

the all points in that region which are nearest the interior particle. Through the voronoi

tesselation nearest neighbors of the flocking particles are assigned as neighboring voronoi

boundaries [111]. Thus in this scheme particle distance (i.e. metric distance) is not as

important as is the location of one particle with respect to the focal particle in the flock.

The topological Vicsek model exhibits a similar phase transition from disordered to ordered
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states. However, metric-free interactions among the active particles (or organisms) leads

to more robust flocking and thus may be more advantageous for animal groups wishing to

remain collected [111].

2.2.3 Self-organized structures

The formation of self-organized structures is a feature of many different types of animal

groups. Such structures can take on one of two forms: they can be either formed from the

constituent animals bodies (self assemblages) or they can be formed within the external

environment (externalized structures). The processes that lead to these structures are

discussed below.

2.2.3.1 Self assemblages

Self-assembled structures formed from the bodies of the constituent animals in the group

are observed across a wide range of organisms from ants, bees, and snakes [112]. The most

well studied self-assemblages are those found in the ants [113, 114]. Several species of ants

such as fire ants (Solenopsis invicta) and army ants (Eciton burchelli) construct functional

self-assemblages which serve to protect the colony (bivouacs and rafts) or to aid in the

colonies mobility (bridges).

Colonies of the fire ant Solenopsis invicta create large floating rafts formed from inter-

locking limbs and body parts [113, 115, 116]. This process has been studied recently and it

was shown that ant rafts grow through a diffusive mechanism in which ants wander along

the surface until they are grabbed and trapped in place by an ant on the raft [113]. In this

way rafts grow laterally and form wide, flat, pancake-like floating structures.

Army ants form bivouacs as they are a nomadic species and lack a central nest [117, 114].

Bivouacs provide a means of thermoregulation for the colony [114] among other protective

benefits from forming this structure. Bivouacs are typically formed on the sides of rock

faces, or tree trunks. The army ant bivouac has been described as a “living chain mail”

[118] by biologist Nigel Franks because of the way the ants interlock and entangle limbs to

to form the structure.

The entanglement of limbs and body that these structure forming ants exhibit has been
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Figure 2.17: Examples of insect self-assemblages. In the left column we show assemblages
formed by different species of ants. The top image is the raft formed by the fire ant
Solenopsis invicta, middle and bottom are images from a bivouac of the army ant Eciton
burchelli. The right column shows various insect assemblages formed. Reproduced from
[112]
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led to there interpretation as a novel active fluid [119, 120]. In experiments with the ant,

Lasius humile, researchers directed ants to walk down a narrow wire that ended abruptly.

Ants piling up at the end of the wire formed into small droplets which repeatedly fell from

the end of the wire, much like a leaking faucet. This experiment is reminiscent of the

classic chaotic water faucet experiment [121]. Experiment on ant droplets discovered that

the inter-droplet wait times were consistent with that of the classic chaotic leaky faucet,

despite the fact that this system was composed of active particles.

2.2.3.2 Externalized structures

The formation of externalized structures by animal groups is most commonly associated

with the construction of a nest. Some solitary animals construct nests, however in this

dissertation work we focus on organisms that act collectively to construct nests. Examples

of organisms that demonstrate this collective construction behavior most often are found

among the social insects: ants, bees, and termites for example [122, 123, 124]. Nests

are thought to have been a crucial factor in the evolution of eusociality among animal

groups, and thus their morphology and the dynamics of construction are of great interest.

Furthermore nests constructed by groups of workers are particularly of interest because

they arise from a self-organized process in which local interactions and environmental cues

inform workers how to dig. These local interactions taking place across the nest site and

among the hundreds to thousands of constituent workers leads to the self-organization of

the nest and is a process called stigmergy.

Many species of ants construct subterranean nests through the excavation of soil to form

cylindrical tunnels and flatter chambers [125]. These subterranean nests are constructed

through the collective excavation and transportation of soil through the tunnel system.

Nests can be just below the surface or in some species (Prenolepis imparis) can be over four

meters in depth [126]. Ant nests serve to protect the colony and provide a central location

to facilitate the storage of food, brood, and to participate in social interaction [127].

Measurements of the morphology of ant nests in the field necessarily destroy the nest,

through pouring of a molding liquid into the nest, or physics excavation around the nest
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Figure 2.18: Examples of externalized structures created by animal groups. From left to
right: A bee hive, a plaster cast of the subterranean nest of the fire ant Solenopsis invicta,
a termite mounds (species unkown).

[128]. In laboratory study visualizing the growth dynamics of ant nests in three-dimensional

space is hindered by the opaque nature of most soils. A few recent experiments have used

X-Rays to visualize to realize the tunnel network [129, 130], however in this technique one

cannot visualize the actions of the individual ants. The third method to visualize tunnel

growth dynamics is to force ants to dig within a thin region, quasi two-dimensional, region.

In these experiments both the action of individuals and the growth of the nest can be

monitored [131, 132, 133].

Another form of externalized structure is one created from soil excavated from the

ground, or from excretions from the animals body [122]. Examples of these nests are the

honeycomb laced hives of the Honeybee [134] or termite mounds [135]. These structures are

created by a fundamentally different process than excavated nests in which material is added

to the structure to form walls. Termite nests (genus Cubitermes)) have been studied in X-

Ray computed tomography to reconstruct the inner tunnel network. A network analysis of

this systems has illustrated that tunnel networks are near a percolation threshold. Thus

the tunnel networks nearly span the system.
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c)

2 mm

Figure 2.19: a) A group of fire ant workers. Image courtesy of the USDA. b) A fire ant
handling soil in its mandibles c) The shape and size of fire ant workers. Image from [127]

2.2.4 Model organism: the fire ant

The red imported fire ant Solenopsis invicta Buren is an invasive species in the southern

United States. Fire ants have a caste system consisting of a queen, responsible for repro-

duction, sterile female workers who provide the work force for the colony, and sexual males

whose sole function is to mate with queens on a nuptial flight. Fire ant workers are typically

3.5 mm in body length and 0.6 mm in head width. However workers may vary in size up

to three-fold (in length and width, see Fig. 2.19).

Fire ants get their name from the reddish-brown color of their bodies, and the fact that

they are capable of delivering a poisonous sting when threatened. Fire ant stings are mostly

harmless to humans, unless allergic, and leave a small red welt for a couple of days. Fire ant

workers typically live for 6-weeks and the queen will live for typically three years [127]. Fire

ants are scavengers and eat a combination of vegetable matter and foraged invertebrates.
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Figure 2.20: The invasive region of the fire ant Solenopsis invicta shown in red.

2.2.4.1 Habitat

Fire ants originate from the Pantanal wetlands of Argentina and Brazil, an area in which

there is fierce competition for resources and survival [127]. The wetlands are subject to

seasonal flooding and it was this seasonal pressure that allowed fire ants to evolve there raft

formation behavior [113] as discussed in section 2.2.3.1.

Fire ants emigrated to the United States in the 1930’s through Mobile, Alabama [136].

From Alabama fire ants spread across the southern United States by aid of railroads and

trucks shipping agricultural materials [137]. Fire ants are found in a diversity of soil types

[127, 137] from fine-powder, cohesive red clay of Georgia, to sandy soils of Florida (Fig. 2.19).

Although it is known that the shape of the nest mound varies in different soils, with the

sandier soils resulting in less mound volume, it is not explicitly known if soil-type limits

nest construction ability.

2.2.4.2 Nest structure

Fire ant nests consist of three parts (Fig. 2.21): 1) an above surface mound 2) a vertical

series of tunnels and chambers constructed directly below the mound 3) a series of horizontal
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Figure 2.21: Three sections of the fire ant nest. a) The fire ant mound. b) A cross section
of the mound showing tunnels. c) A plaster cast of the tunnels below the mound. d) A
map of the horizontal tunnels
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tunnels which radiate away from the central nest and are used for foraging traffic [127, 138,

139]. Tunnels within the mound are circular with a mean diameter of 0.44 mm. Tunnels

below the mound range from 3 mm to 9 mm in diameter with mean diameter of 6 mm.

Larger tunnels may support higher ant traffic flows. The horizontal tunnels extend laterally

away from the nest and can be up to 50 m in length [138]. The diameter of the foraging

tunnels ranges from to 3 and 6 mm and decreases as the tunnel gets further away from the

center of the nest [140].
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CHAPTER III

YIELD FORCE

3.1 Summary

A granular material’s resistance to flow, its yield force, is a function of volume fraction, ϕ,

and exhibits a transition analogous to the ductile-brittle transition displayed by metals. We

study the drag force, FD, on a flat plate translated from rest through a granular medium to

observe yield force dynamics as a function of prepared ϕ. We find that drag force is sensitive

to ϕ such that FD monotonically increases with displacement for ϕ ≤ ϕc and for ϕ ≥ ϕc, FD

exhibits maxima. We show that ϕc corresponds to the onset of dilatancy. Quasi-2D drag

experiments show that the maxima in FD for ϕ ≥ ϕc are associated with maximum shear

strain during yield which is focused along a narrow shear band. At ϕ ≤ ϕc shear strain

fluctuates and increases monotonically with displacement.

3.2 Introduction

Dry granular materials (GM) are collections of macroscopic dissipative particles and are

common in everyday life—from coffee grounds to sand. The constituents of a granular

material are typically large particles (diameter > 100 µm) that interact through short

range contact forces (friction and normal force). Because granular matter is so prevalent in

industry and nature, physics studies of granular medium have many important engineering

and biological applications [74, 141, 142].

Similar to fluids GM deform and flow under stress. Unlike newtonian fluids however, a

granular material requires a non-zero stress to induce flow, called the yield stress. A detailed

understanding of the yielding process in granular materials is of fundamental importance

to understanding how animals, tools, and robots interact with soil [143].

Plate drag is a particular example of a more general class of GM interactions termed

localized forcing. Localized forcing of GM consists of a localized boundary that is displaced

or rotated through an extended granular media [144, 145, 71, 72, 146, 147, 148, 149, 150, 151,
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152]. Understanding the force and flow response during localized forcing is complicated by

the fact that the density, stress, and strain fields are spatially and temporally heterogeneous

[54]. However most interactions with GM are localized and thus detailed understanding of

the principles of localized forcing are needed.

Recent studies of localized forcing [54], such as horizontal drag [54], vertical penetration

[153, 154, 150], or rotation [155] of a plate within granular media or impact experiments

penetrator impact [156, 45] have highlighted the important role the initial volume fraction,

ϕ, of the material plays in force and flow dynamics. The sensitivity of resistance forces

to initial ϕ is due to the compacting or dilating flow response under shear that granular

media prepared at different initial ϕ undergo. A loosely packed GM (low ϕ) will compact

under shear and thus strengthen while a closely packed (high ϕ) media will dilate (expand

in volume) under shear weakening the media. Thus the prepared volume fraction of the

granular medium in relation to ϕc determines the material response.

For quasi-static granular materials ϕ typically varies between the random loose pack

(ϕ = 0.55 [55]) and random close pack (ϕ = 0.64) limits for ideal monodisperse sphere

packings. In practice however GM are typically found in a smaller range of volume fractions

0.57 < ϕ < 0.63. Granular materials with initial state ϕ can be prepared through a

combination of fluid flow and vibration [45, 157]. In this study we investigate the role of ϕ

and in particular ϕ− ϕc in the force and flow dynamics during yield of a granular media.

Here we investigate the drag force, FD, on a flat submerged plate translated from rest

through a granular media prepared at different ϕ. Experiments are performed in the bulk,

away from container boundaries, and additional experiments with the flat plate placed

adjacent to a transparent wall were performed to visualize the granular flow below the

surface.

3.3 Methods

Drag measurements, see Fig. 3.1(a,c), were performed in a 27×86×13 cm3 bed of polydis-

perse 256±44 µm glass beads (Potters Industries; density ρ = 2.51 g cm−3). Similar effects

to those described here were observed in other granular materials, including heterogeneous
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Figure 3.1: Drag measurements in granular media. a) Bulk experiment consists of a flat
plate translated through granular media. Two laser lines and cameras measure surface
deformation ahead of and behind plate. b) In side-wall experiments plate is placed against
a transparent wall and high speed video is recorded. c) Displacement vs time for four speeds
(2 cm/s black, 4 cm/s red, 6 cm/s blue, 8 cm/s green). d) Expected displacement (vt) and
observed displacement at four speeds (2 cm/s black, 4 cm/s red, 6 cm/s blue, 8 cm/s green)
illustrating that plate drag is up to speed in approximately 0.1 cm.
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beach sand and poppy seeds. Air flow through the porous floor initially fluidized the medium

and then a combination of air flow (below fluidization) and mechanical vibration generated

the desired initial volume fraction (0.579< ϕ <0.619; see Fig 3.1b). Air flow was turned off

prior to testing and volume fraction determined from bed height images as ϕ = M/ρAh,

where M, A and h are the bed mass, area and height respectively.

A stepper motor and linear translation stage displaced a 3.9 cm wide by 0.3 cm thick steel

plate submerged to a variable fixed depth 7.5 < d < 9.5 cm over a total distance of 50 cm at

a constant speed of v = 2, 4, 6, 8 cm s−1. In these experiments we are only concerned with

the initial 1 cm of drag, however steady state drag observation was used to characterize the

dilation response of the media at different initial ϕ. An optical encoder recorded the position

of the linear translation stage and a 3-axis ATI load cell mounted between the submerged

plate and translation stage measured the drag forces (sampled at 200 Hz). Using laser line

profilometry, we recorded the resultant surface profile and used it to quantify the change

in vertical cross sectional area, ∆A, normalizing by the submerged area of the plow, AP =

width × depth. Profiles were measured 35 cm from the start of drag where the profile was

in a steady state [54].

We measured the time evolution of the granular surface along the direction of motion

down the midplane of the plate. A laser line was used to illuminate the drag path and we

placed a camera at an oblique side angle such that height changes in the granular surface

corresponded to vertical motion of the laser line in the camera’s image. We recorded video

at 30 fps and tracked the surface height evolution in Matlab.

In separate drag experiments a flat plate at depth 5.5 < d < 6.5 cm was positioned

against a transparent wall and displaced at v = 2 cm s−1 parallel to the wall to image grain

flow. High speed video (250 fps) of the flow was recorded and analyzed in Matlab using

image registration with a correlation time step of 0.02 s. The near-wall setup exhibited

similar force fluctuations as the bulk but with approximately half the mean force. We

post process our PIV velocity fields using a spatial median filter, commonly used in image

processing, which reduced spurious velocity measures.

We remove a systematic variations in the force—the decrease in depth of the constant
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height intruder with increasing ϕ—by defining the drag force, FD, as the raw drag force

multiplied by a depth correction factor (dLP
d )2 normalized to the loose pack depth dLP .

Separate measurements at controlled intruder depth support this normalization technique.

3.4 State preparation and characterization

Air flow and vibration of a given duration were used to prepare granular media of initial

volume fraction, ϕ (Fig. 3.2a, error bars represent ±1 SD from 4 repetitions). Initially the

granular media is air fluidized to a bubbling state to reset the granular packing. Stopping

the air flow leaves the media in a loosely packed state (low ϕ). To compact the media,

mechanical vibration and air flow below the onset of fluidization is employed.

We observed that ϕ increased monotonically as a function of vibration duration (Fig. 3.2a).

The vibration mechanism, a motor with off axis mass, required a small turn on time

(t ≈ 0.5 s), and thus ϕ did not vary for shake times less than this amount.

To characterize whether the initial ϕ is above the onset of dilatancy we used a previously

described technique [54] in which we measured the cross-sectional area, A, of the trough

left behind after drag with respect to the area of the plate Ap. Observing the difference

in A after the drag we determined whether the material compacted (∆A
Ap

< 0) or dilated

(∆A
Ap

> 0).

In these experiments we identify the dilation transition at ϕc = 0.603±0.003 (Fig. 3.2b).

Furthermore we will refer to the prepared granular state as ∆ϕ = ϕ− ϕc where ∆ϕ < 0 is

a compacting GM and ∆ϕ > 0 is a dilating GM.

Over the four different drag speeds tested, v = 2, 4, 6, 8 cm s−1, observed no significant

difference in ϕc. Furthermore the compaction-dilation curves, ∆A
Ap

, did not vary as a function

of speed. This suggests that the average compaction-dilation response was independent of

velocity for the speeds tested.

During state preparations we observed that the rate of increase in ϕ differed as a function

of time. For ϕ below ϕc the change in volume fraction, δϕ, per unit packing time δt was

large while above ϕc the granular media compacted much slower. We approximate the rate

of compaction with the numerical derivative ( δϕδt ) and observed that a qualitative change
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in δϕ
∆t occurred when ϕ exceeded ϕc (Inset Fig. 3.2a). This suggests that the timescales

associated with compaction of granular media may differ above and below the dilation

transition, ϕc. Although extensive research has been performed investigating compaction

dynamics of granular media to our knowledge the role of the dilation transition has not

been discussed (See [158] for a review).

3.5 Drag force

The primary focus of this study is the yield force during drag within granular media of

different initial ∆ϕ. The drag force, FD, on a flat plate translated 1 cm was sensitive to

initial ∆ϕ in both magnitude and functional form (Fig. 3.3).

For ∆ϕ < 0, FD increased monotonically with x and thus was largest at the end of the

1 cm drag. However for ∆ϕ > 0, FD rapidly rose to a maximum near xmax = 3 mm and

subsequently decreased for the remainder of the 1 cm drag. The shape of FD differed as

∆ϕ was increased, evolving smoothly between the two extremes of initial ∆ϕ.

The variation in FD observed for increasing ∆ϕ is consistent with a ductile to brittle

transition that occurs in soils of increasing packing density. In the critical state soil me-

chanics model it is assumed that soil, under constant shear, will either dilate or compact
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depending on initial ϕ and the instantaneous density ϕ(t) will approach a critical ϕc. When

the system evolves to this critical state no further force change is observed. For comparison

we note that the drag force in media prepared near ∆ϕ = 0 (highlighted in bold in Fig. 3.3)

is flat (unchanging with displacement) after 2 mm of drag and partitions the Fd curves

between compacting GM (below) and dilating GM (above) with all curves approaching a

similar value at 1 cm.

We quantify the variation in FD that occurs as a function of ∆ϕ by computing several

metrics of the drag force (Fig. 3.4a-d). The maximum drag force, Fmax, increased linearly

with ∆ϕ in both loose and close pack regimes however the slope of this curve exhibited a

discontinuity near ∆ϕ = 0. The change in slope reflects the onset of the maxima in FD

above ϕc (see Fig. 3.3). Similar changes in granular resistance force across a critical ϕ have

been previously observed in penetration [154] and shear [153].

To determine at which ∆ϕ the onset of a force maxima occurs we compare the maximum

of FD over the 1 cm drag with FD at x = 1 cm. If this ratio, F̃max = Fmax
FD(x=1cm) , is unity

the drag force is monotonic and if the ratio exceeds unity a maximum exists. Figure 3.4b

indicates the onset of a maxima in FD occurs at ∆ϕ = 0 independent of drag speed.

The drag distance at which point force is maximum, xmax, also highlights the bifurcation

in force dynamics that occurs as initial ϕ is increased from loose to close pack (Fig. 3.4c).

For ∆ϕ < 0, xmax occurs near the end of the 1 cm drag because FD increases monotonically.

For ∆ϕ > 0 however xmax is found at xmax = 0.29 ± 0.03 cm independent of speed. This

corresponds to a drag distance of approximately 11 particle diameters.

For small initial displacements (0.1 cm) of the plate we observed that FD is roughly linear

with displacement (Inset Fig. 3.4d). Thus we can measure an effective elastic stiffness of the

granular material by fitting FD = kx to the drag data in this region. While FD exhibited

signatures of a force and flow bifurcation when evaluated over the 1 cm displacement, for

small displacements we observed that k is not sensitive to the ∆ϕ = 0 transition.

We suspect that the lack of a bifurcation in k across ϕc is because dilatancy and the

resultant effects on FD are only observed when sufficient shear strain is developed. This

may take tens to hundreds of grain diameters of drag to become appreciable and thus in the
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small displacement regime we measure k over it is likely that dilation-compaction dynamics

do not influence the resistance force. Instead we observe that k linearly increases with

∆ϕ. This is in qualitative agreement with recent experimental results using vane [155] and

penetration geometries [153] and is likely due to a linearly increasing contact number in the

packing [159].

Surprisingly we observed that FD during yield appeared to increase with velocity in the

∆ϕ > 0 regime while for ∆ϕ < 0, FD appeared to be insensitive to velocity. To quantify this

functional dependence on v we averaged Fmax, F̃max, xmax, and k over bins of [ϕ, ϕ+0.003]

and plot the results as a function of drag velocity (Fig. 3.5a-d).

The quantities associated with the drag force magnitude and shape, Fmax and F̃max,
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exhibited no velocity dependence at low ∆ϕ and positively increased with v at high ∆ϕ

(Fig. 3.5a,b). xmax and k however displayed more complex velocity dependence (Fig. 3.5c,d).

Increasing drag speed did not influence the value of xmax in the high and low ∆ϕ regimes

however it increasing speed did tend to decrease the xmax for intermediate packings near

∆ϕ = 0. k only slightly varied with v at low ∆ϕ and appeared to be insensitive to v at

higher packing fractions.

To determine the onset of velocity dependence in FD we measure the slope of linear fits

to the force-velocity curves (∆Fmax
∆v and ∆F̃max

∆v ) in Figure 3.5a,b. As a function of initial ∆ϕ

we observed that the onset of nonzero ∆Fmax
∆v and ∆F̃max

∆v occurred near ∆ϕ = 0 (Fig. 3.6a,b).

This indicates that the positive dependence of the drag force on velocity during yield only

occurs when the media is dilating.

The dependence of resistance force on intruder speed is surprising because slow speed

intrusion or drag forces are typically found to be independent of speed [71, 153, 160].

However of these previous studies one only varied ϕ, and the drag speeds were two orders

of magnitude lower [153]. It is likely that previous experiments were performed in granular

media at or below ϕc where we observe no velocity dependence of resistance forces. [161]
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Figure 3.7: Oblique side view of surface deformation during yield. a) Initial position of
plate. Arrow indicates direction of motion. b) Final position of plate after 1 cm drag. Inset
shows surface profile measurement using laser line.

3.6 Surface flow

We now turn our attention to the flow behavior of the granular media during yielding in

order to understand the mechanism responsible for the variation of FD at different ∆ϕ.

Viewed from an oblique side angle (Fig. 3.7a-b) the displaced granular material in front

of the translated plate forms a hill with a cylindrical shape when viewed from above. We

illuminate the granular surface during yield with a laser line and record video from a low

angle side view (See inset Fig. 3.7b) to track the hill height during yield.

After yield the hill height in front of the plow was dependent upon initial ∆ϕ (Fig. 3.8a).

In general for increasing ∆ϕ we observed that the hill height. We computed two measures

of the hill shape, the maximum hill height ymax and the total cross sectional area of the hill

Ahill.

The increase in hill volume with increasing ∆ϕ is a result of the transition from com-

paction to dilation. As can be seen in Figure 3.2b the amount of volume change that occurs

in the steady-state drag is linearly increasing with ∆ϕ. Thus we should expect that the hill

height—a measure of volume occupied by the mobile grains—should linearly increase with

∆ϕ.

Although we observed that hill shape was influenced by ∆ϕ we did not observed a

signature ϕc. Thus to identify features of the bifurcation in grain dynamics that occurs at

44



0 5 10 15 20
0

1

x (cm)

y
 (

cm
)

∆φ

0

0.5

1.0

1.5

0

4

8

y
m

ax
 (
cm

)

A
h

il
l  

(c
m

2
)

0 0.01-0.01-0.02
∆φ

0 0.01-0.01-0.02
∆φ

a)

b) c)

Figure 3.8: Statistics of surface deformation during drag. a) Surface profile after 1 cm drag
measured with laser line. Arrow indicates trend for increasing initial ∆. b) Maximum hill
height as a function of initial ∆ϕ. c) Cross sectional area of hill as a function of initial ∆ϕ.

45



y

x

Flow region

Plate ∆φ = 0.01 

Figure 3.9: Side view of flow visualization experiment at ∆ϕ = 0.01. Velocity field from
particle image velocimetry superimposed on top.

∆ϕ = 0 we must look to other methods to characterize the flow response.

3.7 Bulk flow

Performing plate drag experiments next to a transparent wall allowed for visualization of the

granular flow in the bulk during yielding. From particle image velocimetry we determined

the velocity field, u⃗, of the flowing granular media (Fig. 3.9). In general, independent of ∆ϕ,

we observed the flow to be concentrated in a wedge shaped region directly in front of the

plate (Fig. 3.9). The granular media was pushed by the plate in the positive x direction and

subsequently flowed in the positive y direction as if up an inclined plane. This flow pattern

is consistent with a coulomb wedge type failure mode of granular media and observations

of similar flow patterns have been previously reported [147, 148].

A dominant dissipative mechanism in quasistatic granular flow is through shear dissipa-

tion. Thus to understand the changes in FD at different initial ∆ϕ we study the shear strain

present in the flow field. To determine the maximum shear strain rate of the granular flow

we compute the components of the two dimensional deformation rate tensor: the normal

strain rate, eii =
dui
di (i = x, y), and the average shear strain rate, exy = 1

2

(
dux
dy +

duy

dx

)
. The
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Figure 3.10: Spatial average of the maximal shear strain rate as a function of displacement.

maximum shear that occurs in the flowing region is then found by solving for the maximal

shear strain rate field γ =

√(
exx−eyy

2

)2
+ e2xy and its subsequent spatial average ⟨γ⟩.

The time evolution of ⟨γ⟩ during drag was sensitive to initial ∆ϕ and was similar to FD in

shape (Fig. 3.10). For ∆ϕ < 0, ⟨γ⟩ increased monotonically (neglecting rapid fluctuations)

over the drag while for ∆ϕ > 0, ⟨γ⟩ exhibited a maximum consistent with the maximum in

FD that occurs in close packed media (Fig.3.2b). Similar to FD, ⟨γ⟩ a ϕc partitions ⟨γ⟩ to

loose (below) and close (above) packed responses.

To compare the shear strain rate statistics with those of FD we compute the normalized

maximum shear strain rate, ⟨γ̃⟩ = max[⟨γ⟩
⟨γ(1 cm)⟩ and the drag distance at which this local

maximum occurs. Comparison of ⟨γ̃⟩ and F̃max shows that they are in very good quantitative

agreement (Fig. 3.11a). Furthermore the location of the local maxima in both ⟨γ̃⟩ and F̃max

are in good quantitative agreement indicating that when drag force is maximum the shear

strain is also maximum. The signature of the bifurcation at ∆ϕ = 0 is clearly seen in both

the flow and force measurements of Figure 3.11.

To identify the mechanisms responsible for the variation of ⟨γ̃⟩ with ∆ϕ we visualize

the shear strain rate field, γ, at four displacements for three separate initial ∆ϕ (Fig. 3.12).

For all experiments, independent of ∆ϕ, we observed that shear strain was concentrated
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along in a narrow region—a shear band—which originated from the bottom of the plate

and extended upwards to the surface.

Although shear bands were observed in the velocity fields of all ∆ϕ, the spatiotemporal

dynamics and stability of these shear bands differed as a function of initial ∆ϕ (Fig. 3.13).

Only for ∆ϕ > 0 did we observe that shear bands remained localized in space (See supple-

mentary video). At ∆ϕ < 0 the shape of the shear band emanating from the bottom of the

plate fluctuated throughout the duration of the drag.

The spatiotemporal evolution of ⟨γ̃⟩ is best observed as a space-time graph in which

the shear strain rate along a horizontal strip in front of the plate (dashed line in middle

right box, Fig. 3.12a) is evolved in time. Space-time plots of ⟨γ̃⟩ in figure 3.13 illustrate the

unsteady nature of the shear band at ∆ϕ < 0 while for ∆ϕ > 0 the stability onset (white

arrows) and subsequent spatial localization are observed. For quantitative comparison of

the magnitude of ⟨γ̃⟩ in the flowing region we plot shear strain rate profiles in front of the

plate (Fig. 3.12b) evaluated after 0.8 cm of drag (white dashed line in Fig. 3.12a). Similar

evolution of the shear strain rate during shear band formation of a dilating GM has been

observed in MD simulation of a tri-axial test [59].

To characterize the shear band dynamics we measured the local angle of the shear band
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bar on left side of x = 0.12 cm fields shows plate location which is advancing to the right.
Stable shear band highlighted for ∆ϕ = 0.240 at x = 0.72 cm. Shear band is oriented at
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near the plate bottom, θ, and the plate displacement required before the onset of shear

band stability (White arrows in Fig. 3.13). The shear band angle θ (measured with respect

to the horizontal) averaged over the last 0.36 cm of drag decreased roughly linearly with

increasing ∆ϕ (Fig. 3.14a). Furthermore as can be seen by the errorbars on θ, and the inset,

the temporal fluctuations in θ reduced by more than two-fold across ϕc. This is another

indication of shear band stability across the dilation transition.

We did not observe the formation of stable shear bands in the loose packed granular

media (Open symbols, Fig. 3.14b). While in the close packed granular media we observed

that the drag distance before the onset of shear band stability decreased with increasing

∆ϕ. This is likely due to the dilation process that weakens the sheared region and allows

for the formation of the stable shear band. Likely a certain threshold of dilation must be

developed before the formation of the shear band and thus as initial ϕ is prepared further

above ϕc more dilation will occur resulting in a more rapid formation of the shear band.

The observations of the correlated maxima in force and flow during yield for ∆ϕ > 0

indicate that onset of granular flow in densely packed media induces a large region of shear

in the bulk which because of the dilatant nature of the close packed material results in rapid
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failure along a shear band. In loosely packed granular flows however FD slowly increases

as the material strengthens under the induced shear. This transition from hardening to

weakening is well understood in the context of critical state soil mechanics [53] however to

our knowledge no systematic variation of strength has been previously performed.

3.8 Laser speckle measurements of fast fluctuations

We lastly look to the solid-fluid nature of the granular media near the flowing region as a

function of initial ϕ. With a CCD camera pointed towards the granular surface, we image

the reflected pattern of light from a laser (spot size ≈3 mm) illuminating the surface 12 cm

ahead of the plate’s initial position. The image, called a speckle pattern [162], is the result

of photon scattering in the granular media and thus small changes in grain position near

the laser spot are recorded as changes in the speckle field pattern.

To characterize the solid-fluid nature of the granular media we examine the drag force

and speckle pattern during 1 cm plate drag. We find that the force and speckle pattern

dynamics are consistent with what he have previously observed. At loose pack FD monoton-

ically increases and the speckle field shows an unjamming event near 0.3 cm drag followed

by constant speckle fluctuation (Left side, Fig. 3.15a,b). For higher initial ϕ however FD

exhibits a maxima and the speckle pattern identifies both a jamming and unjamming event

associated with the force rise and drop in FD.

The constant fluctuations in the speckle pattern that occur at loose pack indicate the

granular material is constantly in a state of rearrangement. The speckle field identifies that

small scale motion of the grains occurs in loose packed media even at distances far ahead

of the plate where no noticeable surface motion can be viewed by eye. In closely packed

material however, the jamming event that we observe associated with the force drop in

FD is a result of the formation of a stable shear band. When the shear bands shown in

Fig. 3.12 form, the laser spot is far enough ahead of the plate such that it is outside this

flowing region. Thus the laser speckle measurement indicates that once the shear band is

formed all flow outside of the wedge region ceases and the flow is totally isolated to within

the plate-shear band region.

52



10 0.5
0

5

10

15

10 0.5 10 0.5 10 0.5
x (cm)

F
D

 (
N

)

x (cm) x (cm) x (cm)

P
ix

el

0

640
∆φ < 0 ∆φ > 0

d)

c)

x

y

Laser

Camera

0

480

640

P
ix

el

Pixelb)a)

Figure 3.15: Laser speckle measurement of granular surface flow. a) A laser illuminates
the granular surface 12 cm ahead of the plate’s initial position. b) Sample image from
the camera. We study the temporal evolution of the pattern along the horizontal line.
c) Time evolution of the speckle pattern at four different initial ∆ϕ (increasing from left
to right). Dashed lines show jamming and unjamming of granular media during drag.
d) FD versus displacement during speckle measurement. Dashed lines show FD during
jamming/unjamming.
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3.9 Conclusion

In conclusion we have investigated the force and flow response of a granular material as

a function of initial volume fraction ϕ. As in a previous experiment [54] we identified the

volume fraction corresponding to the onset of dilation under shear, ϕc, and show that the

dynamics of force and flow qualitatively and quantitatively differ across this transition. Our

experiment highlight a number of nontrivial phenomena associated with granular drag.

We emphasize that the word “critical” in critical state soil mechanics was not originally

meant to reflect any sense of criticality in the language of phase transitions. However

several papers have suggested that the critical state of soil mechanics may be in fact be a

self-organized critical state [163, 6]. Recent granular simulations of sheared granular media

have shown that after the system is allowed to reach a non-equilibrium steady state it

exhibits shear avalanches which have power-law distributions [164]. Thus it may be that ϕ

is an important parameter in investigating SOC behavior in granular materials.

Lastly we wish to discuss the transition at ϕc. It is currently not known what parameters

ϕc depends upon in experiment. However a recent discrete element method simulation

has shown that the value of ϕc is sensitive to the inter-grain friction (µ) with ϕc → 0.64

as µ → 0 [59]. The approach of ϕc to the random close pack limit suggests a possible

connection between jamming (which occurs at ϕrcp for frictionless grains). Furthermore

recent experiments have highlighted the role of shear in the jamming process and suggest

that the dilation transition and jamming may be related [165].
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CHAPTER IV

STEADY-STATE DRAG

4.1 Summary

We use plate drag to study the response of granular media to localized forcing as a function

of volume fraction, ϕ. A bifurcation in the force and flow occurs at the onset of dilatancy,

ϕc. Below ϕc rapid fluctuations in the drag force, FD, are observed. Above ϕc fluctuations

in FD are periodic and increase with ϕ. Velocity field measurements indicate that the

bifurcation in FD results from the formation of stable shear bands above ϕc which are created

and destroyed periodically during drag. A friction-based model captures the dynamics for

ϕ > ϕc.
∗

4.2 Introduction

Granular materials fascinate because they can act like both fluids and solids [2]. Recent

work has focused on the static problem of mechanical rigidity (jamming) in which the

packing density ϕ (the ratio of solid to occupied volume [3]) is increased until grains crowd

sufficiently to develop a finite yield stress [166]. Less work has explored the related process

of “unjamming” [144, 167, 145, 168] where initially jammed granular ensembles flow in

response to forcing and where the initial packing density plays an important role: varying

ϕ changes the local packing structure of grains which in turn affects the flow and force

dynamics of the material response.

We are interested in granular media subject to localized forcing (for instance from limbs

[141, 142, 74]). In general, granular systems sheared at the boundaries evolve to a steady-

state ϕc [53]: depending on initial ϕ, the medium compacts (ϕ < ϕc) or dilates (ϕ > ϕc)

as ϕ → ϕc. In contrast, localized forcing, realized by an intruder translating through an

initially homogeneous medium [144, 167, 145, 71] and viewed in the reference frame of the

∗The following chapter was published in Physical Review Letters in 2010 under the title “Force and flow
transition in plowed granular media”
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Figure 4.1: Experimental overview: (a) drag force, surface deformation and (b) velocity
fields are measured as a function of prepared volume fraction, ϕ. (c) Mean drag force
increases linearly with ϕ while (d) temporal fluctuations in FD become periodic as ϕ is
increased (arbitrary vertical shift).

intruder, drives material only in the vicinity of the intruder toward ϕc while simultaneously

advecting undisturbed media into the flowing region. The result is the repeated unjamming

of “fresh” material and the possibility of complex spatio-temporal dynamics in and around

the zone of disturbed material surrounding the intruder.

Here we drag a flat plate through initially homogeneous granular media at prepared ϕ

to continuously drive the system away from ϕc and measure the resulting force and flow

fields. As ϕ increases, the onset of shear dilatancy at ϕc drives a bifurcation in force

dynamics and media flow. This bifurcation is governed by a complex spatiotemporal flow

response associated with the stability (instability) of shear bands nucleated by the plow

above (below) ϕc and their evolution in response to plow motion. A model of shear band

dynamics captures the oscillatory behavior above ϕc and suggests complex dynamics below

ϕc.
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4.3 Methods

Drag measurements, see Fig. 4.1(a,b), were performed in a 27×86×13 cm3 bed of poly-

disperse 256±44µm glass beads (Potters Industries; density ρ = 2.51 g cm−3). Similar

effects to those described here were observed in other granular materials (See section 4.9),

including heterogeneous beach sand and poppy seeds. Air flow through the porous floor

initially fluidized the medium and then a combination of air flow (below fluidization) and

mechanical vibration generated the desired initial volume fraction (0.579< ϕ <0.619). Air

flow was turned off prior to testing and volume fraction determined from bed height images

as ϕ = M/ρAh, where M, A and h are the bed mass, area and height respectively. A

stepper motor and linear translation stage displaced a 3.9 cm wide by 0.3 cm thick steel

plate submerged to a variable fixed depth 7.5 < d < 9.5 cm over a distance of 50 cm at a

constant speed of v = 4 cm s−1. An optical encoder recorded the position and a 3-axis ATI

load cell mounted between plate and translation stage measured the drag forces (sampled

at 200 Hz). Using laser line profilometry, we recorded the resultant surface profile and used

it to quantify the change in vertical cross sectional area, ∆A, normalizing by the submerged

area of the plow, AP = width × depth. Profiles were measured 35 cm from the start of drag

where the profile was in a steady state. In separate drag experiments a flat plate at depth

5.5 < d < 6.5 cm was positioned against a transparent wall and displaced at v = 2 cm s−1

parallel to the wall to image grain flow. High speed video (250 fps) of the flow was recorded

and analyzed in Matlab using image registration with a correlation time step of 0.02 s [169].

The near-wall setup exhibited similar force fluctuations as the bulk but with approximately

half the mean force. We remove two systematic variations in the force — a slow increase in

the baseline force during drag (≈ 5% of the mean) and the decrease in depth of the constant

height intruder with increasing ϕ— by defining the drag force, FD, as the raw drag with

slow drift removed (3rd order polynomial fit subtracted while preserving the mean) multi-

plied by a depth correction factor (dLP
d )2 normalized to the loose pack depth dLP . Separate

measurements at controlled intruder depth support this normalization technique.
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4.4 Force bifurcation

The mean drag force increases approximately linearly with ϕ as expected due to increased

bed density and average coordination number, see Fig. 4.1(c). A bifurcation, however,

occurs in the force fluctuations: FD at lower ϕ exhibits small amplitude, fast, and ϕ inde-

pendent fluctuations, while at higher ϕ, slower, periodic, and larger amplitude oscillations

in FD occur which grow in duration and magnitude as ϕ is increased, [Fig. 4.1(d)].

We characterize the bifurcation by measuring the standard deviation of force, σFD
, and

the average plow displacement between positive slope zero crossings of the force, ∆L, as

a function of initial ϕ. As ϕ increases we observe a sharp bifurcation in σFD
and ∆L

[Fig. 4.2(a)] at the compaction/dilation transition (i.e. ∆A/AP = 0 at ϕc = 0.603± 0.003),

see Fig. 4.2(b). As the bifurcation is approached from below, σFD
is small and constant;

above ϕc and with increasing ϕ, σF grows linearly while ∆L increases nearly linearly For

ϕ > ϕc, ∆L is independent of plow speed (2 < v < 8 cm/s), see Fig. 4.2(a) inset, revealing

it as a characteristic spatial scale and implying that the temporal dynamics of FD result

from granular flow mechanisms that change with ϕ across the dilation transition.

4.5 Flow bifurcation

Direct evidence of a bifurcation in the flow is revealed by observations of the displacement of

material at the surface near the plow [Fig. 4.3(a)]. Below ϕc surface deformation is smooth,

and the boundary between upwardly moving grains and the undisturbed surface advances

uniformly at a fixed distance ahead of the plow. At and above ϕc, however, the surface flow

takes the form of periodic radial upwellings of grains which give the region around the plow

a stepped appearance. The generation of surface ripples is correlated with fluctuations in

FD and indicates that the bifurcation in σFD
and ∆L results from a change in grain flow

dynamics.

To gain insight into the nature of the bifurcation we compare the grain velocity field

at low and high ϕ in a vertical plane perpendicular to the displacement of the plow, see

Fig. 4.3(b) and 4.9. In both cases, flow is largely confined to a wedge-shaped region with

angle θ in which grains move forward and upward in advance of the plow. At both ϕ’s a
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shear band separates the flowing wedge of grains and the effectively solidified grains outside

the wedge; the lower end of the shear band terminates at the bottom of the plate while the

upper end reaches the surface.

4.6 Temporal flow dynamics

Despite these common features, differences in spatiotemporal evolution exist between flows

at low and high ϕ. At low ϕ, flow is intermittent [Fig. 4.4(a)]: the horizontal extent of

the flowing region, η, (measured at approximately half the intruder depth, 3.2 cm) rapidly

advances and retreats as the plow moves into new material. At high ϕ, the spatiotemporal

evolution of the flowing region is periodic with η remaining fixed for long periods of time

until rapid, repeated fluctuations precede a jump forward to a new location. We quantify

the pinning of this flow boundary as the fraction of time η remains stationary (dηdt = 0)

during the entire drag. As ϕ increases η becomes increasingly stationary indicating that

the spatial shear regions are more stable. Above ϕ ≈ ϕc, the shear band remains stationary

for more than 50% of the drag duration.

Shear zone localization can be understood by the process of granular shear weaken-

ing/strengthening. Below ϕc material compacts and strengthens under shear, continually
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frustrating the development of fixed shear zones and forcing shear to occur along a con-

stantly changing set of failure surfaces. Above ϕc however, material dilates and weakens

under shear, causing flow to localize along a fixed plane. In a plowed system, shear localiza-

tion for initial ϕ > ϕc holds only shortly after shear band formation: as the plow advances

into undisturbed material the localized band is forced to adjust. Using the average angle

of the flow boundary, θ, to characterize the orientation of the shear zone [see Fig. 4.3(b)],

we find that below ϕc force and flow are largely uncorrelated while above ϕc, θ and FD are

strongly correlated with FD and θ increasing in concert, see examples in Fig. 4.5(a).

4.7 Wedge flow model

We develop a simple model based on the correlation of FD and θ to gain insight into the

dependence of FD on the flow state and ϕ. As the bottom of the shear zone is pinned to

the lowest point of the plow, the flowing region is taken to be a triangular wedge of mass

m = ρWd2

2 tan θ sliding up a plane inclined at angle θ. Kinetic friction between the wedge and

plane, µ(ϕ), is assumed to increase with ϕ. Balancing the forces from the plow (assumed

horizontal), gravity, and sliding friction, the model predicts the plowing force F (θ, µ) =

ρWd2

2
1+µ/ tan θ
1−µ tan θ , whereW is the plow width [Fig. 4.5(c)]. The plowing force diverges at θ = 0

(infinite block) and θ = tan−1
(
µ−1

)
and is minimum at θmin = tan−1

(√
µ2 + 1)− µ

)
.

θmin decreases and F (θmin) increases with increasing µ(ϕ).

The model predicts that an initially jammed and homogeneous material with volume

fraction ϕ0 shears at an angle θmin when the force reaches Fmin(µ), see Fig. 4.5(b,c). For

ϕ0 > ϕc, shearing along the slip plane dilates and weakens the material locally, causing µ(ϕ0)

to decrease to µ(ϕc) which reduces FD and slightly increases θ, see path A in Fig. 4.5(c). As

the plow advances the angle of the weakened shear zone gradually increases along F [θ, µ(ϕc)],

indicated by path B. The shear band remains fixed at the surface (causing θ to increase)

instead of advancing with a constant angle because, evidently, less high ϕ material needs to

be broken in the former case. With increasing θ, the force to push the wedge θmax eventually

equals the force required to break the stronger material at ϕ0 > ϕc, i.e. F [θmax, µ(ϕc)] =

F [θmin, µ(ϕ0)]. At this point a new shear zone forms in front of the plow, decreasing θ to
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θmin(ϕ0) and the cycle repeats (path C).

The dynamics of the experimental data for ϕ > ϕc are captured by the model as seen in

(θ, F (θ)) space [Fig. 4.5(e)] and 4.9. Here the system evolves between two curves [µ = 0.65

(blue) and µ = 0.78 (red)] and the transitions between these states qualitatively match

the predictions of our model. The model predicts the increase in force fluctuations with

increasing ϕ above ϕc. However for ϕ < ϕc the evolution of FD with θ is more complicated

because of the lack of stability of the sheared regions through shear strengthening. As we

assume a feedback process exists between the flow dynamics and FD, strengthening of the

material during shear results in the relocation of the shear band to a weaker region in the

surrounding bulk. With the continuous advection of undisturbed weaker material and the

heterogeneity in ϕ in the previously sheared region, predicting the shear process below ϕc

is more challenging.

4.8 Conclusion

In summary we observe a flow and force bifurcation in localized granular drag which occurs

at the onset of dilatancy. Localized forcing in granular media induces a heterogeneous ϕ

distribution in the region of flow and represents a new way to test theories of granular flow

[170, 61]. Previous studies of drag in granular media [71] were performed at slow speed to

observe stick-slip fluctuations over distances on the order of a grain diameter; the effects of

varying initial ϕ were not investigated. Our observations of a bifurcation in ϕ support the

findings of Schröter et al. [154] who reported a transition in dynamics at ϕ = 0.598, and

our measured ϕc is similar to that reported (ϕc = 0.591) in recent impact experiments [45].

It is known that ϕc is a function of the applied stresses and cohesive/frictional interactions

between the grains [59, 53] so we do not place importance on the specific value here.

4.9 Appendix

Here we show follow up experiments and supplementary information.
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Figure 4.6: Shear band ripples on the surface induced from drag of an immersed plate.

4.9.1 Shear band ripples at the surface

In figure 4.6 we show the surface features formed from the periodic initiation of shear bands

during grad at high ϕ0. The intruder is a flat horizontal plate submerged to a depth of

depth 7 cm, with width 5 cm and height 1 cm. The submerged intruder minimally disturbs

the surface granular material and allows for better observation of the shear band structures

at the surface.

4.9.2 Force and flow bifurcation in vertical penetration

In previous experiments by Chen Li from this lab he observed similar force fluctuations in

a vertical penetration experiment (Fig. 4.7). As ϕ was increased above ϕc = 0.605 force

fluctuations grow in amplitude with increasing ϕ. This experiment was recently performed

by Tapia et al. [171] in which they penetrate a rigid penetrometer vertically into a hele-

shaw cell filled with brass beads (diameter≈50 µm) at prepared ϕ. The researchers find

that force fluctuations grow above a critical ϕ and that the dynamics of these fluctuations

are described by a wedge-flow model similar to the one we presented in section 4.7.
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a)

b) c) d)

Figure 4.7: Force fluctuations in vertical penetration experiment. a) Data from Chen Li in
the Goldman lab at Georgia Tech. Force fluctuations appear at ϕ > 0.605 and increase in
amplitude with increasing ϕ. b-c) Results from [171] showing force fluctuations in vertical
penetration (b). c) Magnitude of force fluctuations versus ϕ showing bifurcation. d) Model
for force fluctuations similar to that of figure 4.5(e).
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4.9.3 Surface profile measurement

We measured the surface profile of the granular material using a laser profilometry system.

Two laser lines were placed such that the laser plane was vertical and perpendicular to the

direction of motion of the plate (Fig. 4.8). A camera was placed behind the initial location

of the drag plate and facing along the direction of drag and oriented at a low angle (≈ 20◦

below the horizontal) towards the surface. We took images of the surface profile after each

drag experiment and digitized the location of the laser lines. Using two additional cameras

we captured images of the granular surface height (which varied by ≈1.5 cm over the range

of ϕ) to empirically determine the transfer function ypixel → ysurface(cm).

4.9.4 Experiments in heterogeneous granular material

To demonstrate that this bifurcation occurs in heterogeneous granular material we per-

formed drag experiments using natural beach sand collected from Jekyll Island, GA, USA†.

We found that similar to spherical glass beads with a relatively tight size distribution, we

observed a force and flow bifurcation in the Jekyll Island sand (Fig. 4.9). The fluctuations

at high ϕ were similar to the glass beads in both the temporal force curve and surface

flow characteristics. This indicates that the phenomena we have discovered is relatively

†This material was collected and kindly provided for use in experiments by Nicole Mazouchova
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insensitive to the uniformity of the granular material.

4.9.5 Depth dependence on bifurcation

In additional experiments we measured the depth dependence of the plate drag bifurcation.

We observed the force fluctuations versus prepared ϕ at four plate depths, in addition to the

plate depth reported above. We find that all plate depths show signatures of the increase

in fluctuations at ϕc. As depth decreased to 3.18 cm we observed that the signature of the

bifurcation decreased. However this is likely because drag at these depths was at the lower

limit of the resolution of our force sensor.

4.9.6 Bifurcation insensitivity to air flow

Lastly we report results for experiments in which we applied an upwards flow of air through

the granular material during the drag experiment. We prepared granular material into a

high ϕ initial state using the method described in the previous two sections. Then, prior to

initiation of the drag experiment we applied fixed, but variable voltage to the air blower to

control air pressure and resultant air flow through the granular material. The influence of

an upwards flow of air on drag force was to decrease ⟨FD⟩ because a portion of the granular

materials weight is now supported by air pressure. The decrease in effective granular weight

due to air flow lowers both the gravitational component and the frictional component of

force required to push a wedge up a slope.

In figure 4.11 we show results from air flow experiments at high ϕ. We find that an

increase in air flow is accompanied by a decrease in mean drag force (Fig. 4.11b). Despite

the three-fold decrease in mean drag force due to air flow, we find that the ∆L only decreases

by only ≈20%. This is consistent with our model that ∆L is independent of the density of

granular material, and instead only µ(ϕ) controls the angles of shear plane formation and

thus ∆L. Additionally we find that the peak-peak force fluctuations scale roughly linearly

with ⟨FD⟩ consistent with the model predictions.
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CHAPTER V

AVALANCHES

5.1 Summary

In this chapter we study the failure of granular material as a function of prepared volume

fraction, ϕ0, under progressive tilting of the granular slope. Gravitational induced failure

of a granular slope subjects all grains to an identical perturbation force, in contrast to

experiments in which forcing occurs at the boundaries. We slowly rotate a bed of granular

material from the horizontal and monitor the grain motion using high speed video. We

vary the initial volume fraction to determine how ϕ0 influences the failure modes of the

granular material. Consistent with our findings in chapters 3& 4, we observe that slope

stability depends sensitively on ϕ0. Granular material in an initial loosely packed state,

ϕ < ϕc undergo intermittent strengthening—in which ϕ increases—prior to slope failure.

The onset of strengthening occurs at an angle θ0 = 7.7 ± 1.4◦ for the loosest packing

achieved (ϕ0 = 0.588± 0.013). The maximum stability angle prior to uniform slope failure

for loose packing occurred at θm = 28.5 ± 1.0◦. As ϕ increased, so did both θ0 and θm.

Furthermore as ϕ increased θ0 approached θm suggesting that at high ϕ that uniform slope

failure immediately follows the first observation of grain motion. In the case of the highest

volume fractions (ϕ = 0.627±0.013), θ0 = 32.1±1.5◦ and θm = 35.9±0.7◦. We use particle

image velocimetry to characterize the granular flow [v(x, y)x, v(x, y)y], in the reference frame

of the tilted slope. We find that the failure mode at θ0 differs dependent upon whether

ϕ0 is above or below the critical state volume fraction ϕc. In the case of ϕ < ϕc the

granular material compacts under intermittent failure events as characterized by the v(x, y)y

component of the velocity field. In the case of ϕ > ϕc we find that the the material dilates

at initial failure.
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5.2 Introduction

The failure and resultant flow of a granular slope illustrates the transition between the

solid-like or fluid-like state that granular materials may undergo. The spontaneous failure

of a granular slope is an important process to understand for engineers that seek to avoid

potentially harmful and destructive avalanches or landslides. Granular slope failure is also

of interest for materials scientists because gravity induced failure is a means of global forcing

in which all grains experience the same perturbing force. This is an alternative perturbation

mode to that of the more commonly studied condition in which stress is applied through a

movable boundary condition.

Granular materials are collections of discrete particles which interact through typically

repulsive contact forces [1, 2, 3]. The packing efficiency of a granular material, measured

by the initial volume fraction, ϕ0, may vary from loosely packed to closely packed initial

configurations. ϕ0 is defined as the ratio of particle volume to occupied volume and for

relatively monodisperse particles is typically 0.57 < ϕ0 < 0.64. The influence of ϕ0 on

the forces and failure modes of granular material subject to moving boundary conditions

have been extensively studied (plane shear [53, 172, 58], tri-axial test [43, 59], localized

forcing [54, 154]). Loosely packed granular materials (low ϕ0) compact when a shear strain

is applied while closely packed granular material (high ϕ0) dilate under shear [53]. The

intermediate volume fraction at which dilation onset occurs, called the critical state ϕc, is

important in determining the mode of failure under boundary imposed forcing [53].

The influence of ϕ0 in the evolution and failure of a dry granular slope under progressive

loading has not been systematically studied. However, granular avalanches in the lab have

been widely studied, largely because of their connection to the self-organized criticality

(SOC) phenomena [173, 6]. One popular method to study granular slope failure utilizes

a rotating drum to observe the periodic surface avalanches the material undergoes [170,

174] during continuous rotation. Another technique to measure the statistics of avalanche

occurrence and size (important of SOC) is to slowly rain granular material atop a granular

pile and observe the resultant avalanches that occur [173]. In these experimental setups

however observation of ϕ0 dependence is only available for the first avalanche, after which
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the granular material and ϕ will evolve.

The progressive loading method, consisting of ϕ0 preparation followed by a slow rotation

of the granular layer, is a means of observing the evolution and failure of granular material

systematically prepared in initial states. The majority of progressive tilt experiments have

not controlled ϕ0. Progressive loading experiments, all typically performed at a single

prepared ϕ0 ≈ 0.60 (the as poured state), have found that small rearrangements of the

granular layer (precursors) precede the eventual surface avalanche onset [175, 176, 177, 178].

A recent study of the precursor events in progressive loading of dry granular material

has reported that the intensity of these precursor events differed between two granular

preparations, a densely and loosely packed initial state [178], suggesting an importance of

ϕ on slope dynamics.

ϕ0 has been systematically varied in previous progressive tilt avalanche experiments with

a granular material immersed in a viscous fluid (a granular suspension) [179, 178, 180].

Results from these experiments are suggestive of what we may expect in dry granular

materials, increasing ϕ increases the angle of maximum stability. However in the presence

of a dense interstitial fluid, the feedback between fluid pore pressure and the granular flow is

important and alters the failure from that of the case in dry granular materials. Furthermore

the volume fractions realized in suspension experiments are typically much lower than those

of dry granular material, and the angle of repose for suspensions much larger.

Here we vary the prepared volume fraction of a granular media in experiment and study

the pre- and post-avalanche dynamics. We find that both pre- and post-avalanche behavior

is sensitive to ϕ and exhibit a change in stability as ϕ is increased above the critical state

volume fraction, ϕc.

5.3 Methods

5.3.1 Rotating fluidized bed

We studied the evolution and failure of granular slopes composed of 256±44µm diameter

glass beads. The glass beads had a solid density of ρ = 2.51 g cm−3. The granular material

was contained in an 43 cm long×w =28 cm wide (l × w) bed and was filled to a height
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Figure 5.1: Experiment setup. a) Air flow through a porous floor in fluidized bed and me-
chanical vibration prepare granular media to desired initial ϕ. Bed rotates about midpoint
and is imaged from top and side views. b) ϕ vs vibration time.

which varied dependent upon ϕ0 between h =8.24 - 9.24 cm (≈430 grain diameters). Air

flow through a porous floor in the bed fluidized the granular material and a combination

of flow and mechanical vibration controlled the volume fraction as a function of vibration

duration. The volume fraction is defined as ϕ = ρ
Mlwh where M is total grain mass.

Through variation of the duration of mechanical vibration the initial ϕ0 was varied between

0.58 < ϕ0 < 0.63 (Fig. 5.1b).

The granular bed rotated about a point 7 cm from one end. Rotation was controlled

by a linear actuator (Firgelli motors) mounted below the bed to a rigid base and the

bed at a point opposite the end of the rotation point. The instantaneous position of the

linear actuator was monitored through a potentiometer in the actuator. Progressive tilting

experiments consisted of the bed being rotated at speed ω = 2.1◦/s from initial angle θ = 0◦

to a final angle of θ = 45◦. We did not observe any change in the avalanche failure upon

increasing or decreasing the rotation speed by a factor of two.

Two sets of experiments were performed. In the first set of experiments two cameras

recorded the granular motion during bed rotation. One camera mounted above the granular

surface recorded surface grain motion at a rate of 30 Hz and resolution of 640×480. A second

camera was mounted on the side of the bed and imaged the granular material adjacent to
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the transparent wall at a rate of 200 Hz and resolution of 640×480. Both cameras were

fixed rigidly to the bed and thus rotated with it recording video in the rotated frame of

reference. 1528 progressive tilt experiments were performed with this video capture system.

In a smaller number of additional experiments (75 progressive tilt experiments) we recorded

high-speed video from the side view with a high speed camera at a rate of 1000 Hz, imaging

a thin vertical strip of the granular layer in the middle of the bed at resolution of 100×600.

We back-lit the granular bed such that the granular surface was easily detected as an edge

of high-contrast in the image. In side view we computed the velocity profiles of the granular

flow using the technique of particle image velocimetry (PIV) [169].

5.3.2 Analysis

To monitor the evolution of the granular slope we tracked the surface profile of the granular

layer in the side view as a function of rotation angle. We fit a line to the high-contrast

edge of the granular surface to determine the instantaneous slope angle with respect to bed

angle, θ. From the linear fit we also determined the height of the bed, h(t), located at the

center of the observation range.

θ0 is defined as the angle of the bed at which we observe the first change in ϕ, as

measured by a change in h. The maximum angle of stability, θm, is defined as the bed angle

at which we observe continuous flow of duration which results in a decrease in slope angle.

Lastly we measure the angle at which the avalanche comes to rest at, the angle of repose θr.

We define an avalanche as the sustained flow of granular material for over 1s in duration.

5.4 Effect of ϕ on slope stability

Granular slope response during tilting differed as a function of ϕ0. In figure 5.2a we measure

the average ϕ as a function of tilt angle, θ. At low ϕ, we observed that the slope underwent

several compaction events—precursors—prior to the onset of avalanching flow. These com-

paction events are observed as the sudden increases in ϕ shown in figure 5.2a. During these

compaction precursor events the granular material underwent a rapid deformation resulting

in the bed height decreasing (increasing ϕ0). At large prepared ϕ0 we find that the granular

slope undergoes a dilation (a decrease in ϕ) immediately prior to avalanching flow.
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Figure 5.2: Avalanching dynamics. a) ϕ versus tilt angle, θ, for thirteen experiments at
different ϕ0. As the layer is inclined, compaction or dilation precursor events precede an
avalanche. The pre-avalanche and failure dynamics are sensitive to initial ϕ. b) Change in
volume fraction ∆ϕ is dependent on initial ϕ and changed sign at ϕc = 0.595± 0.001. Each
point in b-c represent a single experiment. c) Initial angle of avalanche precursor, θ0, and
maximum angle of stability, θm, are sensitive to ϕ0. Angle of repose is insensitive to ϕ0
(Inset).
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We measured the total change in volume fraction prior to the onset of an avalanche,

∆ϕ = ϕf −ϕ0, as a function of prepared ϕ0. We find that at ϕc = 0.595±0.001 a transition

from compaction to dilation behavior occurs where ∆ϕ = 0 (Fig. 5.2b). The initial volume

fraction at which ∆ϕ = 0 is the critical state volume fraction, ϕc, and is the steady-state ϕ

that granular material approaches when sheared [53].

Increasing ϕ0 from the minimum value observed, ∆ϕ decreased from a large positive

value to a large negative value as ϕ crossed ϕc. For ϕ0 > ϕc, increasing ϕ0 resulted in

∆ϕ decreasing to a smaller yet still negative value. This indicated that the magnitude of

dilation preceding an avalanche decreased with increasing ϕ. Such a decrease in ∆ϕ likely

occurs because higher ϕ granular material experience larger internal stresses which inhibit

volumetric expansion.

The bed angle at which point the first precursor occurred is defined as θ0, and the

maximum angle of stability at which angle the avalanche begins at is defined as θm. Both

θ0 and θm were monotonically increasing functions of ϕ0−ϕc (Fig. 5.2c). Precursors occurred

at low angles for low ϕ, with θ0 = 7.7 ± 1.4◦ in the case of ϕ0 − ϕc = −0.006 ± 0.001. As

ϕ0 − ϕc increased so did θ0, and for close packing, ϕ0 − ϕc = −0.032 ± 0.001 we observed

θ0 = 32.1 ± 1.5◦. However, overall ϕ0 did have a significant effect on the stability of the

granular slope.

The bed angle at which avalanches began, θm, was also a function of ϕ− ϕc (Fig. 5.2c).

Increasing ϕ0−ϕc increased θm from θm = 28.5± 1.0◦ to θm = 35.9± 0.7◦ over the range of

volume fractions observed. Although θm was sensitive to ϕ0, the difference in magnitude of

θm over the observed ϕ0 was not as large as the variation observed in θ0. We expect that

the decreased sensitivity of θm on ϕ0, is due to the series of precursor events that occur for

ϕ < ϕc, which strengthened the material and increased prior to the avalanche.

The final slope angle at which the granular material came to rest at is defined as the

angle of repose θr. θr was independent of initial ϕ0 over the range of ϕ0 observed. The lack

of dependence of θ0 on ϕ0 may occur because once the granular material is set in motion

it will rapidly evolve to a critical state of flow, independent of it’s previous state [53].

The angle of repose we observe for dry, spherical, glass beads is consistent with previous
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observations of θr = 22± 2◦ [181]. The independence of θ0 on prepared volume fraction is

further evidence that θ0 is an emergent quantity of individual grains, dependent only on

the grain mechanical properties (coefficient of friction, restitution, shape, etc.) [182] and

not their initial preparation.

5.5 Flow characteristics at θ0

To characterize the granular flow during the precursor events at θ0 we computed the flow

profile using PIV. Since precursor events consisted of a flow initiation and flow arrest,

we measured the displacement field of the granular flow [dx(y), dy(y)] along a vertically

oriented line centered in the imaging region and in the reference frame of the tilted bed.

The displacement field of the granular flow during the first precursor significantly differed

as a function of ϕ − ϕc. Loose pack flow [ϕ0 − ϕc < 0, see Fig. 5.3a (i)] resulted in

material displacement parallel to, and down the length of the bed (positive dx(y)) and

a vertical displacement towards the floor of the enclosure (negative dy(y)). Negative dy(y)

indicates compaction of the granular material as expected for ϕ0 − ϕc < 0. In the range

of critical compaction, ϕ0 − ϕc ≈ 0 [Fig. 5.3a (ii)], dx(y) decreased compared to the loose

pack, and dy(y) approached zero indicating no compaction or dilation–the definition of the

granular critical state. Lastly in the dilating regime, ϕ0 − ϕc > 0 [Fig. 5.3a (iii)], d(y)x

decreased as ϕ increased and dy(y) was negative and decreasing with increasing ϕ0. These

observations indicate that we observed a dilation transition signature in the flow profiles of

granular materials. In general the vertical grain motion during a precursor is downwards

(compacting) for ϕ− ϕc < 0 and upwards (dilating) for ϕ− ϕc > 0.

From the displacement profiles of the precursor flow we may now interrogate the quanti-

tative differences in granular response in the dilating or compacting regimes. We measured

the depth-averaged mean displacement of the horizontal and vertical granular flow, ⟨di⟩

(i = x, y), averaged over depths 0-4.7 cm. We find that with increasing ϕ0, ⟨dx⟩ decreased

and ⟨dy⟩ decreased from positive to negative and crosses zero at ϕc (Fig. 5.3b) as expected

from the definition of the critical state. The difference in magnitude of ⟨dy⟩ and ⟨dx⟩ across

ϕc shows that material at low ϕ0 is relatively fragile and subject to large displacements
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Figure 5.3: Profiles of granular displacement during initial failure. a) Displacement pro-
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cartoons of close pack and loose pack shear drawn in figure and described in text.

when failing compared to the small displacements grains at high ϕ0 undergo during precur-

sor failure (Fig. 5.3b-c).

The amount of dilation that occurs per unit shear in a granular material is measured

by the dilatancy angle, ψ (Fig. 5.4). In the case of our geometry, we assume translational

invariance along the horizontal direction (x in the frame of the rotating bed), similar to a

simple-shear flow. The dilatancy angle is the angle the displacement vector of the surface

deformation makes with the horizontal (Fig. 5.4a). In the case of simple-shear we may

estimate the dilatancy angle as

tan(ψ) =
dy
dx

(5.1)

averaged over the whole depth of the flow (Fig. 5.4). We plot the tan(ψ) as a function of

ϕ− ϕc in figure 5.4 and we find that the dilatancy angle during precursor failure obeys the

equation

tan(ψ) = K(ϕ− ϕc) (5.2)

where K = 22.41± 2.40. Equation 5.2 was originally introduced by Roux et. al. [183] and

is effectively a linearization of the function ψ(ϕ) about the critical state ϕc.

To give perspective to the values of tan(ψ) observed in figure 5.4 we construct cartoon

scenarios of dilatant and compacting flow. We imagine a 2D arrangement of diameter D

spheres in a square lattice (loose packing) or a hexagonal lattice (close packing). In both

cases we impose a lateral displacement, dx, and compute the resultant dy of the grain layer
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(See cartoon insets in Fig. 5.4b). In both cases, for a lateral displacement of dx = D
2

geometry allows us to determine that the grains displace vertically dy = 0.134 in the ±

direction resulting in tan(ψ) = ±0.268 (where as in figure 5.4 (+) is dilation). The peak

dilation and compaction observed in experiment are near the values of tan(ψ) predicted

from the simple scenario presented above which gives some insight into the magnitude of

compaction (dilation) the loose (close) pack undergoes in experiment. Larger and smaller

values of tan(ψ) are likely due to the disordered nature of the granular configurations created

in experiment.

We compare our results on dry granular materials with the experiments of Pailha et.

al. [179] in which avalanches during progressive tilt were studied in a granular material

immersed in fluid. In the experiments of Pailha et. al. [179] K = 3.4 and ϕc = 0.582.

The lower value of ϕc is explained by the contribution of the hydrostatic pressure of the

fluid which reduces internal stress and thus mean pressure as predicted by equation 2.2.

The fluid density in the the experiments of Pailha et. al. [179] was nearly half that

of the solid density of the glass beads, thus the effective gravity in these fluid immersed

experiments reduced by nearly a factor of two. A lower value of K indicates that for a

comparable amount of horizontal grain motion, less vertical motion is experienced in the

granular suspension compared to the dry granular material. The decrease in vertical motion

in the fluid-immersed experiments is likely due to the resistive influence of the pore pressure

from the surrounding viscous fluid. For instance a suction pressure is generated when a fluid

immersed granular material dilates, generating higher grain-grain stresses which in turn may

resist further dilation, and thus lower dy.

5.6 ϕ dependence of flow size

During the granular flow at θ0 we observed that the flow profile extended deeper into the

granular layer than during avalanche flow at θm. We observed this by computing image

differences of successive video frames from high-speed video (1000 Hz) of the progressive

tilt experiment (Fig. 5.5). In fig. 5.5 regions that are black correspond to small intensity

differences between adjacent video frames at that location. White locations correspond to
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Figure 5.5: Difference in flow size at θ0 and θm. a) A difference image between two adjacent
video frames during a precursor failure at θ0. White corresponds to region of the image
which underwent a change in light intensity due to motion of the granular material. b) A
difference image of the same granular material at θm. Avalanche flow is concentrated to a
narrow band near the surface. The surface is designated by the red line.

large intensity differences. The scale of the intensity difference is arbitrary since there is

always a chance that one grain gets replaced by another one in the same location between

frames, resulting in a large deformation and small intensity difference.

We visualize the spatio-temporal dynamics of the avalanche process by examining the

space-time evolution of the image difference magnitude in a thin vertical strip centered

in the observation region. We construct space-time images by plotting image intensity at

depth, y, and time, t. In figure 5.6a we show two space-time plots, one from a compacting

experiment at ϕ−ϕc < 0 (top) and one from a dilating experiment at ϕϕc > 0 (bottom). We

observe the same intermittent precursor flow at ϕ0 < ϕc prior to an avalanche as described

in section 5.6 (gray region in Fig. 5.6a). As ϕ0 increased the angle at which the precursor

flow occurred at also increased.

The space-time evolution of individual precursor events varied in shape and size across

the observed ϕ − ϕc experiments. In figure 5.6b-c we show two precursor events from

compacting and dilating flow. In general we observed that precursor events either initiated

from the surface and propagated downwards (Fig. 5.6b) or the precursor events occurred

simultaneously within the layer (Fig. 5.6c). We did not observe a dependence of ϕ − ϕc

on this behavior. In the example we show in Fig. 5.6b the propagation speed of the event,
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which in this case is a compaction front, was found to be v = 1.08 m/s. For comparison the

speed of sound propagation in granular material has been found to be 280±30 m/s [184]

and the speed of sound in glass is ≈4000 m/s.

Although the precursor space-time shape did not vary as a function ϕ−ϕc, the magnitude

of these spatio-temporal events, both in depth D and duration ∆T , were affected by ϕ−ϕc.

The temporal duration of precursor event, ∆T was a non-monotonic function of ϕ − ϕc

and increased to a maximum near ϕc. The maximum observable depth of the granular

flow during failure at θ0 was defined as D (Fig. 5.6). We find that D was sensitive to

ϕ−ϕc and was approximately constant, d = 7.94± 0.60, for ϕ < ϕc and linearly decreasing,

d = −242ϕ+8.387 for ϕ > ϕc. The functional difference in D(ϕ) as ϕ exceeds ϕc is another

signature of a bifurcation in the granular rheology that occurs at the dilation transition.

The avalanche depth, d = 1.13±0.44 is significantly shallower than the precursor events

as observed before in image difference (Fig. 5.5). The avalanche depth corresponds to

roughly 40 grain diameters. The depth independence of the flow profile during the avalanche

phase suggests that the amount of grain re-arrangement that occurs prior to the avalanche

is sufficient to bring the granular material into a critical state at which point the flow is

independent of ϕ0. This is consistent with our observation of θr being independent of ϕ−ϕc.

5.7 Conclusion

In conclusion we have experimentally investigated the effect of volume fraction on the

failure of a granular slope subject to progressive tilting. We find that the dynamics of slope

failure are qualitatively different as a function of ϕ0 and can be divided into two regimes of

response whether above or below ϕc. For granular material prepared below ϕc the granular

layer undergoes several compaction precursor events prior to the onset of sustained surface

flow defined as an avalanche. The angle of compaction precursor onset in the case of the

lowest ϕ0 occurs at θ0 = 7.7 ± 1.4◦, a value of slope failure substantially lower than what

has been observed in previous avalanche experiments with “as poured” granular media in

which volume fraction is not typically controlled. As ϕ is increased we observe an increase

in θ0, which approaches the maximum angle of stability, θm, as ϕ0 increases. The value of
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Figure 5.6: Space-time images of flow profile. a) Space-time profiles of granular flow
generated from image differencing. Intensity plots of the flow profile are shown above the
space-time plots (arbitrary units). Top plots are loose pack and show a precursor event (i)
occuring at θ = 6.22◦. Several precursors occur prior to the initiation of a surface avalanche
(gray box). Bottom plots show a close pack space-time image. A precursor event (ii) occurs
at θ = 26◦. b) Space-time images of the precursor events at i (left) and ii (right). Flow
during the loose pack precursor (left) begins at the surface and propagates vertically into
the granular layer (black arrow) at speed of approximately v = 1.08 m/s, to a maximum
depth D. During the close pack precursor (right) flow begins simultaneously in the layer.
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θm we observe for the critical state, ϕc, is consistent with values observed for similar glass

particles prepared in an “as poured” state or subject to multiple avalanches in rotating

drum experiments [181]. The ability to observe the dilation transition in our experiments

indicates that an incremental tilting experimental protocol may be a tractable and rapid

method for measuring the ϕc of an unknown granular material. As we have shown in these

experiments, and consistent with previous studies of granular material, determination of

both the current state, ϕ0, and the critical state, ϕc, are necessary to predict the failure

conditions for a granular material.
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CHAPTER VI

GEOMETRIC COHESION

6.1 Summary

Many previous studies of granular materials focus on particles that are approximately spher-

ical and are convex. Here we study the simplest concave particles, granular “u-particles”.

These u-particles of barb length-to-particle width ratio, l/w, display cohesive-like effects

through mechanical particle entanglement. We study the packing and relaxation dynamics

of vertical, free-standing columns formed from u-particles of fixed l/w subject to sinusoidal

vibration (frequency f , peak acceleration Γ). We vary l/w to understand how particle con-

cavity influences rheology. Increasing l/w results in columns which pack to a lower volume

fraction, ϕ, with a functional form described through the use of a mean-field random con-

tact model. Collapse dynamics are measured by monitoring column height, h(t), and we

find that the timescale for column collapse, τ , follows the relation τ = f−1 exp(∆/Γ). ∆

resembles an activation energy and is maximal at intermediate l/w = 0.394 ± 0.045. We

perform simulation of u-particle ensembles to determine the number of mechanical entan-

glements as a function of l/w. We find that the density of entangled particles is maximum

at l/w = 0.340 ± 0.015, near our observed maximum in relaxation time. This optimum

entanglement shape is described though through the random contact model and occurs as

a competition between packing and entanglement.∗

∗This chapter has been published in Physical Review Letters under the title “Entangled granular media”
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a) b) c)

Figure 6.1: Concave particle assemblies from the nano- to macro-scale. a) Macromolecular
assemblies of rigid oligomers (insets) interpenetrate depending on oligomer shape (top) [189]
and may form into large entangled networks (bottom) [190]. b) Concave particle suspensions
(top) [188] and concave colloids (bottom-left) [191] and (bottom-right) [192]. c) Concave
particle assemblies found in nature, living fire ants (top) [113] and rigid branches of bald
eagles nests (bottom).

6.2 Introduction

Assemblies of non-spherical “particles” can be found at all scales of natural and indus-

trial systems. Particle shape is important in determining the bulk material properties of

macro-molecular, colloidal, and granular systems (See Fig. 6.1). Understanding how par-

ticle shape influences rheology is an important and open question in soft-matter physics

with many potential applications in engineering and industry. Despite this fact, the major-

ity of rheological studies on particulate systems have focused on particles of convex shape

[185, 2, 56, 44], and less research has been focused on concave particles [186, 187, 188]. The

fundamental difference we envision between concave and convex particle assemblies is the

ability for concave particles to interpenetrate, which we call being “entangled”. Mechanical

entanglement of particles will alter the rheology of particle assemblies through the tensile

resistance to the separation of entangled particles.

Concave particle assemblies may be found in all sizes (Fig. 6.1). The bulk packing prop-

erties and microstructure of concave particle assemblies are being exploited in the design

of macro-molecules, such that the concave molecular shape hinders the ability to closely
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Figure 6.2: U-particle assemblies. a) U-particles interpenetrate to support tensile loading.
b) A free-standing column of entangled u-particles. c) Grasping the tower with tweezers
illustrates the tensile strength of this granular assembly.

pack and results in materials with a high micro-porosity [189, 190]. These microporous

assemblies have applications ranging from nano-drug delivery systems to gas trapping. The

design of concave shaped colloids and particle suspensions is currently an area of active

research [191, 193]. Colloidal particles are often a starting point for the study and engineer-

ing of self-organizing, “smart” materials [194]. Granular materials, which are a frequently

processed and manipulated form of matter, may also be engineered into different shapes

and sizes. Recent interest in “designed” granular particles through the use of 3D printing

technology has been spurred on by advancements in the application of granular jamming

to robotics [195, 196].

A convenient concave particle that is found in every office is the staple (Fig. 6.2). Staples

may come in many shapes and sizes and by the nature of their concave shape display the

ability to interlink and form chains. Piles of staples may be formed, much like those of wet

granular media, which have vertical side-walls indicating a strong cohesive effect between

grains. The grain-grain cohesion is large enough such that one can lift a column of staples

from the top and a majority of the pile will stay together (Fig. 6.2).

In addition to engineered systems, concave particle assemblies are found in biological
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Figure 6.3: Relaxation dynamics of u-particle columns are studied through a mechanical
vibration experiment. a) U-particle geometry. Width, w, is held constant and length, l,
is varied. b) A computer controlled shaker table applies sinusoidal forcing to a granular
column. A high-speed camera records column collapse from the side.

systems. The packing of actin or other protein filaments within eukaryotic cells, which drive

cell motility, share many properties with granular rod packings and due to their branched

nature can be considered concave [197]. The collective bridge and raft building of ants

[113, 114, 112], are held together through the entanglement of ant limbs and mandibles

which can be considered concave particles. Lastly, animal built structures constructed from

branches and twigs such as birds nests are concave particle assemblies [198].

The goal of this work is to develop a fundamental understanding of how particle con-

cavity influences bulk rheology which we hope will have application across the wide range

of size scales at which these particles are found at.

6.3 Methods

Below we describe a set of experiments to study the packing and relaxation of “u-particle”

columns. We formed vertical, free-standing columns from collections of “u-particle” of

varied barb length to width ratio l/w. By varying l/w we effectively vary the concavity

of the particles with l/w = 0 being rods with no concave region and large l/w particles

possessing a large amount of concavity. We study two properties of the u-particle columns:

1) the packing behavior of “u-particles” studied through measurement of ϕ, and 2) the

relaxation of columns under gravity and subject vertical vibration from the floor.
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6.3.1 u-particles

U-particles consisted of steel staples (Duo-fast; Vernon Hills, Il.) of constant width, w=1.17 cm,

and variable barb length, l (l/w ∈ [0.02, 1.125]; Fig. 6.3a). The cross section of all parti-

cles was rectangular with thickness of 0.5 mm and width 1.27 mm which corresponded to

a rod-like aspect ratio for l/w = 0.02 particles of ≈ 14. We cut by hand particles of size

l/w = 0.02±0.02, 0.13±0.02, 0.15±0.03 and 0.28±0.04, and other particles were purchased

at that size.

6.3.2 Column formation

Collections of monodisperse particles with fixed l/w were formed into free standing cylin-

drical columns with column diameter, d=4.4 cm or d=5.6 cm, and height, h0 = 3 cm.

Columns were prepared by pouring particles into the cylindrical container followed by a 20

s sinusoidal vibration of the base at a frequency, f = 30 Hz, and peak acceleration, Γ = 2

(in units of gravitational acceleration g). We confirmed that steady state volume fraction

was reached through our preparation protocol in separate experiments conducted over a 60

s time period. Columns occupied a volume V = πh(d/2)2, and the volume fraction was

calculated as ϕ = M
ρstV

where M is total particle mass and ρst = 7.85 g/cm3 is the density

of steel.

6.3.3 Column vibration

Sinusoidal oscillation was generated by an electromagnetic shaker (VTS; Aurora, OH;

Fig. 6.3b). The shaker piston was attached to a linear, square-shaft, air bearing which in-

sured that the motion was primarily vertical. The shaker was mounted to a thick aluminum

plate through a collection of springs. This mounting system reduced vibration coupling

which would occur if the shaker was mounted to the ground. Vibration experiments were

performed at a frequency of f = 30Hz and variable peak acceleration Γ ∈ [1.2, 2.5] (in units

of gravitational acceleration g). The shaker was controlled by LabVIEW and a Tecron 7550

power amplifier. Acceleration of the vibration table was measured by an accelerometer

embedded in the vibration table (PCB Piezotronics; Depew, New York).
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The effective “heating” in the granular pile is induced by the pile being thrown up into

the air and then under free-fall colliding with the oscillating plate. Here we describe how

this collision velocity varies as a function of Γ. From previous study of elastic and inelastic

balls interacting with an oscillated floor, we know that the speed of collision between the

plate and free-falling ball is non-monotonic in Γ. To use Γ as an appropriate measure of

“heating”, we want to only oscillate in the range where the collision velocity is monotonic,

and ideally linear, with Γ. To do this we solve for the collision velocity between the plate

and ball for our chosen vibration frequency, f , shown in Fig. 6.4. From this, we choose Γ to

be below a maximum of 2.75g, which within this range the collision velocity is monotonic

and approximately linear in Γ.

Column collapse was monitored using a high speed camera (Point-Grey; Richmond,

BC, Canada). Image capture was triggered externally by a function generator controlled

by LabVIEW such that images were captured at a constant phase of the oscillation cycle,

and at frequencies of f , f/2, and f/4. Images were analyzed in Matlab. Columns appeared

black on a white background and thus we extracted the foreground column using an image

threshold. We then dilated the foreground region to insure that the column was a singly
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connected region and finally measured the centroid height, h(t), of the column and the

projected 2D area A(t).

6.4 Results and discussion

6.4.1 Packing experiments

Particles were rained into the cylinder and came to rest in an initial volume fraction ϕ0

which was dependent on particle packing (Fig. 6.5). Applying vibration for 60s resulted in

a steady-state final volume fraction, ϕf , which reached steady-state within approximately

20 seconds. As can be seen in Figure 6.5b, ϕ0 and ϕf , decreased with increasing l/w.

Compaction, defined as χ =
ϕf−ϕ0

ϕ0
, linearly increased with l/w and was fit by the function

χ = 0.23(l/w) + 0.12 (R2 = 0.65). Larger l/w particles likely exhibit a higher amount of

compaction because their long barbs cause them to jam in lower ϕ0 initial states, while their

large internal volume also allows them to pack to high ϕf .

For a comparison with similar experiments, the value of ϕf = 0.28 ± 0.01 we observed

for l/w = 0.02 particles is close to the range, ϕf = 0.28− 0.34, observed in cylindrical rod

packs with comparable aspect ratio (length/thickness ≈ 14) [199, 82, 83, 87]. The variance

in cylinder rod values is due to difference in preparation method. The lower value observed

in our l/w = 0.02 particles is likely due to the fact that our particle have a rectangular

cross-section while the values we compare to are from cylindrical cross-section rods.

The final volume fraction, ϕf , decreased monotonically with increasing l/w. This is

consistent with what is observed in rod packing studies in which increasing the length

(aspect ratio) of rods decreases the volume fraction [199, 82, 83, 87]. For long rods the

volume fraction scales inversely with rod-length, and this behavior is described through a

statistical model of particle packing called the random contact model which we describe in

section 3. One way to qualitatively understand this decrease in ϕf with increasing l/w is

that larger l/w particles have larger internal volumes and thus pack less efficiently.

6.4.2 Collapse experiments

After we formed cylinders of packed u-particles in the packing experiment, we removed the

confining container which left the column free-standing. During removal of the confining
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c) Change in projected area of the column, ∆A(t)
A0

, as a function of time. Γ corresponds
to values in (b) with arrow denoting direction of increasing Γ. Inset shows the peak area

increase, max[∆A(t)
A0

], as a function of Γ averaged over all l/w (error bars are std. deviation).

cylinder the l/w = 0.02 particles were marginally stable with partial column collapse oc-

curring approximately 50% of the time, similar to the results reported in [88]. Spontaneous

collapse of the l/w > 0.02 columns was rarely observed. To explore the dynamical stabil-

ity of u-particle columns we next subjected them to vertical vibration from the base and

observed column collapse.

We applied sinusoidal vibration to the base of the free-standing column and observed

the collapse process from a lateral view with our camera (Fig. 6.6a). We characterized

collapse dynamics by monitoring the centroid height, h(t), and cross-sectional area A(t),

of the column (Fig. 6.6b). The collapse dynamics of h(t) were well described by a phe-

nomenological stretched exponential fit function h(t)
h0

= e[−( t
τ
)β ]. The parameter τ is the
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characteristic collapse time and β is the stretching parameter [200]. Consistent with pre-

vious studies [201, 202] β was in the range of 0.5 - 1 and decreased slightly as Γ increased

but was independent of particle geometry. The stretched exponential function is frequently

applied to the description of relaxation dynamics of disordered systems [200].

For fixed l/w, we found that the collapse time of the column found from the stretched

exponential, τ , decreased with increasing Γ. This supports our intuition that larger per-

turbations cause a more rapid collapse of the column. Furthermore, the logarithm of τ

increased linearly with 1/Γ (Fig. 6.7a) and τ was fit by an exponential τ = f−1e∆/Γ with

∆ as the single fit parameter (f = 30Hz).

The exponential fit is indicative of an Arrhenius-like process observed in the relaxation

of activated systems. The Arrhenius process describes the escape probability of a thermally

or mechanically activated particle from a potential well of depth ∆. In thermal systems

the escape time is proportional to one over the Boltzmann factor exp(− E
kT ) where E is the

activation energy required to overcome the potential barrier. In our system thermal effects

are negligible, and instead mechanical excitation plays the role of a thermal energy like

source (Γ analogous to kT ) and ∆ is analogous to an energy barrier resulting from particle

entanglement.

The second quantity we measured during column collapse was the change in projected

cross-sectional area, ∆A(t)
∆T of the column. The cross-sectional area displayed an initial

increase during the first second of vibration indicating that prior to collapse and particle

shedding from the column, the structure initially expands (dilates). The amount of dilation

that occurred during collapse, max[∆A(t)
∆T ], was an increasing function of Γ for all experiments

(See inset Fig. 6.6b).

The stretched exponential fit (Fig. 6.6) suggests that the column collapse process may

be qualitatively similar across varied Γ with only the timescale changing. However the

variation in column dilation during collapse suggests that the internal particle processes

leading to collapse may differ as a function of Γ. At small Γ we hypothesize that frictional

contacts are mobilized through vibration and thus particles can relax through a sliding

process while collisions are not important. At higher Γ we observe that particles appear
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highly mobilized and often collide with each other which likely leads to the dilation we

observe during the initial collapse process. Thus we hypothesize that in different regimes of

Γ the particle scale dynamics of collapse may differ, however the macroscale collapse time

is well described by the stretched exponential.

Column collapse occurred through the separation of entangled particles during vibration.

We therefore expected that the hindrance of motion due to particle entanglement—and

thus ∆—would increase monotonically with the size of the concave region and thus particle

length. Instead we found that ∆ was a non-monotonic function of l/w (Fig. 6.7) with

∆ reaching a maximum value at intermediate l/w = 0.394 ± 0.045 †. ∆ appears in an

exponential and thus the relaxation time for fixed Γ displays a surprising sensitivity to

variation of particle shape (Inset Fig. 6.7b). We posit that the maximum in ∆ is related

to the statistics of particle entanglement within the bulk, and we next study entanglement

propensity in theory and simulation.

†We estimate the maximum and standard deviation of l/w in experiment using a weighted average of
points near the peak
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6.5 Simulation

In this section we describe the theoretical modeling of u-particle packing and stability as a

function of particle shape. We discuss excluded volume which plays an important role in

particle ensembles in which only steric interactions are important, such as our macro-scale

granular particles. Next we introduce the random contact model proposed for colloidal rods.

We apply this model to our u-particle system and show that we find good agreement between

the model and our experimental results. We lastly generate u-particle ensembles in computer

simulation and investigate the statistical packing properties of particle arrangements. We

show that particles at intermediate l/w display maximum particle entanglement. We discuss

implications this maximum in particle entanglement has on bulk rheology as measured in

experiment.

6.5.1 Random contact model of rods

The random contact model was originally proposed to describe the packing of straight,

rod-shaped, colloids [82]. This model relates the bulk volume fraction, ϕ, of the ensemble

to the particle volume, Vp, and excluded volume, Ve, of the constituent particles. The

random contact model assumes only that particles are homogeneously distributed in space

and has been shown to work well for rod-shaped particles over a large range of aspect ratios
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[82, 199, 82, 83]. Below we will derive the random contact model and explain how it is used

in the calculation of “u-particle” packing statistics.

The particle’s excluded volume is defined as the volume of space one particle excludes

from another, averaged over all possible particle-particle configurations (Fig. 6.8). Another

definition of Ve is in relation to the probability of finding a two particles in contact within

a larger volume, V . This can be represented as

Ve = pV (6.1)

where p is the contact probability. A simple example to consider is that of a spherical

particle of radius r. A spherical particle excludes a volume Ve = 4
3π(2r)

3 from another

identical particle. Thus there is a volume of space, Ve, which particles cannot be placed

in without overlapping the original particle. This again is indicative of the probabilistic

nature of excluded volume since the probability to randomly place a sphere in a position

overlapping the original sphere is p = Ve
V .

The relationship between volume fraction and Ve follows as such. For a volume of space,

V with N particles of volume Vp, the solid volume occupied by the particles is Vo = NVp.

The volume fraction is defined as ϕ = Vo
V which using equation 6.1 we can rewrite as

ϕ = pN
Vp

Ve
. We interpret pN as the average number of contacts per particle within the

packing, C, and arrive at the random contact equation ‡

ϕ = C
Vp
Ve

(6.2)

The random contact model describes the bulk packing of homogenously distributed

particles in free space, with particle properties vp and ve and average contact number C.

This model has been tested in experiment and simulation with rod-shaped objects at the

microscopic and macroscopic scale [199, 82, 83, 87] and surprisingly all experiments have

found a similar contact number C ≈ 10. We note that this model is applicable for particles

‡We note that in the original text of Philipse [82] the random contact model is introduced with the
prefactor 2⟨c⟩ instead of C. In this case ⟨c⟩ is the ratio of total number of contacts by number of particles
and multiplying this value by two gives, C the average number of contacts per particle. We will use this form
of the equation in the text and when comparing to studies using the alternate version we convert reported
values of ⟨c⟩ to C.
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Figure 6.9: Convergence of numerical computation of ve. a) Convergence as a function of
bounding-box size b) Convergence as a function of monte-carlo iterations.

that pack with spatially uncorrelated contact points. Applying this model to spheres fails

because contact points between particles are always spatially correlated (by definition a

distance D/2 from the particle location).

We compute Ve numerically for u-particles in a monte-carlo simulation by using the

probabilistic definition of excluded volume. We form u-particles from a combination of

three sphero-cylinders oriented at right angles with each other to form a u-particle. U-

particle dimensions are normalized by the sphero-cylinder cross-sectional diameter, D. The

width of the base sphero-cylinder is fixed at 14D and the barb lengths are varied from 0

to 16D, consistent with the u-particles used in experiment. In simulation we randomly

place test-particles within a large volume, V , with respect to a focal particle fixed at the

center. For each iteration of the computation, we choose a random location (x, y, z) and

random orientation (defined by the Euler angles of the particle, θ, γ, ψ) to place the test

particle at. We then check whether the test particle overlaps with the focal particle at

this location-orientation combination. to determine the overlap of two u-particles we must

simply compute the pairwise minimum distance between each particles constituent sphero-

cylinders. If any of these 9 pair-wise distances are less than the sphero-cylinder diameter,

D, the particles overlap. To detect if particles overlap we compute the minimum distance
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between two line-segments along the centers of the sphero-cylinders. We compute the dis-

tance between line-segments using an algorithm originally developed for computer graphics

[203] §. If particles are found to overlap we increment a counter No. After N iterations

of this algorithm, the fraction Nc
N → p and thus our calculation converges on the excluded

volume Ve = V Nc
N (Fig. 6.9).

We fit a polynomial to Ve and find that Ve = 0.460(l/w)2 + 0.530(l/w) + 0.148 (in

units of W 3, see Fig. 6.8). We approximate the particle volume as Vp = πW (D/2)2 +

2πL(D/2)2 + 4
3π(D/2)

3. Comparison of the measured volume fraction from experiments

and the prediction from the random contact model show that the model is in good agreement

with the data when using a contact number C = 9. This value of C is close to the values

reported for rod-packings of C = 8.4 − 10.8 which depends on preparation [82, 83, 199],

which is surprising given the difference in particle shape between rods and u-particles.

Having verified that the random contact model works for u-particles we may proceed with

the calculation of packing statistics for u-particle ensembles.

§We have uploaded a Matlab implementation of this algorithm to
http://www.mathworks.com/matlabcentral/fileexchange/32487-shortest-distance-between-two-line-
segments
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6.5.2 Packing simulations

We study the packing of u-particles in a computer simulation to identify properties of the

particle entanglement within the pile. Particle packings are generated through a monte-

carlo simulation. We do not perform molecular dynamics in these simulations, instead we

solely enforce the condition that particle configurations which result in an overlap are not

allowed. From these packings we study the statistics of u-particle entanglement.

To generate u-particle packings we used an exhaustive packing algorithm to generate

close packings of non-overlapping particles. Packing proceeded in two steps: In the first

step particles were placed at random position and orientation inside a cubic volume of

cross sectional area (52× 52D2) such that the particles did not overlap. If a newly placed

particle resulted in an overlap this particle was removed and a new position was randomly

selected. If after 10,000 iterations a suitable particle location was not found the algorithm

proceeded to step two. In the second step particles in the volume were selected at random

and displaced downwards a small random direction and distance D
10 . If the new location of

the particle resulted in particle overlap the particle was returned to the original location

and a new particle chosen. The algorithm was halted after the center of mass height of the

ensemble appeared to reach steady-state. The volume fraction of the simulated packings

was determined by measuring the average height of the pile and multiplying it by the areal-

dimension to obtain the occupied volume and then dividing this by the total volume of

particles. A sample packing simulation and packing dynamics are shown in Figure 6.9. In

simulation particles gradually approach a steady-state volume fraction which is consistent

with the experimental data (Fig. 6.5c).

We hypothesized that particle entanglement within the column would influence the

relaxation time during vertical vibration. Thus we expected that the maximum in ∆ should

correspond to a maximum in the density of particle entanglements. In simulation we defined

two particles as entangled when the center line of one particle intersected the internal plane

of the neighboring particle (Inset Fig. 6.6a). We measured the number of entanglements per

particle, N , for each particle in simulation. The probability distribution function, P (N),

was sensitive to l/w (Fig. 6.6a) with mean value ⟨N⟩ increasing monotonically with l/w
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Figure 6.11: Entanglement counting in simulation. a) A rendering of entangled particles
within the ensemble. b) To predict the number of entanglements within the packing we
consider the infinitesimally thin volume of space within the focal particles (red) concave
region. The intersection of entangled particles with this plane forms thin ellipses. c) The
cross-sectional area of the intersection region can vary from a circle of diameter D to an
ellipse with minor axis D/2.

(Fig. 6.6b). The increase was sub-linear indicating that ⟨N⟩ grew slower than that of the

particle’s convex area (l −D)(w − 2D).

The scaling of ⟨N⟩ with l/w can be determined by considering the solid volume occu-

pied by the entangled particles in the focal particles convex region (the convex area with

infinitesimal thickness δ). Assuming a homogeneous packing the solid volume in this region

is Vent = ϕf (l −D)(w − 2D) δ. Since each entangled particle contributes only a portion to

Vent in the shape of an ellipse of thickness δ, on average Vent = α⟨N⟩πδD2

4 where α > 1

accounts for the non-planar crossings (Fig. 6.12c). Solving the above relations yields

⟨N⟩ = 4C

α

(
Vp(l −D)(w − 2D)

πVeD2

)
(6.3)

With single fit parameter, α = 2.648± 0.108, we find excellent agreement between the pre-

dicted number of entanglements per particle and those measured in simulation (Fig. 6.12b).

The spatial density of particle entanglements is ρent = ⟨N⟩ρ where ρ = C
Ve

is the number

density of particles (Fig. 6.12b). Substitution for ⟨N⟩ yields

ρent =
4C2

πα

(
Vp(l −D)(w − 2D)

V 2
e D

2

)
(6.4)

and again the simulation and theory are in good agreement (Fig. 6.12c) using the previously

determined fit parameters C and α. Furthermore the experimental maximum max[∆] at
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l/w = 0.394 ± 0.045 is close to the value obtained in simulation and theory of l/w =

0.340 ± 0.015 suggesting that the large relaxation times for the intermediate u-particle

columns is due to the large density of mechanical entanglements.

6.6 Conclusion

Similar to rod-like particles [199, 82, 83, 87], columns formed from u-particles are stabilized

through the inhibition of particle rotation and translation among the entangled particles.

The addition of the transverse ends which form concave u-particles leads to mechanical

entanglement and increases column stability. However the increase in entanglement with

increasing length is offset by the decrease in particle packing density. These two trends

conspire to generate a maximum in the density of mechanical entanglements in collections

of non-convex particles of intermediate l/w–thus columns of these particles most strongly

resist separation.

Vibro-fluidization has been previously used to study the relaxation of dry granular mate-

rials under gravity [68, 204, 69]. However this method has not been applied to characterizing

the strength of cohesive GM. We envision that vibration-relaxation experiments like those

reported here will be useful to explore rheological properties of fluid or electrostatic me-

diated cohesive GM. Although granular materials in the natural world often posses some

interstitial fluids, there is still much to be learned about cohesive granular materials.

Macroscale model-systems like those described here and elsewhere [205, 206] are use-

ful tools to explore how particle shape influences ensemble rheology. Future study of the

particle-scale dynamics of non-convex particles may provide further insight into the rheol-

ogy of entangled or crowded particulate systems. For instance, model systems may have

application to better understand the particle scale dynamics of anomalous diffusion within

the crowded cellular environment [207, 208, 209, 210]. Because, particles found in nature are

often non-spherical [44] we hope that experiments like those described here will advance the

experimental and computational tools we have to study non-spherical or even non-convex

particulate systems.

The random contact model utilized to explain the optimum geometry for entanglement
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of u-shaped particles assumes only uncorrelated particle contacts within the bulk. Thus we

expect the results to apply to rigid non-convex particulate systems of all scales. A recent

study of suspension rheology found that convex particles of differing shape collapsed to a

viscosity-stress master curve while concave particle did not collapse to this curve; this differ-

ence was attributed to particle entanglement effects [188]. At the micro-scale, polymers with

rigid pendants oriented perpendicular to the polymer chain increase internal molecular free

volume and hinder polymer motion which significantly affects rheology similar to geometric

entanglement [211]. At the macroscale strain-stiffening of model polymers is associated

with entanglement [205]. Even organisms can benefit from geometric entanglement. For

example the fire ant Solenopsis invicta and the army ant Eciton burchelli create waterproof

rafts and shelters–which have been described as akin to living chain mail [118]–through the

interlocking and entanglement of limbs and mandibles [113, 112].
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CHAPTER VII

FIRE ANT WORKER SIZE EFFECTS ON TUNNEL

CONSTRUCTION

7.1 Summary

We now focus on an active granular system, collections of the fire ant Solenopsis invicta.

Social insects such as fire ants work together to complete tasks, however different individ-

uals within a colony may vary in task proficiency. We investigated if fire ant worker body

size influenced the ability to construct tunnels-a key component of subterranean nests. We

monitored excavation by worker groups in a substrate of small wetted glass particles in

two-dimensional arenas. Morphological and network features of the tunnel system were

measured. Total tunnel area did not differ significantly between groups of large and small

workers, although the tunnel area of control sized workers was significantly larger than that

of large workers. Moreover, large workers created wider but shorter tunnels, with slower

growth rate of tunnel number. However, edge-vertex scaling and degree distribution of the

tunnel network were similar across all treatments. In all cases, the amount of excavated

material was correlated with the number of active workers. Our study reveals that morpho-

logical features of excavated tunnels show modest variation when constructed by workers

of varying sizes, but topological features associated with the tunnel network are conserved.

These results suggest that important behavioral aspects of tunnel construction-and thus

nest building-are similar among morphologically distinct members of fire ant societies. ∗

∗This chapter has been published in Journal of the Royal Society Interface, 2012 entitled “Effects of
worker size on the dynamics of fire ant tunnel construction”
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7.2 Introduction

The remarkable success of social organisms is due in part to their ability to share and divide

colony level tasks among individuals [125]. For example, most social insects (ants, social

bees, social wasps, and termites) cooperate to construct nests [212]. Social insect nests

are thought to have been critical to the evolution of sociality [213]. Nests serve to protect

the colony from predation and exposure to the elements, while providing a location with

homeostatic features [214] for rearing the young and safely storing food [123, 122, 125].

In addition to providing protection from the elements and predators, the architecture of

the nest organizes the colony and influences the frequency and type of social interactions

that occur. These interactions facilitate information transfer and worker recruitment and

are important to the colony’s daily function [131, 215, 216, 127, 217]. Thus the efficient

construction and maintenance of a nest is fundamental to the success of social insects.

Many ants construct subterranean nests which consist of underground tunnels and

chambers formed through the excavation of soil [125]. Nests are often initiated by newly

mated queens [218, 125] and are later cared for by the worker population. Nest construc-

tion and repair is an essential task that colonies must face throughout their life. For in-

stance ant species that remain in the same nest must continuously expand to accommo-

date colony growth while ants that relocate periodically must construct entirely new nests

[219, 220, 125, 221, 222].

The basic mechanics of tunnel construction are similar among ant species (Sudd, 1969):

workers loosen a soil pellet from the tunnel face with their forelimbs and mandibles and then

carry the pellet in their mandibles to the surface where it is deposited in a pile (see Fig. 7.1).

Groups of ants that collectively excavate ultimately form a network of interconnected tun-

nels and chambers [131, 126] that is thought to facilitate traffic flow, food and brood storage,

and gas and temperature regulation [123, 122, 125]. The formation of this tunnel network is

a self-organized process in which workers operate according to excavation rules which may

differ across species or even across worker caste [131, 223, 224, 126, 217, 225].

The excavation behaviors of social insects and the dynamics of tunnel network formation

have been studied extensively through laboratory experiment [131, 226, 129, 227, 228, 229,
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Figure 7.1: S. invicta workers digging tunnels. a) Comparison of size difference between
small and large workers. b) Ventral view of a tunneling worker. c-e) The mechanics of
tunnel excavation involve loosening, carrying, and transporting substrate (0.25±0.04mm
diameter wetted glass particles) from the tunnel face to the surface (see supplementary
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230]. Environmental factors such as soil granularity and cohesiveness influence the mor-

phology and orientation of tunnels [226, 129, 231] while the excavation dynamics (digging

rate, network growth rate) are a function of group size [132, 227] and worker age [217].

Morphological features of the ant could also play a role in digging proficiency and thus

the ability to construct a nest. For example, worker body size is an important trait that

affects colony function and is believed to be under evolutionary selective pressures. More-

over, variation in body size (polymorphism) in social insects can influence the likelihood

and effectiveness of performing certain colony tasks such as the rearing of brood or foraging

for food [232, 233, 234, 235, 236]. Since mandible width correlates with body size [237] and

since tunnel excavation involves use of mandibles to loosen and carry soil to the surface,

a natural hypothesis is that body size should correlate with digging proficiency. However,

the relationship of ant size and tunneling performance has not been investigated.

The red imported fire ant (Solenopsis invicta) is an excellent species to examine the

role of worker size on tunnel construction. First, worker size in S. invicta is influenced by

genetic and environmental factors [238, 239, 139], and workers display considerable variation

in size. For example worker head width varies continuously over a nearly three-fold range

(Fig. 7.1a). Second, the large subterranean nests constructed by S. invicta can house

hundreds to hundreds of thousands of colony members and are among the most complex

structures made by ants [126]. Fire ant nests have a characteristic structure which can

be divided into three components: (1) a surface mound densely filled with tunnels, (2)

subsurface tunnels directly below the mound that extend downwards up to 1.5 m deep and

connect to larger horizontal chambers, and (3) shallow (1-10 cm deep) foraging tunnels

which radiate horizontally away from the mound and can be upwards of 50 m in total

length [139, 240, 127, 140]. Finally, S. invicta is an invasive species and thus in addition to

constructing nests in their native range of the Amazon basin of South America S. invicta

build nests within the diverse array of soil types found in the Southern United States (like

clay, dry and wet sand) [127].

In this paper, we investigate the role of worker body size on tunnel excavation in S.

invicta. We visualize tunnel network growth and ant digging behavior by teams of S.
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invicta workers of varying body size in quasi two-dimensional (2D) digging arenas, similar

to those previously used in studies of ant tunnel construction [226, 227, 229]. Based on the

expectation that increased mandible size allows ants to carry larger loads (See [236] and

data in section 7.6.2), we hypothesize that larger ants should outperform smaller ants during

tunnel excavation. Through morphological and topological analysis of the growing tunnel

network we show that workers of all size exhibit similar digging proficiency and we show

quantitatively how worker size influences (i) the rate of tunnel growth (ii) the morphology

of excavated tunnels (iii) and the topology of the interconnected tunnel network.

7.3 Methods

7.3.1 Ant husbandry

Five mature S. invicta colonies (colonies A-E) were collected during the summer and fall of

2008 and 2009 from roadsides outside of Atlanta, GA, USA. Colony members were separated

from the soil in the laboratory using the water drip method [241]. Colonies were then housed

in plastic bins that contained an enclosed nest area made from petri dishes and an open

foraging arena. Colonies were provided ad libitum water and insects as food.†

Digging experiments were carried out with three treatments of worker size: small work-

ers, large workers, and control workers. Large and small workers from each colony were iso-

lated using a sieving process in which ants migrated downward from a light source through

a series of sieves with decreasing mesh size. Small workers were collected from the bottom

sieve (bounding mesh size < 0.71mm) and large workers were collected from the top sieve

(bounding mesh size > 1 mm). Control workers, which represented a random sample of

workers from the focal colony, were collected from the remaining worker groups, having

gone through the same sieving process as the large and small worker treatments. The body

size distribution of mature S. invicta colonies is skewed such that a majority of the colony

are smaller workers [127] and thus the control groups were comprised of a relatively large

number of small workers with a few larger workers.

Approximately 150 workers of a given size class were then separated using the wet mass

†These experiments were performed in conjunction with co-authors Nicole Mazouchova and Mateo Garcia.
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Figure 7.2: Overview of the experimental setup and digging arena. a) Time lapse images
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of 25 individuals from each treatment as a gauge of the relationship between worker mass

and worker number (wet mass of 25 individuals: small 14.56±1.53 mg, large 56.73±9.34 mg,

control 29.34±9.18 mg). Groups of ants were momentarily sedated by placing the confine-

ment chamber atop an ice bath for 30 seconds after which they were transferred to the

digging arena. As in previous digging experiments, queen and brood were not present dur-

ing experiments [227, 228, 229, 230, 231]. Brood items were explicitly excluded because

large and small S. invicta workers display different behaviors in their presence [127].

Digging trials were conducted on groups of workers drawn from five colonies (A - E).

Each trial spanned three days. Eight digging trials (an octet) were prepared on a single

date. Octets always included a combination of large, small, and control worker groups from

a given colony. Colonies A, B, C were used to supply worker groups for octets on two or

more occasions while worker groups from colonies D and E were each used in only a single

octet. Between the varied treatments and test dates, 71 digging trials were performed in

total with a breakdown of 23 large worker treatments (A=5, B=5, C=8, D=3, E=3), 23

small worker treatments (A=6, B=5, C=8, D=2, E=2), and 25 control treatments (A=5,

B=6, C=8, D=3, E=3).

7.3.2 Digging arenas

We studied excavation in the laboratory so that we could isolate and test for the effects

of ant size on tunneling proficiency. As in other studies, quasi-2D digging arenas were

used to enable visualization of ant behavior and tunnel growth simultaneously [133, 132,

226, 227, 228, 229, 230, 231]. Arenas were created from two pieces of glass separated by a

steel spacer, forming a 27 × 34 × 0.3 cm digging chamber (Fig. 7.2). Similar to previous

studies [226, 129, 230], we used approximately spherical, wetted 0.25 mm diameter glass

grains as a digging substrate. The arenas were initially filled with dry grains to a height of

approximately 20 cm, leaving a 9 cm gap at the top of the arena. Grains were then wetted

with 100 mL of water which was allowed to drain through the digging arena (and out a

porous bottom) prior to the introduction of the ants. Water is important for the stability of

tunnels [226], and it is known that expansion of S. invicta nests in nature typically occurs
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after rainfall [127]. The substrate was not intended to mimic the natural soils of the S.

invicta habitat, which vary widely in water content and particle size distribution. Instead,

the media was chosen to control the digging substrate properties (cohesiveness, granularity)

and produce reproducible excavation conditions among replicate experiments. We note,

however, that this substrate is similar in particle size and wetness to sandy soils in which

fire ant nests in nature can be found [127]. Eight digging arenas arranged on an octagonal

frame with a digital camera in the center were simultaneously used during experiments

(see Fig. 7.2). Digging experiments were performed in a darkened room. The camera was

pointed at each arena in turn by a stepper motor controlled by LabVIEW. Images of the

arenas were captured every 5 minutes, illuminating a backlight momentarily behind each

arena prior to image capture.

7.3.3 Analysis

Tunnel images from 12 hour increments were used to create a black-and-white image mask

of the tunnels in Adobe Photoshop (Fig. 7.2). Image masks were imported into Matlab

and tunnel morphology and network topology was measured (see appendix for details).

Morphological measurements included total projected tunnel area, A, total path length of

tunnels, L, and tunnel width W. Furthermore the path length of tunnel segments between

branch points, l, was recorded. Network measurements included the number of edges, E,

and vertices, v, (Fig. 7.2) along with the degree of each vertex, k, defined as the number of

edges coming together at the focal vertex.

All statistics were performed using JMP (SAS software; Cary, NC) or Matlab (Math-

works; Natick, MA). Statistical tests for differences among treatments were computed us-

ing an ANOVA considering treatment as a fixed effect, colony as a random effect, and

date (octet) nested within colony as a random effect. Tukey’s HSD was used to determine

differences among treatments. We used linear and non-linear regression to determine fit

parameters where necessary. We used ANCOVA to test if linear slopes differed among

treatments and ANOVA to test for differences in y-intercepts. We used the method of

[242] to estimate non-linear regression fit parameters. All results are presented as the least
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squares mean ± the standard error of the measurement.

7.4 Results

Upon introduction into the arena, workers in all S. invicta treatments began digging within

2-4 hours. We estimated that only 20-30% of the workers in the groups participated in

the digging process at any one time; the remaining workers aggregated on the arena wall

above the digging substrate. Tunnels were initiated at the surface and extended downwards

for all treatments. Observations of fire ant workers at the tunnel face indicate that ants

excavated and manipulated the digging substrate using their mandibles as well as their

forelimbs (Fig. 7.1) as has been described for many other ants [243]. After approximately

24 hours lateral tunnel branches were created off the main tunnels. As the lateral tunnels

grew in length they often recombined with previously created tunnels forming new tunnel

junctions and paths through the network. Tunnels were excavated through the successive

trips of workers from the tunnel face to the surface and the excavated material was deposited

in large piles on the surface.

7.4.1 Tunnel area, length, and width

We characterized the shape and size of the tunnel networks created by different treatments.

The total size of the tunnel network was measured by the two-dimensional projected area.

Since tunnel networks can grow in size through both the widening and lengthening of tunnels

we also measured the length and width of tunnel segments. The final area after 72 hours,

A, significantly differed among size treatments (Fig. 7.3 and Table 7.4.1; F2,60 = 5.34, p =

0.007). There was no significant difference in A between large and small (p = 0.344) and

control and small (p = 0.168) workers; however the control groups produced larger tunnel

networks than the large treatments (p = 0.005). Worker size had a significant effect on the

final length of tunnels, L (Table 7.4.1; F2,60 = 13.520, p ¡ 0.0001). The tunnels of the large

treatments were significantly shorter in total tunnel length compared to the small (p =

0.010) and control group (p ¡ 0.0001) treatments. However the total tunnel length between

the small and control treatments was not significantly different (p = 0.095).

The growth rate in the first 12 hours was significantly influenced by treatment (Fig. 7.3;

115



A
  
(c

m
2
)

E
 

  
(c

m
2
/h

r)

120 24 36
t (hours)t (hours)

48 60 72120 24 36 48 60 72

Control

Large
Smallb)

a)

c)

d)

e)

24 hrs. 48 hrs. 72 hrs.

0

20

40

60

2

0

4

6

8

l 
  
(c

m
)

0

10

20

30

40

0

0.2

0.4

0.6

0.8

1

4 cm

∆
A

∆
t

Figure 7.3: Digging dynamics in quasi two-dimensional S. invicta arenas. a) Image masks
showing tunnel network growth as a function of time. b) Tunnel area versus time for small,
control, and large ants (green circles, red squares, and blue triangles respectively) . Shaded
areas are ± S.E. c) Digging rate (∆A/∆t) versus time. d) The number of edges in the
tunnel network increased in time. e) The mean path length, < l >, between vertices in the
network decreased in time after 72 hours.

w (cm)

P
(
w

)

W
  

(c
m

)

a) b)

0

0.1

0.2

0.3

t (hours)
120 24 36 48 60 72

0
0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

Figure 7.4: Tunnel width. a) The mean width, W, of the tunnels vs time for small, control
and large ants (green circles, red squares, and blue triangles respectively). Shaded areas are
± S.E. b) The probability distribution of local tunnel width, P (w), is fit by a log-normal
function (described in the text) with parameters given in Table 7.4.1.

116



F2,60 = 8.336, p = 0.0006). The control group outperformed the large workers (p = 0.0004)

but the difference in initial growth rate between the control and small worker groups was

not significant (p = 0.078). Furthermore the difference in initial digging rate between

the large and small worker groups was not significant (p = 0.161). For all treatments,

the average tunnel width, W, was approximately constant in time indicating that tunnels

grew in size primarily through lengthening and not widening (Fig. 7.4). Tunnel width

was significantly affected by worker size (Fig. 7.5; F2,60 = 16.167, p¡0.0001) and groups

of large workers created the widest tunnels, which were significantly wider than both the

control (p=0.0002) and small treatment (p¡0.0001) tunnels. The small worker and control

groups created tunnels which were not significantly different in width (p=0.522). The

probability distribution of the local width, w, evaluated along the center of tunnels was fit

by a log-normal function, P (w) = 1√
2πwσ

exp(− (ln(w)−µ)2

2σ2 ), for all treatments where and are

fit parameters (Fig. 7.4b; R2 > 0.98 for all treatment fits; See Table 7.4.1 for µ and σ.

7.4.2 Tunnel network properties

We measured the network topology to understand how the connectivity of the tunnel net-

works varied among worker treatments. Junctions where tunnels terminated or came to-

gether are called vertices and the tunnel sections that connected these vertices are called

edges [244]. The analysis included counting the number of edges and vertices and exam-

ining the functional relationship between the two. We also counted the number of edges

emanating from a vertex; this is defined as the vertex degree. Lastly the path length l, is

defined as the distance an ant must walk to traverse an edge.

The number of edges in the network, E, grew throughout each test (Fig. 7.3). In the final

network E was significantly affected by treatment (F2,60 = 11.001, p ¡ 0.0001). Although E

in the small and control treatments did not differ significantly (p = 0.436), E for the large

treatment was significantly less than E for both small (p = 0.005) and control treatments

(p ¡ 0.0001). The relationship between the total number of vertices and total number of

edges composing the network was linear, E = βv, with slope β independent of treatment

(See Fig. 7.5a; ANCOVA parameters for slope difference, F2,70 = 0.356, p = 0.702).
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Table 7.1: Mean (±s.d.) values of S. invicta tunnel network structure, topology and
activity among three treatments composed of groups of small, large and control workers
after 72 h of digging. Area is the total excavated area. Length is the total length of tunnels
and width is the mean tunnel width. The probability distribution function of the tunnel
widths was fitted by a log-normal function, where w is the local tunnel width and µ and σ
are fit parameters. The tunnel network consisted of edges representing tunnels and vertices
representing tunnel junctions. A connected component is a self-contained network in which
all vertices are accessible from the other. The number of surface entrances and connected
components did not differ among treatments. N12h is the number of subsurface ants at 12 h
and ⟨N⟩ is the average number of subsurface diggers over the duration of the test.

Treatment small large control

replicates 23 24 24

Spatial Area (cm2) 34.03±14.75 29.99±13.72 39.18±13.84
Length (cm) 159.17±61.73 119.17±51.07 186.04±70.28
Width (cm) 0.22±0.04 0.26±0.07 0.22±0.05
µ (Log-normal fit param.) -1.35±0.05 -1.07±0.03 -1.27±0.05
σ (Log-normal fit param.) 0.40±0.06 0.37±0.02 0.38±0.04
Mode[P (width)](cm) 0.22 0.3 0.24

Network Vertices 50.70±34.54 25.65±19.20 61.44±39.76
Edges 49.78±31.03 27.83±17.61 58.72±34.98
Connected components 5.13±3.40 4.70±2.65 5.24±3.72
Surface entrances 7.13±4.32 5.91±3.30 7.56±4.55

Activity N12h 5.00±4.72 4.52±3.38 9.76±7.30
⟨N⟩ 8.46±6.49 7.01±4.59 10.96±6.74
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Tunnel networks were often composed of several connected components-each of which

were independently connected sections of the tunnel network that did not merge below

the surface (See Fig. 7.2 for example). The edge to vertex relationship for the connected

components was linear with slope independent of treatment and slightly larger compared

to that of the entire network (β = 1.13 ± 0.01; ANCOVA parameters for slope difference,

F1,351 = 0.003, p = 0.957). Treatment did not significantly affect the size of the largest con-

nected component, measured as the number of edges in the connected component normalized

by the total number of edges (Fig. 7.5; F2,60 = 1.194, p = 0.312). The largest connected

component with respect to the total network size was on average, vconn/v = 0.56±0.21, with

a value of 1 representing a completely connected network and a value near 0 representing

many unconnected components.

The vertex degree probability distribution, P(k), significantly differed among the three

treatments for the k = 1 vertices only (Fig. 7.5; F2,60 = 9.565, p = 0.0002). Vertices with k

= 1 comprised tunnel ends and surface entrances. Networks created by large worker groups

were composed of slightly more degree 1 vertices compared to the small (p = 0.005) and

the control (p = 0.0003) treatments. Differences between treatments for k ¿ 1 were not

significant (k = 3, F2,60 = 0.521, p = 0.597; k = 4, F2,60 = 1.167, p = 0.319). The tail

of the degree distribution was linear on a semi-log axis for all three treatments indicating

a possible exponential decay of P(k) at large k (inset Fig. 7.5). Furthermore, the number

of surface vertices (entrances) did not significantly differ between treatments (Table 7.4.1;

F2,60 = 1.134, p = 0.328).

The probability distribution of path lengths was fit by an extended power law func-

tion, P (l) = Q(l + l0)
δ, for all treatments (Fig. 7.5). The constant was constrained

Q = −(δ + 1)(l0)
δ+1 due to the normalization condition of the probability distribution.

The fit parameters for P (l) between the control and small worker treatments did not differ

significantly (small vs. pooled, F48,44 = 0.659, p = 0.920; control vs pooled, F46,46 =

1.577, p = 0.063). However the large worker treatment did significantly differ from the

pooled small-control data (F54,92 = 2.469, p ¡ 0.0001). The fit exponent, δ represents the

probability to find longer tunnels in the network and a decrease in corresponds to a decrease
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in this probability (Fig. 7.5). Thus, over time, all tunnel networks experienced a “shorten-

ing” effect in which the path length between vertices decreased. This was also observed in

the mean path length (Fig. 7.3) which decreased over time.

We compared P (l) for the small and control networks at 48 hours and the large networks

at 72 hours and found that they did not significantly differ (small vs. pooled, F103,43 = 1.414,

p = 0.101; control v pooled, F99,47 = 1.058, p = 0.423; large vs. pooled, F94,52 = 0.843,

p = 0.766). Thus the exponent δ(t) is similar in shape for all treatments but the large

worker treatments lag behind the smaller and control worker treatments in time by roughly

12-24 hours. A similar time lag of the large treatment network was also observed in the

number of edges (Fig. 7.3) and tunnel length. This indicates that topological features of

large treatment networks were similar to the other treatments but grew at a slower rate.

7.4.3 Subsurface workers during digging trials

We measured the number of workers below the surface in the captured images at 12 hour

increments during tunnel excavation (Fig. 7.6). The number of workers subsurface after

12 hours differed significantly among the treatments (F2,60 = 12.6195, p ¡ 0.0001). The

control treatments outnumbered the small (p = 0.0002) and large (p = 0.0002) treatments

in quantity of subsurface workers (F2,60 = 12.6195, p ¡ 0.0001). However the number of

subsurface workers did not differ significantly between large and small treatments (p =

0.9996). In contrast, after 72 hours of digging, the number of ants subsurface was not

significantly different among treatments (F2,60 = 2.4576, p ¡ 0.0942). Linear regression

indicated that the number of subsurface ants increased over time for all treatments (small:

R2 = 0.07, N = 138, test against zero slope, F1,136 = 9.768, p = 0.002; control: R2 = 0.03,

N = 150, test against zero slope, F1,148 = 4.77, p = 0.03; large: R2 = 0.15, N = 138, test

against zero slope, F1,136 = 24.16, p ¡ 0.0001).

To determine how worker activity affected digging performance we computed the mean

number of subsurface workers ⟨N⟩ (over the three day tests). The mean number of workers

subsurface during the digging tests was linearly correlated with the final tunnel area, A =

α⟨N⟩ , (α = 3.62 cm2, R2 = 0.3) with independent of treatment (ANCOVA test for
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difference in slope among treatments; F2,64 = 1.210, p = 0.305), see Fig. 7.7.

7.5 Discussion

Our results indicate that despite a factor of three in body size (four-fold difference in mass),

excavation rate was insensitive to fire ant size. However, the control treatments (containing

a mixture of approximately 70% small and 30% large ants) significantly outperformed the

large treatments. We now discuss the morphological, topological, and behavioral differences

exhibited by the three treatments during tunneling trials.

7.5.1 Tunnel area, length, and width

Groups of large and small workers excavated tunnel networks which did not differ signif-

icantly in total tunnel area (Fig. 7.3). This indicates that worker size does not have an

effect on digging proficiency and S. invicta workers of all sizes are capable of excavating

or repairing tunnels. This lack of difference in the areal rate of tunnel growth between the

large and small workers is surprising given the differences in body size. In addition to larger
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mandible width in larger ants, a scaling argument that considers both metabolic energy

consumption [245] and stride frequency versus body mass predicts that the average walking

speed of an ant increases as (body mass)1/4 [246]. Experiments across 24 ant species are

consistent with this scaling. Thus, although larger S. invicta workers might walk faster and

carry larger loads, the observation that their digging performance is comparable to that of

small workers suggests that behavioral factors in addition to body size are likely important

in determining excavation rate.

We observed slight morphological differences in tunnel shape between the large and

small treatments. Larger workers built wider and, thus, shorter tunnels compared to small

workers. The tunnel width however was only 20% wider in the tunnels of the large workers

compared to the small and control treatments (Fig. 7.4). This was also surprising given

that the head width of large workers is approximately three times that of the small and

control treatments.

Control groups significantly outperformed large worker treatments from the same colony,

excavating tunnels of approximately 35% greater final area. The proximate cause of this

difference was that the initial growth rate of the control treatments was nearly twice that

of the large treatments and thus control treatments took an early lead in tunnel growth

and maintained it for the duration of the experiment (Fig. 7.3). After 24 hours the digging

rate was similar among all treatments. We posit that the high initial digging rate of the

control treatments was due to the large number of digging ants observed in the initial 12

hours (Fig. 7.6). It is noteworthy that tunnel shape did not significantly differ between

the control and small treatments. This may be due to the fact that natural body size

distribution of S. invicta colonies is skewed such that smaller workers of head width less

than 0.75 mm account for 70% of the colony [247, 236].

7.5.2 Worker activity

The final tunnel area and length were positively correlated with the number of ants observed

below the surface over the duration of the experiment (Fig. 7.7). The slope of the best fit

line to this data was independent of treatment. These observations suggest an explanation
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for the variance in final tunnel area-larger tunnel networks were created when more workers

participated in the digging process. Such a relationship has also been observed in a field

study [217]. The independence of slope also indicates that individual ants excavate at

approximately the same rate. From the best fit slope, we estimated that the upper limit

digging rate for a single S. invicta worker was 0.05 cm2/hr independent of worker size.

For comparison, the worker excavation rate we observed for S. invicta workers was similar

to those observed for other ant species in similar laboratory experiment (Messor sancta

0.024 cm2/hr [131], Lasius niger 0.027 cm2/hr [230]) and field study (Pogonomyrmex badius

0.0156 cm2/hr [217]). We note that our estimate is an upper bound of the digging rate

because we were likely underestimating the number of digging workers in our measurement.

It is unclear why relatively few ants (20%-30%) participated in excavation in our exper-

iments. A previous study of laboratory colonies of S. invicta reported that workers were

only active for 10 out of every 30 minutes [248]. However traffic and overcrowding at the

tunneling site may also be important in determining the number of workers that participate

in digging. Studies of worker flow on foraging trails [249, 250, 251] and within artificial

nests have shown that traffic dynamics are important in organizing worker movement [41]

and determining tunnel size and branch locations [252, 253]. Furthermore the diameter of

foraging tunnels in S. invicta nests in nature decrease in size away from the nest, which may

reflect a decrease in worker traffic at these distances [140]. Thus the constraints imposed

by locomotion within confined and crowded environments including traffic and multi-ant

interactions could be important in ant nest construction and warrant future study.

7.5.3 Tunnel network topology

Several topological properties such as the edge to vertex ratio and degree distribution of the

tunnel networks did not depend on worker size. The number of edges increased linearly with

number of vertices with a slope slightly greater than 1 for both the whole network and the

connected components. In a previous study of tunnel networks of the ant Messor sancta,

the edge-vertex relationship followed a power-law (E ∝ V 1.31) [133]. We hypothesize that

the difference in edge-vertex relationship between M. sancta and S. invicta is a reflection
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of the different excavation rules individual ants follow during tunnel construction.

The network topology of all three treatments was similar when rate effects were removed.

The rate of tunnel lengthening of the large treatments lagged behind that of the small and

controls groups and after 72 hours the large worker networks contained approximately the

number of edges as in the small and control worker networks 12-24 hour earlier. This slower

growth rate of the larger worker tunnels resulted in slower overall network edge-vertex

growth in the large treatment networks and when this time delay was accounted for, the

differences in the edge number and path length distribution, P (l) vanished among the three

treatments. It is likely that large workers exhibited this time lag because of a slower initial

worker recruitment leading to slower tunnel growth. The invariance of the tunnel networks

among the three treatments when properly rescaled by the different tunnel growth rates

suggests universal excavation behaviors among fire ant workers of all sizes.

7.5.4 Conclusion

Our study revealed that S. invicta workers of all body sizes constructed subsurface tun-

nel networks with comparable spatial and topological features. The distribution functions

characterizing the tunnel morphology were similar across treatments, and the topological

network measures were conserved across worker size as well. The control group created

the largest, most complex nests, largely a result of more rapid initial digging. Thus our

results provide support to the hypothesis of adaptive demography such that the worker

size distribution of a colony is tuned to optimize ”success”, of which tunnel construction

is a critical aspect. In our system the natural (control) distribution of worker sizes within

nests was most effective at undertaking tunneling behavior, and the behavioral programs

directing tunnel construction are similar across workers of different sizes. We also found

that a large percentage of the worker population was inactive at any time during digging

experiments. Consequently, nest size was regulated by the fraction of workers in the group

that participated in digging.

While our study focused on digging in a controlled substrate composed of slightly wet

particles, we note that fire ants are found in a diverse array of terrains and soil types and it
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is known that the nest properties are dependent upon the soil properties [127]. For instance,

in fire ant nests in nature, the above surface nest mounds created from cohesive soils like

clay are substantially larger than mounds created from sandy soils [127]. It is likely that the

soil properties determine the stability and size of these structures; for instance the cohesive

soils are held together through interparticle capillary forces or van der Waals forces and

thus stick together strongly [226]. Such observations indicate that future study is required

to elucidate the factors important to tunnel excavation in varied soil types.

Finally, the division of labor among worker groups in social insect colonies is a complex

process, and understanding the behavioral rules that govern task allocation is important

to understanding the biology of social insects. The division of labor and problem solving

abilities of social insects has already led to significant technological advances such as ant

colony optimization algorithms [254]. Therefore detailed understanding of the tunnel navi-

gation and cooperative excavation abilities by social insects may provide principles for the

development of autonomous subterranean robot teams. Such autonomous systems could

work together to excavate or navigate in subterranean environments like those found in

disaster sites or after earthquakes. The development of robotic excavators may shed light

on the important constraints of cooperative tunnel excavation and thus provide further

information about the challenges that tunneling ants must overcome.

7.6 Appendix

7.6.1 Details of experimental apparatus

In figure 7.8 we show an image of the interior of the octoganal structure which holds the

digging arenas. The structure consisted of four main components: (1) A digital camera

was mounted in the center of the octagon. (2) A stepper motor controlled the rotational

orientation of the camera and could be rotated 360◦. (3) Quasi two-dimensional digging

arenas were placed on the faces of the octagon shape and mounted to the structure with

C-clamps. (4) Rows of LED lights were mounted behind the digging arenas and they were

turned on and off using a relay controlled by the parallel port output from a computer.
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Figure 7.8: Image of the inside of the octoganal mounting structure for monitoring ant
tunnel construction.
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Figure 7.9: Soil pellet size as a function of ant head width. Data reproduced from [236].
Dashed line is a fit to the equation V = mw3 where w is head-width.

7.6.2 Previous evidence of ant size effect in carrying capacity

In a previous study E.O. Wilson monitored fire ant workers removing gravel pellets from

the entrance of their nest and studied the relationship between pellet mass and ant head

width [236]. To relate volume of particle carried with the ant head width we have have

re-plotted this data as pellet volume versus ant head-width (Fig. 7.9) assuming a constant

density of gravel as 3 g/cm3. We find that the data follows a cubic relationship between

head-width (w) and volume, V = mw3.

If we assume particles are spherical this implies a linear relationship for head-width and

particle cross-sectional dimension,

4

3
πR3 = mw3 (7.1)

R =

(
3m

4π

)1/3

w (7.2)

Thus this evidence suggests for solid particles, larger workers carry larger loads determined

by their mandible width. It is not clear if this relationship holds when the loads to be

carried are amorphous and deformable, as is the case for wetted soil pellets.

7.6.3 Example tunnel networks

In figure 7.10 we show final tunnel networks from different digging experiments among the

three treatments.
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Figure 7.10: Examples of tunnel networks from different replicates and treatments. Hori-
zonal rows are replicates from treatment labeled on the left.
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CHAPTER VIII

LOCOMOTION IN TUNNELS

8.1 Summary

Movement emerges from effective interactions of a locomotor with its environment. Prin-

ciples of biological terrestrial locomotion have been discovered on unconfined vertical and

horizontal substrates and have inspired high-performing robots. However a diversity of or-

ganisms construct, inhabit, and move within confined spaces. Such animals are faced with

locomotor challenges including limited limb range of motion, crowding, and visual sensory

deprivation. Little is known how these organisms accomplish their locomotor tasks, and

such environments challenge human-made devices. Here we study the confined locomotion

of the fire ant Solenopsis invicta which constructs subterranean tunnel networks (nests).

Laboratory experiments reveal that ants construct tunnels with diameter, D, comparable to

body length, L = 0.35±0.05 cm. Ants achieve rapid locomotion within these environments;

their tunnels allow for effective limb, body, and antennae interaction with walls which fa-

cilitates rapid slip-recovery. To examine the limits of slip-recovery in artificial tunnels we

perform perturbations consisting of rapid downward accelerations, which induce falls. Be-

low a critical tunnel diameter, Ds = 1.31± 0.02 L, falls are always arrested through rapid

deployment of appendages and antennae which engage with tunnel walls to jam the falls.

Ds is comparable to the size of incipient nest tunnels (D = 1.06 ± 0.23 L) supporting our

hypothesis that fire ants engineer their environment to simplify their control task when

moving through the nest, likely without need for rapid nervous system control. We pre-

dict that such a strategy could allow swarming robot teams to construct and move within

confined, crowded environments. ∗

∗This chapter is reproduced from the manuscript “Climbing, falling, and jamming in subterranean ant
locomotion” which is currently in review in PNAS
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8.2 Introduction

Terrestrial animals and increasingly robots move in a diversity of environments, including

running across flat landscapes [255], swimming in sand [74], climbing vertical surfaces [256],

and squirming through cracks [257]. Much progress in discovery of locomotor principles

has been made by simplifying the environment into relatively featureless, flat and uncon-

fined spaces [258]. Recent appreciation of the importance of mechanics in the interaction

with the environment has helped understand how stable and robust movement emerges as

a result of appropriately tuned dynamics of foot-ground interaction [259, 260]. For example

rapid perturbations to locomotion may be corrected by so-called “preflexes” [261] in which

mechanical design of the limb and appropriate kinematics enable rapid recovery from per-

turbation [262, 263, 264]. The incorporation of these principles into the design of robotic

devices has led to advances in robotic, legged, locomotors [265]. However when robots op-

erate in more complex environments than planar landscapes mobility tends to be limited

[266]. Thus understanding how organisms can accomplish spectacular locomotor feats and

why robots often fail requires understanding of locomotor-environment interactions [142].

Many subterranean-dwelling organisms live and move within confined spaces in their en-

vironments [267, 268]. The morphology [269, 126] energetic costs [270, 271, 272, 273], and

genetic basis [274, 275] for creating subterranean burrows and nests, which are examples of

the ”extended phenotype”[276], have been studied across a diversity of organisms. However,

the constraints on locomotion of individuals and groups inhabiting these environments are

largely unexplored. Rapid locomotion within the confines of a subterranean nest is essential

for inhabitants to escape or respond to predators [267, 277], evacuate during flooding [278],

or transport resources and information effectively. However lack of vision [267, 268, 279],

limited limb mobility [267], and excessive crowding among individuals [280] would seem-

ingly challenge efforts at rapid locomotion within confined environments. Thus we seek to

understand how such environments influence the mobility and stability of animals moving

within them.

Ants are excellent organisms with which to study confined locomotion. Many ant species

construct large underground nests through the excavation of soil [125]. Nest shape and
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size-in addition to ant shape and size-varies widely across species but typically consists of

vertical tunnels that interconnect larger chambers used for food storage and brood rearing

[126, 125]. A majority of an ant colony worker’s life is spent below the surface within the

nest-tending to brood or performing routine nest maintenance-and only near the end of

life do worker ants forage above surface [125, 281, 282, 127]. The evolutionary pressure of

subterranean life has led to several adaptations among ants such as partial or complete loss

of vision in some species [283, 284] and long-range acoustic [285, 286, 287] and chemical

communication systems [283, 288, 289]. However, almost nothing is known about how ants

move through their confined nest environments.

We hypothesize that ants have developed strategies and adaptations for rapid movement

within nests, particularly during crucial times such as nest reconstruction or evacuation. A

species that frequently must contend with evacuation and reconstruction of their nest is the

red imported fire ant (Solenopsis invicta). Fire ants originate from the Pantanal wetlands

in South America, which are subject to seasonal rains and flooding [127]. Fire ant colonies

construct large and relatively complex subterranean nests [127] which can be up to 2 m

deep and contain greater than 50 m in length of tunnels [138]. As an invasive species in the

Southern United States fire ants have demonstrated their proficiency at constructing nests

within a wide range of soil conditions [127]. Construction of such large nests demands the

ability to move repeatedly and stably within the nest confines while transporting soil.

In this paper we seek to identify principles of locomotion within confined environments

which challenge animals with an entirely different set of locomotive constraints than in

above-ground study. We investigate the effects of subterranean confinement (tunnel diam-

eter) on the mobility and stability of a subterranean organism: the fire ant (Solenopsis

invicta). We show that climbing in confined environments is a robust mode of high-speed

locomotion, in which slips, falls, and frequent collisions with the environment do not neces-

sarily prevent high-speed ascent and descent. We also demonstrate an unusual behavioral

response of fire ants when dislodged from the tunnel wall-the use of antennae as limb-

like appendages to arrest and jam falls. Overall, we find that stable locomotion within

subterranean environments is a function of the local tunnel morphology within which the
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organisms move.

8.3 Methods and apparatus

8.3.1 Ant collection and care

The S. invicta colonies were collected during the spring of 2012 from roadsides outside

of Atlanta, GA. Nests were excavated and transported to the laboratory and ants were

separated from the soil using the water drip method [290]. Colonies were housed in open

plastic bins in a temperature controlled room with 12 hour on, 12 hour off lighting. Colonies

were provided ad libitum water and insect larvae as food.

8.3.2 Digging experiments

The digging arenas were placed on a rotating stage controlled by a stepper motor (Lin Engi-

neering) which was located 76 cm from a 110 kVp, 3 mA X-ray source. An image intensifier

was located 103 cm from the source and a Phantom v210 camera (Vision Research) was

used to visualize the X-ray images. Samples images were taken at angular increments of

0.9 degrees. We chose tunnels that were not adjacent to a wall (Fig. 8.1) and extracted the

tunnel shape using the Chan-Vese active contours method [291]. Tunnel properties were

measured using the Matlab image morphology toolbox. We computed the distance trans-

form of the tunnel shape using the Matlab command bwdist and considered the maximum

value of the distance transform as the effective tunnel diameter.

8.3.3 X-Ray CT digging experiment

Groups of fire ant workers were challenged to dig tunnels in the laboratory. 8.2 cm diameter

cylindrical containers (Fig. 8.1) were filled to a depth of 12 cm with a dry granular material

of particle size 250 ± 50 µm (Jaygo Inc., Dragonite Soda Lime Glass beads, #5210). Arenas

were first fully immersed in water to saturate the soil and then allowed to drain for 1 hour.

Wet soil is known to induce digging in natural fire ant nests [127]. Workers were introduced

into the arena and were allowed to dig for 24 hours with a constant light source maintained

above to stimulate digging. We evaluated tunnel the tunnel cross-section shape at various

depths among 10 separate digging trials, each containing multiple tunnels, which resulted
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Figure 8.1: Overview of the X-Ray CT digging trials. a) Digging arena consisted of a
circular plastic, or aluminum container of diameters 8.2 or 3.8 cm, filled to a height of
approximately 12-15 cm with a simulated soil of monodisperse 50, 210, or 810 µm diameter,
wetted, glass beads. b) A horizontal cross-section from X-Ray CT reconstruction at a depth
of 6.8 cm from the surface. Top and bottom arrow indicate two tunnels not adjacent to
arena wall. Four other tunnels are present but against the tunnel wall. c) Cross-section of
the top (left) and bottom (right) tunnels from (b) with extracted tunnel shape from active
contours method shown as green (left) and purple (right) lines.

in 2,262 observations of tunnel diameter.

In a second set of nest construction experiments we † varied soil moisture content and

particle size. We used collections of glass beads of diameter 50 µm, 210 µm, or 595 µm

which were mixed with water and prepared at moisture contents of 1,3,5,10,15, and 20%

(measured by mass). Supplementary Table 1 summarizes particle size distribution. Digging

substrate was placed in a 3.8 cm diameter digging arena filled to a height of 14.5 cm. A

1 cm diameter plastic tube inserted into the center of the surface constrained the workers to

initiate digging away from walls. We generated uniform compaction of the moistened media

by sieving the wetted granular material through a mesh grid with 1 mm grid spacing using

VTS 500 single vibrator system. Groups of 100 workers were introduced into the digging

arenas and we evaluated tunnel shape in CT scans at 10, 15, and 20 hours. Eight separate

colonies were tested at each particle size and moisture content combination resulting in 185

excavation experiments. We measured tunnel depth and cross-sectional shape at a depth

of half the tunnel depth. We tested for the effect of particle size, water content, and the

†These experiments were performed by Daria Monaenkova. Daria and I both analyzed the data using
the analysis code I wrote.
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interaction (particle size)×(water content) using an analysis of variance in which colony and

test date were treated as random effects.

8.3.4 Climbing experiments

8.3.4.1 Arena experiments

Quasi two-dimensional arenas, 27 × 34 × 0.3 cm in size, were filled with the same wetted

granular material as described in Digging experiment 1 were prepared to allow for ant

visualization during locomotion (See [290] for details). A group of 150 ants excavated in

the simulated soil for 48 hours. We observed tunnel locomotion using a macro lens and a

Phantom v210 camera, capturing video at 500 Hz. We encouraged high speed ascent and

descent through ant-created tunnels by triggering an alarm response among the workers in

which we exhaled gently into the nest entrance at the top surface.

8.3.4.2 Glass tunnel climbing experiments

We used a simulated-nest environment to study ant climbing in smooth glass tunnels in

which we could view the interaction of all limbs and antennae with the climbing substrate

(See Fig. 8.2). An enclosed, light-proof box which contained a wetted porous floor (plaster

of paris) served as a nest, and housed 150-300 worker ants during the course of an ex-

periment. The simulated-nest was connected to a foraging arena through a series of nine

vertical observation tunnels ranging in inner diameter from 0.1 - 0.9 cm in increments of

0.1 cm. Tunnels were 10.7 cm long and we observed a 9.6 cm length of them. Tunnels were

illuminated by LED lights for visualization with a high-speed camera. Ad libitum water

and food were provided in the foraging arena which encouraged worker traffic to and from

the nest. A heat lamp was placed over the foraging arena to create a temperature gradient

between the “above-surface” foraging arena and the ”subterranean” simulated-nest. The

simulated-nest and foraging arena setup encouraged ants to freely traffic within the tun-

nels and allowed us to observe tunnel climbing while performing a natural, unperturbed

behavior.

Ant climbing posture was computed in Matlab in which we isolated the ant body from

the stationary background using an active contours algorithm [127]. We computed the
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vertically oriented bounding box of the ant-profile with the horizontal dimension of this

box representing xspan. Climbing ants could be found at any angular location along the

tunnel wall and thus we removed all runs in which ants were visualized from the lateral

sides. Furthermore in measuring horizontal limb span we only included ant-postures in

which the body axis measured from gaster to head deviated from the vertical by less than

10◦. This resulted in 483,525 observations of climbing posture.

8.3.4.3 Glass tunnel perturbation experiments

To observe the falling response of ants within tunnels we performed a perturbation exper-

iment. Glass tunnels were mounted to a vertical air piston maintained at 551 kPa and

controlled through a computer. The piston’s motion stopped upon impact with the mount-

ing plate and vertical motion halted in less than 2.5 ms. We calculated that the final

downward speed of the tunnels prior to impact was 0.66 m/s which suggests that ants were

subject to a mechanical perturbation of 26.9 g upon stopping.

Activation of the air piston was controlled by a computer program which monitored

motion in the upper portion of the tunnel region. When an ant was detected entering

this region a relay was activated which controlled a high-speed solenoid that engaged the

air piston. Simultaneously a trigger signal was sent to an AOS high speed camera which

captured 2 second perturbation-response videos at 1024x1280, 400 fps and 500 µs exposure

time. Analysis of perturbation experiments was performed using Matlab image analysis

tools. Users determined fall-distance, ant-length, ant-orientation, fall-time, and fall code

(successful arrest, no arrest, no fall) from the perturbation-response videos. We observed

2,268 perturbation-response experiments among worker ants from five of the six host colonies

(B - F).

8.4 Results and discussion

8.4.1 The shape and form of excavated fire-ant tunnels

To examine the interaction of fire ants with the tunnels that they constructed, we first

measured the size and shape of nest tunnels excavated by fire ant workers (body length L =

0.35 ± 0.05, N = 2,611 measurements) in three-dimensions in a laboratory experiment using
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Figure 8.2: Fire ants create and move through subterranean tunnels. a) Image shows fire
ant worker climbing within an ant-constructed tunnel against a clear glass pane. b) X-ray
CT scan reconstruction of a fire ant tunnel segment. b) Distribution of tunnel cross-sectional
diameter, D. c) Distribution of ant body length, L, (measured from tip of head to tail of
gaster) in laboratory climbing experiments.

an X-ray computed tomography (CT) system (See figure 8.2 and section 8.6.1). We allowed

isolated fire ant workers to excavate tunnels within an 8 cm diameter, and 12 cm deep,

volume of laboratory soil over the course of 20 hours. The tunnels were roughly circular

in cross section (Fig. 1b and SI) and that the effective cross sectional diameter within the

tunnels was, D = 0.37 ± 0.08 cm (N = 2,262 observations from 10 experiments).

To determine if soil-substrate had an effect on tunnel shape and size, we repeated this

experiment using different substrate combinations of particle diameter (50, 210, 800 µm) and

soil moisture content (1, 3, 5, 10, 15, 18, 20% by mass)‡. We challenged worker groups from 8

separate colonies to tunnel in each substrate combination and collected 168 separate X-Ray

CT tunnel excavation observations. We found a significant effect of both particle diameter

(F2,136 = 10.48, p < 0.0001) and soil moisture content (F 6, 136 = 5.38, p < 0.0001) on

excavated tunnel depth indicating that substrate had a strong effect on digging proficiency

‡These experiments were performed by Daria Monaenkova. Daria and I both analyzed the data using
the analysis code I wrote.
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along the top row and box-plots of tunnel diameter are plotted along the bottom row. We
find that particle diameter and water percent statistically affected tunnel depth, but did
not statistically affect tunnel diameter.

139



(Fig. 8.3. However we found no significant effect of soil moisture (F6,106 = 1.06, p = 0.39),

particle diameter (F2,106 = 1.56, p = 0.21), or the interaction of moisture and particle size

(F12,106 = 1.47, p = 0.15), on the tunnel diameter (see Supplementary Material). Tunnels

constructed in laboratory X-ray CT were similar in diameter to tunnels found in natural

fire ant nest mounds (0.44 cm; [139]), nest entranceways (0.3-0.4 cm,[138]), and incipient

nests (0.31 ± 0.01 cm; [292]), although tunnels deeper within the nest may be larger in size

(0.6 ± 0.3; [139]), due to higher traffic flow in these locations [139, 140]. Nevertheless, our

results demonstrate that fire ants show a relatively fixed behavioral program by building

tunnels of approximately the same diameter in a variety of conditions. This suggests that

the diameter of the tunnel could be important in fire ant locomotion.

8.4.2 Tunnel size effects on the biomechanics of confined-climbing

To investigate the biomechanics of locomotion within tunnels, we monitored fire ants climb-

ing within ant-constructed tunnels (Fig. 8.2) and smooth cylindrical glass tubes (Fig. 8.4).

We tracked the position of ascending and descending ants freely trafficking between a forag-

ing arena and nest through glass tubes of diameters, D = 0.1 - 0.9 cm (in increments of 0.1

cm). We will refer to these glass tubes as “glass tunnels”. In the glass tunnels, ants rapidly

ascended (1.98±0.75Ls−1, N = 1621 ants) and descended (2.28±0.70Ls−1, N = 990 ants).

The kinematic relationship between stride-frequency and speed (Fig. 8.4) was fit by the

function v = ax2+ bx for both the ascending (a = 0.039± 0.003Ls−1; b = 0.41± 0.01L) and

descending (a = −0.018± 0.005Ls−1; b = −0.49± 0.02L) climbs. The speed-frequency rela-

tionship of ascent did not significantly differ among the ant-constructed tunnels and the glass

tunnels of diameters, D = 0.3−0.4mm (comparable to that of the self-constructed tunnels;

F2,361 = 1.8150, p = 0.1643). We did however, find a small but significant difference in func-

tional form of the speed-frequency relationship during descent (F2,252 = 113.9, p < 0.001).

To test maximal performance within ant-constructed tunnels we induced an alarm response

among the colony by exhaling into the tunnel entrance. Within ant-constructed tunnels

ants rapidly descended (6.9 ± 2.1Ls−1; N = 21) and ascended (4.1 ± 1.8Ls−1; N = 45) at

speeds greater than observed in the glass tunnels and surprisingly were able to move at
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Figure 8.4: Climbing posture and antennae use in glass tunnels. a) Schematic of climbing
biomechanics experiment. b) Posture of ascending ant in a 6 mm diameter tunnel (left;
in normalized units D = 1.36 L) and in a 2 mm diameter tunnel (right; D = 0.60 L).
Left image shows posture variable, xspan, measured in experiment. Circle and white line
indicate distance from touch-down location of limb to petiole. c) Stride frequency and speed
relationship for glass tunnels (colored points) and ant-created tunnels (filled black circles).
d) Top: Speed versus D/L. Color indicates colony. Dashed lines are linear fits described
in the text. Blue box indicates the minimum predicted tunnel diameter an ant could fit
in. Bottom: Lateral limb-span (mean ± s.d.) as a function of normalized tunnel diameter.
Dashed line indicates constant limb-span of xspan = 1.04 ± 0.14 L independent of tunnel
diameter.
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speeds greater than 9 L s−1 within the confined, simulated nest environment.

Over the range of tunnel sizes, tunnel diameter had a weak but significant effect on

ascending speed (Top Fig. 8.4) as a function of D/L (v = m(D/L) + b; F-test for non-zero

slope, p < 0.001;m = 0.17±0.04L2D−1s−1, b = 1.73±0.07Ls−1). During descent in tunnels,

D/L did not have a significant effect on speed (F-test for non-zero slope, p = 0.10). We thus

hypothesized that the minimum tunnel diameter through which an ant can move is slightly

larger than the animal’s head width. Fire ant head width is 0.24 ± 0.01L [237] and this

sets the lower limit of the range of observable D/L values (Shaded blue box Fig. 8.4). Both

ascending and descending speeds near this lower limit (D/L < 0.5) appeared to sharply

decrease (Top Fig. 8.4) suggesting that only in the case of extreme confinement would we

observe a strong effect of tunnel diameter on ascending or descending velocity. Overall, this

suggests that ants move at a near constant upward and downward speed, over a wide range

of tunnel sizes, while freely trafficking within the nest.

Tunnel diameter had a significant influence on the ant’s climbing posture (Bottom

Fig. 8.4). Ants exhibited one of two stereotyped climbing postures: 1) within glass tunnels

of D > L, ants adopted a sprawled posture in which mid-limbs were extended laterally

away from the body (Fig. 8.4) and 2) within glass tunnels of D < L, mid-limbs were bent

and pointed posteriorly (Fig. 8.4). We determined the critical tunnel diameter at which

this postural transition occurs at by fitting the function

xspan =

 kD
L ifD < Dc

c ifD > Dc

(8.1)

We determined that in glass tunnels of diameter above Dc = 1.03 ± 0.01 L the lateral

limb-span, xspan, was independent of tunnel size (R2 ¡ 0.001) with mean value of xspan,

determined from fit parameter c = 1.04 ± 0.14 L (Fig. 8.4). In glass tunnels of diameter less

than Dc, limb posture was altered by tunnel confinement and xspan subsequently decreased

(Fig. 8.4). For comparison to ant-created tunnels, excavated tunnel diameter was D =

1.06± 0.23L. Thus ants modify their limb position depending on tunnel size, but maintain

approximately the same rate of ascent and descent despite these modifications. Furthermore

ants climbing within tunnels they construct are capable of utilizing their spread-limb posture
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Figure 8.5: Anterior extreme position (AEP) of the fore-, mid-, and rear-limb and limb
morphology. a) AEP from climbs in large and small tunnels in the fore-aft direction mea-
sured with respect to the ant petiole (White dot in Fig. 8.4b). b) Mid-limb morphology
showing tarsal claws and spiny hairs along the length of the limb.

which may have implications for locomotor stability.

The alteration of the mid-limb posture in smaller tunnels suggests that a transition

occurs in the direction of locomotor force production by the mid-limb. In the sprawled

posture, mid-limb tarsi contact-forces pulled towards the body and the tarsal hooks and

adhesive pads are likely engaged. In contrast, when the limb is in the compact posture,

the limb pushed down and away from the body to generate forward thrust. In the compact

posture, to generate thrust force, it is likely that the rows of 50-350 µm long spiny hairs

along the limb (Fig. 8.5) are utilized to engage asperities in the climbing substrate and

allow the limb to push. Such multifunctional limb design has been previously shown to aid

in rapid locomotion on horizontal substrates through the engagement of spiny limb hairs

with rough surfaces [293]. This suggests that the mid-limb changes its motion and function

depending on tunnel diameter.

8.4.3 Slip recovery through rapid jamming

Fire ants possess a pair of elbowed antennae capable of a wide range of articulated motion

about the head (Fig. 8.6). Antennae are primarily considered sensory organs used for
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Figure 8.6: Antennae use in confined locomotion. a) Image of ant descending in a tunnel
with tracked position of antennae tips shown in purple. D = 3mm. b) Stepping and
antennae contact diagram for a vertical descent in a tunnel. Light and dark blue highlight
limbs that form alternating tripods during locomotion. Time of antennal contact, Tc, and
time free, Tf , are highlighted. c) Probability distribution for both Tc and Tf .

144



0

-0.5

-1.0

y
 (

cm
)

θ
 (

d
eg

.)

Time (s)

0 1.00.2 0.4 0.6 0.8

0

40

-40

a)

b)

a

b

θ

Figure 8.7: Kinematics and perturbation-recovery during tunnel climbing. a) Vertical
position of ant while descending. b) Body angle (θ) with respect to tunnel axis descending
climb. Two slip-recovery events are highlighted by vertical gray lines. During slip events
antennae and limbs are jammed against the wall and the body pitches into the tunnel face
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tactile, chemical, and acoustic sensation [125]. While ascending and descending, ants rapidly

placed antennae in contact with the tunnel walls (Fig. 8.6). In the glass tunnels, antennae-

wall contact time was Tc = 29 ± 23ms (Fig. 8.6; N = 1840 contacts from 54 climbs)

during head-first descent. The time between contacts was Tf = 82 ± 81ms (Fig. 8.6).

The rapid and repeated antennae-wall contact is important for sensing the subterranean

environment. However observations of ants slipping within glass and natural tunnels led

us to hypothesize that these sensory appendages could also have important biomechanical

functions for climbing in confined spaces.

During high-speed ascent and descent, ants exhibited slips that were rapidly corrected

for by placing antennae and limbs against the tunnel surface (See Fig. 8.7). Ants rapidly

arrested short downward slips (in which the instantaneous downward velocity exceeded 1.5

cm s-1) within 82±21ms (N = 456 slips among 54 individuals) within glass tunnels. During

head-first slips, antennae were placed against the tunnel wall prior to arrest in 92% of the

observed slips (422 antennae contacts out of 456 slips). Excluding slips in which antennae
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began in contact with the wall, the time between slip onset and antennae-wall contact was

32 ± 22ms (N = 265). The observations indicate that antennae are rapidly and readily

used for slip-correction when climbing in confined space. In the case of larger slips, the

antennae deformations also suggest that antennae provide significant mechanical support

to the falling ant. These observations illustrate that antennae are more multi-functional

than previously thought, and play a significant role in locomotion stability when climbing

in tunnels. Morphological adaptations to subterranean life are well documented[294]; here

we have observed for the first time that fire ant antennae-which are evolved from ancestral

arthropod limbs [295]-retain partial functionality as locomotion appendages. Antennae can

act effectively like 7th and 8th limbs to arrest falls.

Rapid fall arrest while bracing antennae against a tunnel wall relies on the ability to

quickly jam limbs and body against opposing locations along the tunnel wall. Thus we hy-

pothesized that the ability to rapidly arrest slips through body-jamming would be sensitive

to tunnel diameter. To test this hypothesis we subjected ants climbing within glass tun-

nels to perturbations consisting of a rapid downward translation of the tunnels (Fig. 8.4).

High speed perturbation-response experiments challenge the fastest neural response times,

and thus help to determine the role of body kinematics and morphology in rapid locomo-

tion stabilization [262, 264, 296, 297]. Glass tunnels were mounted to a vertical air piston

maintained controlled through a computer. The piston translated the tunnels downwards

0.5 cm at which point the motion was stopped in less than 2.5 ms upon impact with the

mounting plate. The final downward speed of the tunnels prior to impact was estimated to

be 0.66 m/s which suggest that ants were subject to a mechanical perturbation of ≈ 27g

upon stopping.

We found that 52% (1092 falls out of 2584 perturbations) of the perturbation experi-

ments did not lead to ants being displaced from the tunnel wall (Fig. 8.8). This indicates

that the fire ant tarsi and adhesive footpads are robust to substantial perturbations, con-

sistent with other measurements of the ant’s adhesive strength [298, 299]. However, dis-

placement did occur in 48% of experiments, and the outcome of perturbations was strongly

influenced by the interaction of ant tunnel size.
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Figure 8.8: a) Number of observations from perturbation experiments. b) Probability to
fall during a perturbation experiment as a function of D/L. Red line is logistic fit described
in text.

We found that tunnel diameter, with respect to ant body length, had a significant effect

on the probability to fall during a perturbation experiment, with smaller tunnels aiding in

the ants perturbation resistance (Fig. 8.8). The probability to fall during a perturbation

doubled from 36% when D < 2.28L, to 73% when D > 2.28L. The high resistance to

perturbation in tunnels of D ¡ 2.28 L was likely due to the ability of fire ants to robustly

engage surfaces. When climbing vertical planar surfaces, animals have to contend with

gravity which, because the center of mass is offset from the climbing surface, generates an

overturning moment on the animal which must be overcome. In contrast, when climbing in

small tunnels, ants may be able to minimize torque induced gravity on the body by placing

limbs laterally against walls and thus keeping the center of mass in the same vertical plane

as limb contact points.

Ants perturbed from the tunnel wall either arrested their fall within a vertical distance

y, or fell to the tunnel bottom (Fig. 8.10). Arrest distance, y, increased with increasing

tunnel size normalized by bodylength, D/L (Fig. 8.9). The upper envelope of y (dashed

line in Fig. 8.9) increased linearly with a slope 6.7 ± 0.7 cm (R2 = 0.95). This relationship

can be understood through a kinematic argument: to arrest falls ants extend limbs and

antennae towards tunnel walls which are a further distance away within larger tunnels, and

result in longer fall distances (Fig. 8.9).
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D(L). Limb-span is constant above D > 1.3 L with max(xspan) = 1.33±0.22 L (dashed line
shown).

The probability to arrest a fall, parrest, within a tunnel of size D/L decreased from 1 to

0 as D/L increased. We fit parrest to a logistic function, parrest =
1

1+exp(Ds−D
L

)
(Fig. 8.10)

and found the cutoff tunnel diameter, Ds = 1.31±0.02 L ( = -10.54 ± 1.76), at which arrest

probability decreased to below 50%. Within ant-constructed tunnels (of mean diameter 1.06

L; Bottom Fig. 8.10) we predict that 93% of falls will be arrested. This demonstrates that

ants display a high degree of climbing stability within tunnels of equal size to those they

create (1.06 L); however an increase in tunnel diameter by 50% reduced arrest probability

to less than 5%.
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We hypothesized that tunnel diameter would limit the ability to recover from falls

through a, ”jam-arrest” mechanism, within tunnels. Thus we expected that, Ds, was gov-

erned by morphological limitations of ant limb use. We measured the lateral limb-span,

xspan, for free-falling ants (Fig. 8.11 and found that ants extended limbs maximally to a

width of max(xspan) = 1.33± 0.22L independent of tunnel size when D > 1.3L. This mea-

surement is consistent with the typical mid-limb span of fire ants 1.31 ± 0.09 L reported in

the literature (See (45)) and suggests ants are extending limbs as much as possible to re-

engage the tunnel wall while falling. In tunnels whose diameter exceeded the physical reach

of the ants, D > 1.3L, ants were largely unable to engage walls and the arrest probability

decreased substantially in tunnels above this diameter.

We return to the digging experiments in which groups of ants constructed tunnels to

understand how constructed tunnel size relates to stability in confined spaces. The average

diameter of tunnel created by ants across all excavation experiments was found to be D

= 1.06 ± 0.23 L. Thus we find that fire ants construct tunnels which facilitate rapid loco-

motion through the enablement of slip-recovery by antennae and limb jamming, without

hindering limb kinematics. Many other factors are likely important in the determination

of the equilibrium nest tunnel size-such as traffic, food transportation requirements, ven-

tilation. However during incipient nest construction, such as after a flood, we expect that

speed of locomotion and subsequently excavation is important to survival.

8.5 Conclusions

We have shown here that fire ants inhabit and construct tunnels of a size which enable

climbing stability and slip recovery. The ability for organisms to offload locomotion control

to their environmental structures represents a new paradigm and a novel example of the in-

tegration of the organism’s extended phenotype. Fire ants achieve rapid motion within their

nest through the use of multi-functional limbs and antennae to effectively engage surfaces

within their constructed environment. The functionality of antennae as load-bearing, loco-

motor appendages is a surprising result, one which highlights the importance of studying

locomotion within the context of the organism’s natural environment.
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We propose that the construction of control surfaces suited to the locomotors body size

and limb kinematics reduces locomotion control requirements within subterranean environ-

ments and may be a general feature of robust control within organism-engineered substrates

such as tunnels, trails, or burrows. A universal scaling of burrow cross-sectional area with

body-length[269]-sampled across a wide array of organisms varying by over six orders of

magnitude by mass-gives evidence of the commonalities of locomotor constraints among

subterranean animals. Thus the robust locomotor control strategies for subterranean envi-

ronments we describe here for fire ants may extend to a diversity of animals. We also expect

that our biological discoveries will provide inspiration for and simplify control in swarming

robotic devices that will have to move within confined environments such as search and res-

cue zones. In addition, we speculate that future robot teams could enhance survival in harsh

terrestrial and extraterrestrial environments though collective construction of appropriately

engineered nests.

8.6 Appendix

8.6.1 X-Ray computed tomography

8.6.1.1 Overview

These experiment use x-ray imaging and computed tomography (CT) volume reconstruction

to visualize the three-dimensional growth of ant nests in time. X-ray CT scanning equipment

is now standard in medical diagnosis and research and thus there is a wealth of literature

and information available. X-ray imaging equipment is becoming increasingly inexpensive

and thus more accessible to experimentalists.

8.6.1.2 X-Ray image collection

In this study we utilized a fluoroscopy x-ray system. This system was configured in a cone-

beam CT geometry in which x-ray photons are emitted from the source (treated as a point

source) and pass through the sample and terminating on the face of a two-dimensional

image intensifier. X-Ray computed tomography (CT) requires three components: an x-ray

source, an x-ray imager, and a means of rotating the sample with respect to the imager.

In some cases, primarily in medical use, the the x-ray source and imaging equipment are
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rotated around the sample. In medical and laboratory x-ray applications, x-ray photons are

generated through Bremsstrahlung in which electrons are accelerated towards a (typically)

tungsten target where they are rapidly decelerated by the proton heavy nucleus of the

tungsten. Two parameters are important in x-ray generation by this means: the current

and the electric potential. The number of electrons being decelerated, and thus the photon

intensity of the x-ray beam, is controlled by the current measured in milli-amps (mA).

The speed of the electrons as they reach the tungsten target, controlled by the electric

potential of the accelerator, determines the energy spectrum of the resultant x-ray beam.

The potential is measured in peak kilovoltage (kVp) and can range from 10 - 120 kVp.

On the other side of the sample is the imaging system, the image intensifier (IIT) and

high-speed Phantom v210 camera. The image intensifier converts x-ray photons to visible

light photons which are imaged by the high-speed camera. The camera uses a 12-bit analog-

digital converter to generate 12-bit pixel depth grayscale images. Since 12-bit pixel depth

is not a standard format we up-convert to 16-bit lossless video and images for our data

capture.

In the center of the CT system is a stepper motor which controls a rotation stage capable

of continuous rotation. The stepper motor is connected to the sample mount through a

20:1 planetary gearbox which eliminates any backlash and vibration which would have been

introduced through the stepper. The stepper motor rotates the sample at a rate of 72◦/s (1

rotation every 5 seconds) and we record video at 80 Hz resulting in 400 images per rotation

and an angular resolution of 0.9◦. Rotation and frame rates were carefully chosen such that

every images from multiple rotations are exactly shifted by 400 images in the video and thus

we can average over several rotations to reduce noise. We collect videos of 10 rotations and

average each of the 400 angular locations with the 10 replicate images from that rotational

position.

X-ray’s interact with matter in a variety of ways, including absorption and scattering,

but in general a sample of thickness l will attenuate an x-ray beam given by the Beer-

Lambert law

Iout = Iin exp(−
l

λ
) (8.2)
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Figure 8.12: X-Ray computed tomography apparatus. (1) X-Ray source with collimator.
Beam is directed to the right in the image. (2) Stepper motor controlled rotation stage. (3)
Ant nest on top of rotating stage. (4) Image intensifier. (5) Phantom v210 camera.

where λ is the attenuation coefficient of the material. In figure 8.13 we show the atten-

uation profile for a rectangular plastic container filled with glass beads. The absorption

contribution from the plastic walls of the container were found to be negligible compared

to the attenuation from the glass beads. From this data we find that the dry 250 µm glass

beads in an “as poured” state have an attenuation coefficient of λ = 2.80 cm. The inset

shows that at large absorption distance we measure an x-ray intensity larger than what is

predicted from equation 8.2. This is due to the noise floor of the imaging system (image

intensifier and camera) often called dark current. The dark current value we measure is

0.46% the peak intensity observable.

A major challenge in successful x-ray imaging of samples with large thickness is the

ability to resolve features in the center interior, where the cross section is thickest, while

not over-saturating the boundaries where the sample is often thinner. To resolve this issue

we implement a beam-shaping filter called a wedge filter which preemptively attenuates

regions of the beam which are focused on thinner sections of the sample (Fig. 8.14). The
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Figure 8.13: Plot of average intensity of x-ray beam after absorption by glass beads
and plastic wall as a function of absorption distance. Inset shows semi-log plot with fit
a exp(x d

λ) + c (a = 597,627, b = 2.80 cm, c = 302).

wedge filter decreases the incident x-ray intensity at the edges of the circular sample while

allowing a higher incident x-ray intensity at sample center. To ensure the wedge filter does

not interfere with CT reconstruction we take an image of the beam profile before placing

the sample in the system so that we can divide out the spatial structure of the beam in post-

processing. Additionally we measure the output intensity of the x-ray source by measuring

the image intensity in an unobstructed fiducial region of the wedge filter (Green box in

Fig. 8.14c).

Variation of the potential and current alters the beam intensity (Fig. 8.15). Changing

the current changes the beam intensity linearly since current directly controls the number

of x-ray photons produced. The electric potential (kVp) of the x-ray source influences the

beam intensity non-linearly (Fig. 8.15). The non-linear effect of kVp on beam intensity is

likely due to the non-linear dependence of a samples attenuation coefficient on x-ray photon

energy.
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Figure 8.15: a) Effect of X-Ray source current on peak X-Ray intensity at image intensifier
for fixed X-Ray source potential. Line is y = 2.77 × 104I where I is source current. b)
Effect of X-Ray source electric field potential on peak intensity at fixed current.
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Distorted image Corrected image

Figure 8.16: Correction of image distortion in image intensifier. Left is raw image of a
square grid showing image distortion. Right is image distortion corrected through a spatial
transform in Matlab.

8.6.1.3 X-Ray image processing & reconstruction

Preprocessing—In the collection of an x-ray CT we record a video of ten rotations of the

sample at 400 images per rotation, resulting in a video with 4000 frames. At first we

average over the ten replicate images at each of the 400 angular increments resulting in

a single image for each rotational position. We then normalize each image by the scalar

intensity of the fiducial region (see Fig. 8.14c). Next images are divided by the background

image which removes the spatial structure from the beam intensity profile that is introduced

by the wedge filter. Lastly we remove spatial distortion in the imaging system with a spatial

mapping from a predetermined calibration image (Fig. 8.16).

At this stage images are ready for CT processing. We use an open source Matlab

implementation of the popular Feldkamp-Davis-Kress (FDK) cone beam algorithm [300]

called Oscar [301]. The FDK algorithm is an iterative solver which computes the density

field (called a back-projection in CT terminology) of the sample being imaged. The details of

the FDK algorithm are beyond the scope of this section but can be found in any radiological

imaging textbook.

Post-processing—The x-ray computed tomography method produces data in the form

of a three-dimensional matrix in which each matrix element represents the attenuation
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Figure 8.17: Example output of x-ray CT. a) A fire ant nest mound section. b) the CT
reconstruction of the nest mound. c) Cutting away sections of the CT reconstruction shows
the interior structure of the nest mound.

coefficient of the material at that location. An element of this three dimensional matrix is

a voxel and in our system we have a voxel dimension of 0.25 mm. For an example of the

input and output of this system we show a CT of the surface mound of a fire ant nest in

figure 8.17.

Once we have computed the back-projection from the CT reconstruction we may mea-

sure any quantities we like. In the case of this experiment we are interested in tunnel

cross-sectional shape. We determined the cross-sectional shape of tunnels using an active

contours algorithm [291]. This works by taking an initial perimeter around the tunnel cross-

section and minimizing some energy functional based off of an elastic bending energy of the

perimeter and an interaction of the perimeter with the energy landscape of the image. This

method produced reliable tunnel masks which accurately fit many different tunnel shapes

and sizes as determined by eye (Fig. 8.18a).

We characterized tunnel shape using two methods (Fig. 8.18: 1) fitting an ellipse to the

tunnel cross-section at different depths and 2) computing the distance transform of tunnel
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Figure 8.18: Tunnel morphology analysis from X-Ray CT data. a) Tunneling experiment
in a 3.8 cm outer diameter tube. Inner wall of digging arena shown as dashed line. An
oblong shaped tunnel is highlighted in the center of the arena. b) Elliptical fit of tunnel
shape. c) Euclidean distance image metric of tunnel shape. Color represents minimum
distance of each pixel location to tunnel wall. d) Comparison of ellipse and image distance
transform measures. Histogram of distance metric evaluated at all points in tunnel mask
(green). Vertical dashed black line is major axis length from elliptical fit, dashed blue line
is minor axis, and red line is maximum distance measured from distance transform. e)
Distribution of eccentricity defined as major axis divided by minor axis from fitted ellipse
fits. f) Distribution of tunnel diameter measured from distance transform and ellipse fit.
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Figure 8.19: Perturbation apparatus setup. 1) High speed camera. 2) Foraging arena and
light proof nest below. 3) Pneumatic translation stage. 4) USB camera used for motion
detection.

image mask, and multiplying the maximum by a factor of two. The distance transform of

the image measures the nearest Euclidean distance to a tunnel wall at every pixel-location

within the tunnel mask. Taking the maximum value of the distance transform for a given

tunnel cross-section in effect estimates the ”worst-case scenario” location for an ant to fall

in that tunnel because that location is furthest away from tunnel surfaces. Since we are

focused on locomotion stability we use the maximum of the distance transform as the metric

for local-tunnel size and further refer to this as tunnel Diameter in the text.

8.6.2 Perturbation apparatus

To perform perturbation experiments on freely climbing ants we used a setup as shown in

Fig. 8.19 and described briefly in section 8.3.4.3. Here we will describe the experimental

setup further. The Perturbation apparatus consisted of the four main components shown

in Fig. 8.19.

A high speed camera with internal memory recorded video of perturbation events and
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Figure 8.20: Perturbation apparatus setup. 1) Pneumatic air piston. 2) High speed solenoid
and compressed air switching port. 3) Transistor circuit to power solenoid switch. 4)
Pressure regulator feeding compressed air into pneumatic air piston.

was triggered to record 2 s of video at a rate of 500 Hz, to begin 500 ms prior to initiation

of the perturbation (Fig. 8.19(1)). The camera was controlled through a custom C++

program written using the vendors software development kit. Ants freely trafficked between

an above surface foraging arena which consisted of a plastic bin with a chemical coating,

fluon, surrounding the walls so that ants could not escape (Fig. 8.19(2)). Ants accessed

the above surface arena through a series of tunnels as described in 8.3.4.3 which in turn

were connected to a closed tupperware dish which was spray painted black to block light.

The black dish simulated a darkened nest environment. A bright light was placed over the

foraging arena to create a light and temperature gradient between the simulated “surface”

and “nest” environments. A second camera controlled over USB monitored the vertical

tunnels continuously to determine when ants crossed a region of interest at the top of the

tunnels (Fig. 8.19(3)). A LabVIEW program repeatedly computed the difference between

two adjacent images in time captured by the USB camera and when the difference in pixel

intensity exceeded a threshold in the region of interest, signifying the entrance of an ant

into that location, a signal was sent to a voltage output on a USB digital signal acquisition

card (DAQ). The vertical tunnels were mounted to a pneumatic air piston maintained at

80 psi and which would displace a distance of 0.5 cm in ≈15 ms (Fig. 8.19(4)).

The pneumatic air piston (Fig. 8.20(1)) was controlled by a compressed air switch which
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toggled the output of compressed air to one of two possible outputs (Fig. 8.20(2)). A

high speed solenoid toggled the switch from its default state through an applied voltage

to solenoid (Fig. 8.20(2)). The solenoid was controlled by a DAQ voltage out which was

connected to the base of a transistor connected to a 12V power supply.
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CHAPTER IX

TRAFFIC IN TUNNELS

9.1 Summary

Fire ant colonies create extensive underground networks of foraging tunnels which serve to

protect foraging workers from predation and exposure. Foraging tunnel networks can reach

upwards of 50 meters in length and thus take a considerable energetic investment from the

colony to create. Surveys of the shape of these foraging tunnels indicate that the diameter

of the tunnel decreases as the tunnel distance from nest site increases. It is thought that

this decrease in diameter is due to a smaller amount of worker traffic at the points further

away from the nest in analogy to fluid flow in river networks. In this study we examine

the traffic dynamics of fire ant workers freely walking between a nest and a foraging arena

in the laboratory. Ants are presented with a tunnel 11 cm long tunnel of constant cross

sectional diameter (varied per experiment from 2,3,4,6 mm) in which we monitor the traffic

with a high speed camera. We study the traffic flow of workers as a function of tunnel size

to determine how tunnel size influences the statistics of ant traffic. We find that in tunnels

of 3,4,6 mm in diameter, the spatial and temporal correlations of ant position within the

tunnel look similar and we observe slowing down of the traffic dynamics with increasing

number of ants in the tunnel. In the smallest tunnel, 2 mm in diameter, we observe that

relaxation times of the traffic flow are much more sensitive to number of ants within the

tunnel and indicate the formation of large traffic jams not seen in the larger tunnels. We

show that the formation of these jams is associated with the inability of worker ants to pass

each other in this tunnel.

9.2 Introduction

Fire ants build complex nests through the excavation of soil [127]. The central nest region

extends vertically into the soil and contains flat, pancake-like chambers in which food and

brood are stored. Radiating off of the central nest is a network of horizontal tunnels which
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serve as foraging tunnels (See fig. 2.21 in section 2.2.4.2 [138, 140]). The purpose of foraging

tunnels is to provide fire ant workers protection from predation and exposure as they forage.

Foraging typically incurs the highest mortality among ant workers and thus foraging tunnels

can be seen as an evolved strategy to minimize worker mortality [127]. In this chapter we

investigate traffic phenomena in laboratory foraging tunnels.

The study of traffic has a long history in physics research (See [302, 303] for reviews).

Traffic phenomena is a transport process and in the simplest case can be viewed as a

situation in which particles move along a single direction and interact with each other by the

simple fact that they cannot overlap (i.e. they exclude volume). This case of uni-directional

traffic in which particles exclude volume has been studied extensively in computation and

numerics and is called the asymmetric simple exclusion process (ASEP [302]). This process

has also been observed in biological systems as well, in the case of uni-directional ant traffic

along trails [304, 305] and in the traffic of motor proteins along microtubules [306]. See

[307] for a comprehensive review of traffic in biological systems.

The size and shape of foraging tunnel cross-sections created by fire ants varies as a

function of the tunnel distance from the central mound [140]. This decrease in tunnel size is

matched by a decrease in the density of foraging workers within the tunnel as the distance

from the central nest increases [140]. Thus a natural hypothesis is that the cross-sectional

size of foraging tunnels is optimized to the carrying capacity of the foraging traffic of ants at

that location. Traffic within a confined environment is different from previous observations

of ant traffic in which ants were monitored on unconfined trails [308, 249], or along paths

in which there were several choices of trail [280]. In confined traffic within tunnels we

expect that the excluded volume of ants will be important in governing the dynamics in

different situations of ant density within the tunnel. In this chapter we perform a laboratory

experiment to study traffic phenomena in simulated foraging tunnels. We use concepts from

inert granular systems to study the traffic patterns and find that tunnel diameter has a

strong effect on the dynamics of ant mobility within tunnels.

163



a)

Foraging

arena

Camera

Tunnel
Nest

11 cm

b)

1

2

3

4

Figure 9.1: Traffic experiment apparatus. a) Left image shows the traffic experiment. (1)
Foraging arena, (2) Camera, (3) foraging tunnel, (4) nest. Middle image shows above surface
foraging arena. Right image shows Foraging tunnels. b) Schematic of the experiment and
tunnel size compared to ant body size.

9.3 Apparatus and analysis

Here we investigate the traffic dynamics of groups of fire ant workers in a laboratory exper-

iment. We monitor free-flow, unperturbed, traffic between a simulated nest and an open

foraging arena (Fig. 9.1). Groups of 500-2000 worker ants were collected from their host

colonies and placed in the foraging arena to begin the experiment. Care was taken to re-

move queens, male sexuals, and brood from the worker group. We provided ants with a

test tube filled with water and blocked with a cotton ball in an open foraging arena that

was illuminated with a heat lamp. The foraging arena was connected through a single glass

tunnel to an enclosed, light-proof, tupperware container which served as a nest. Within the

nest we placed a porous plaster of paris floor which was wetted. The glass foraging tunnel

was 11 cm in length and varied in diameter between [2, 3, 4, 6] mm. Only one tunnel was

in place for an experiment. For reference the typical body length of a worker fire ant is

≈ 3.5 mm and in figure 9.1c we show the tunnels drawn to scale with respect to an ant.

Data collection consisted of recording video sequences of traffic within a tunnel. We

used a high-speed, high-resolution camera to collect images of tunnel traffic captured at a

rate of 100 Hz, and resolution of 100×1328 pixels where 1 cm = 120 pixels. Video sequences

of 40 s in duration were stored in computer memory and then saved to a hard disk using

the lossless lagarith video compressor. After the collection of each video, we performed

pre-processing in Matlab in which we constructed the space-time image and measured ant
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density during each frame in the sequence. Once pre-processing was finished we saved a

data file associated with the video and then repeated the capture process.

The space-time image, ρ(x, t), is measure of the number of ants at horizontal location

x and time t within the tunnel. ρ(x, t) was constructed by first calculating a background

image for the video sequence. The background image was calculated by determining the

median value of each (x, y) pixel location taken across 100 images from the sequence. We

divided each frame of the video by the background image to get a normalized image in which

a pixel value of 1 represents no change from background, and pixel value of 0 is a dark object

that was not in the background image. We chose this segmentation method because ants

are naturally represented as black pixels. We thresholded the background normalized video

frame with a threshold level of 0.75, retaining all pixels in the image with intensity below

this value. Lastly we summed the thresholded image over the y-direction which resulted in

a single row of the space time image in which the value of ρ(x, t) represents the density of

ants at that horizontal position, x, and time t, within the tunnel.

Figure 9.2 shows an example of a space-time image from a 40 s duration video sequence

of ant traffic. Using space-time images we are able to examine locomotion of individual,

and collections of many ants in close proximity, without the concerns of particle tracking

in which occlusions may result in tracking error. Conceptually we envision ant traffic as a

1-D transport process in which the space-time image, ρ(x, t), represents the instantaneous

cross-section of ants at location x and time t within the sequence.

Since ants will continuously forage we continuously monitored traffic-flow and captured

10,514 videos of traffic flow among worker groups. These videos are drawn from 25 separate

test dates over which tunnel diameter was varied (2,3,4,6 mm). Five worker groups drawn

from separate host colonies were monitored in the experiment. In this chapter we have

included all experimental observations of tunnel traffic, including observations in which

inactive ants are stationary within the tunnels.
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Figure 9.2: Video and space-time analysis of ant-traffic. a) Close up image of two ants
within a 3 mm diameter tunnel. b) Image sequence of ants moving bi-directionally within
the tunnel. In the middle of the tunnel three ants come from the left and two from the
right to cross paths and interact, after which they pass each other and proceed in the same
direction. Images are separated by 14 ms. c) Space-time representation of the ant traffic
within the tunnel. Image sequence is taken from the highlighted section in the middle of
the space-time plot.

166



0 

40 

T
im

e 
(s

)

a) b) c)

0 11Pos. (cm) 2 cm

0 2

0
0

1.8

0

1.8

2

T
im

e 
(s

)
T

im
e 

(s
)

Pos. (cm)

Pos. (cm)

Figure 9.3: Analysis of ant free speed in tunnels. a) Space-time diagram of ant traffic.
b) Extracted 2 cm wide and 40 s long image from the space-time diagram. Single and
collective ant trajectories are shown on the right with arrows pointing to their location in
the space-time image. c) Lines fitted to a single ant trajectory (above) and multiple ant
trajectories (below). Goodness of fit determines whether trajectory is from a single ant
(top) or multiple ants that interact (bottom).

9.4 Effect of tunnel size on single ant locomotion

We begin our study of tunnel size-effects on traffic by investigating how tunnel size influenced

the free-flow speed of individual ants. Understanding the effect of tunnel size on free-flow

ant speed, independent of collective effects, is important for determining a baseline mobility.

To study the free-flow speed of individual ants we use single-ant trajectories in the space-

time images (Fig. 9.3). We find all ant trajectories within the middle 2 cm of the tunnel

(Fig. 9.3a,b) by isolating the connected components in this central image region. We fit

lines to the connected components and set a criteria for single-ant trajectories such that

the R2 > 0.9 from the linear fit. In figure 9.3c we show two examples of this line fitting,

one for a single-ant trajectory (Fig. 9.3c top), and one in which two ants merged (Fig. 9.3c

bottom). We reject the merged trajectories by the poor linear fit. Ant speed, v, is the

inverse slope computed from the linear fit.

To determine if tunnel size influenced ant limb use or stepping pattern we found three
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Figure 9.4: Ant stepping pattern in three different tunnels. a) Schematic of the alter-
nating tripod stepping pattern. Opposing limb tripods are shown by circles and squares
respectively. b) Images of worker ants in three different tunnel sizes (top 6 mm, middle
4 mm, bottom 2 mm). c) Stepping pattern for locomotion. Colored regions correspond to
limbs in contact with the ground. In order from top to bottom: left-fore, left-mid, left-rear,
right-fore, right-mid, right-rear.

instances in which ants traveled at similar velocity (within ≈10%) and measured their step-

ping pattern (Fig. 9.4). Six-legged, hexapod, insects like ants often step with an alternating

tripod gait during forward locomotion [259]. This means that alternating pairs of fore and

rear limb on one side are in contact while the mid-limb on the opposing side is in contact

(See diagram in Fig. 9.4a). We observe that ants utilized an alternating tripod gait in the

largest and smallest tunnel size as seen in figure 9.4c. The invariance of gait as a function

of tunnel size supports previous observations from section 8.4.2 that tunnel size has only

small influences on locomotion.

In figure 9.5a we show the probability distribution function of single ant walking speeds

in the four different tunnels. We find that there was no significant effect of tunnel size on

ant walking speed (two-way ANOVA with colony as a random effect, F3,45436 = 4.74, p =

0.0831). Single ant free speed was found to be v = 1.90±0.58 mm/s (45,444 observations).

Our observation of the single ant free-flow speed within tunnels is very similar to the free-flow

speed of single fire ants running across a horizontal planar substrate, v = 1.96±0.64 cm/s,

which was observed fire ants foraging in nature [140]. The observation of Tschinkel [140]

was made in a field setting in which fire ants were exhibiting their natural foraging behavior

and thus gives evidence that the locomotory behavior observed in simulated foraging within
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Figure 9.5: Analysis of single ant speed in tunnels. a) Probability distribution functions
for ant speed in different diameter tunnels. 2 mm (upper left), 3 mm (upper right), 4 mm
(bottom left), and 6 mm (bottom right) tunnels. Inset circles represent tunnel cross-section
and are drawn to scale with ant in upper-left plot. b) Mean±standard deviation of single
ant speed as a function of tunnel diameter for the five colonies in experiment.

our experiment is similar to that of fire ant behavior in nature.

Although it appears in figure 9.5a that there is a slight increase in speed for the 3 &

4 mm diameter tunnels, this effect is explained by the variance in ant speed among the

separate colony experiments (removing colony from the ANOVA resulted in tunnel size

having a strong significance on speed). This can be seen in figure 9.5b in which we show the

mean±standard deviation values for single ant speed in different tunnel diameters among

the five colonies.

Thus in summary we find that tunnel size has no significant effect on the free speed

of ants locomoting between the nest and foraging site. Furthermore the limb-use patterns

appear the same across the different tunnel sizes. Subsequent differences that we will later

observe in the locomotion of collections of ants within different tunnel diameters will thus

be due to the collective effects of locomotion in confined spaces.
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Figure 9.6: Histogram of ant-tunnel density across all experiments. Inset shows y-axis on
a logarithm scale and illustrates the exponential decay of the histogram.

9.5 Spatio-temporal dynamics of ant traffic

9.5.1 Spatial statistics of traffic flow

We define the ant-tunnel density at time t as nants(t) =
1
C

∑
x ρ(x, t) where

∑
x is the sum

over entire length of the tunnel, and C is a normalization constant which sets nants(t) = 1

when one ant is in the tunnel (C = 58, determined by visual inspection). A histogram

of observations of nants across all experiments illustrates that the majority of tunnel ob-

servations corresponded to a single ant within the tunnel (Fig. 9.6) . The broadening of

the peaks of the histogram are due to the variance in ant size within the experimental

colonies. The probability to observe increasingly larger numbers of ants within the tunnel

decays exponentially (inset Fig. 9.6). This suggests that the entry and exit of ants into the

tunnels may be approximated by a random, Poisson process (we discuss this point further

in section 9.5.3).
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9.5.2 Spatial correlation of traffic flow

To explore how the spatial arrangement of ants within the tunnel varies as a function

of density and tunnel size, we compute the spatial autocorrelation of ant configurations

when n ants are present in the tunnel. We define the spatial autocorrelation as gn(l) =

⟨ρ(x, t)ρ(x+ l, t)⟩ with lag distance l. The brackets, ⟨·⟩ represent an ensemble average over

observations in which nants(t) is within ±2 ants of the focal n. We normalize gn(l) such

that gn(0) = 1 and g(∞) = 0.

We interpret this auto-correlation function as a measure of the probability to find ants

within a distance l of each other along the length of the tunnel. In figure 9.7a we show

a space-time image from a 4 mm tunnel experiment and in (b) of this figure we show

the instantaneous ant density along the length of the tunnel. The spatial autocorrelation

effectively measures how much the the density overlaps itself as we shift the curve to the

right. This is often called the density overlap function and in this case is the spatial

density overlap function. For a lag distance l = 0 there is 100% overlap (gn(0) = 1) while

for increased lag distance the overlap of the curve with itself decreases and so does the

autocorrelation function. In figure 9.7c we show the normalized spatial autocorrelation for

the function in (b) in addition to other replicates at comparable ant density.

We find that both tunnel diameter and number of ants affect the shape of gn(l) (Fig. 9.8a).

In general, for small nants the spatial autocorrelations were similar in shape across all tun-

nels. However, the decay of gn(l) from unity to zero occurred over a longer lengthscale as

the number of ants in the tunnel increased. This effect matches our intuition: as more ants

are found in the tunnel, there is a higher probability to find aggregations of ants in turn

resulting in a larger spatial correlation of ants along the tunnel (higher gn(l)). To quantify

the decay of gn(l) we fit functions of the form gn(l) = exp
[(
− l

λ

)β]
where λ is a charac-

teristic decay distance of the autocorrelation function and β is a stretching parameter (see

section 6.4.2).

In figure 9.8b we show how β and λ vary as a function of nants for the four different

tunnel diameters. We find that λ increases linearly with nants for all tunnel diameters.

β decreases from a value of 1.5 for small nants to near 1 for higher ant densities. The
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tunnel at time indicated by the red arrow in (a). The two arrows indicate the length of
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replicate observations which had similar n.
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sensitivity of λ to ant density is measured by the slope the linear fits in figure 9.8. The

2 mm diameter tunnel had a significantly steeper slope than the other tunnels indicating

a larger probability to find aggregations of ants within the 2 mm tunnel than in the the

others (Fig. 9.8c).

Thus in observations of the static configurations of ants within the tunnel we find that

there is little difference in the correlation functions for tunnels 3,4,6 mm respectively. How-

ever within the 2 mm tunnels the spatial autocorrelation decays over a significantly longer

lengthscale for increasing ant number, possibly signifying a qualitative shift in the traffic

dynamics in this tunnel. To determine how traffic dynamics differ among the tunnels we

must now examine how traffic patterns vary in time.

9.5.3 Temporal statistics of traffic flow

We begin our analysis of the temporal statistics of traffic flow by focusing on a point along

the length of the tunnel and counting the time between ant crossings at that location, the

wait-time, and the duration of time ants occupy that location, the occupancy-time. This

is analogous to traffic flow measurements performed on municipal roadways in which a

pneumatic sensor counts the duration of, and time between car-crossings [309]. In figure 9.9

we show measurements of ρ(xj , t) for three fixed locations, xj , as a function of time. From

ρ(xj , t) we measure the wait-time and occupancy-time for ant crossings at that location

(See Fig. 9.9). In our experiment we measure the occupancy-times, and wait-times, at

every position along the length of the tunnel. We first discuss the distribution of wait-times

observed in the experiment.

In figure 9.10 we show the probability distribution of wait-times for different experi-

ments (represented by different color) in the four different tunnels. We find that wait-time

distributions for all experiments across all tunnels were exponential thus signifying that

ant entry and exit within the tunnel occurs randomly. The different slopes of the curves

represents different levels of activity of the colony in different experiments. In experiments

in which the traffic appeared to be most active, the decay of the wait-times function is well

approximated by exp(t/8 s) with a time constant of 8 s (red line in figure 9.10). In figure 9.6
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Figure 9.9: Temporal statistics measured from space-time images. a) Space-time image
showing three representative cases of traffic flow at that point in space (i-iii). b) Here we
show the value of ρ(x, t) for three fixed positions along the tunnel length as a function of
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ants (see space-time image). Subsequent occupations correspond to crossings of individual,
mobile ants. In position (ii) we observe no ant-interactions, only short-time occupations
of the observed tunnel segment which correspond to mobile ants crossing the segment.
In tunnel position (iii) we highlight a tunnel-occupation which corresponds to an ant-ant
interaction, followed by one ant remaining in the same position for several seconds prior to
moving again.
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tunnel. Tunnel diameters from left to right: 2, 3, 4, 6 mm. Different color curves represent
different experiments. Red curve shows an exponential curve with decay constant of 8 s to
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we saw an exponential decay in tunnel density which suggests that ant entry and exit may

be treated as a Poisson process. The exponential probability distribution of wait-times for

an ant to cross an arbitrary location within the tunnel (Fig. 9.10) further supports evidence

that ant entry and exit to the tunnel occur randomly and thus are described by poisson

statistics in which the wait time between events is exponential.

The duration of time that an ant occupies a specific location, x, within the tunnel is

called the occupancy time (Fig. 9.9). We show in figure 9.11 the distribution of occupancy-

times among the separate experiments across the four tunnels. As shown in figure 9.9 the

distribution of occupancy-time reflects several different behaviors ants exhibit within the

tunnel, namely: locomotion, interaction, inactivity. Inactivity may seem like an inefficient

feature of foraging tunnel traffic, however in natural foraging tunnels platoons of fire ants

remain stationed at locations within the tunnel so that they may be rapidly recruited to

food sources when discovered [140]. Thus inactive ants within our laboratory tunnels may

be reserve foragers waiting to be recruited. Freely moving ants contribute the most to the

occupancy-time distribution as indicated by the peak at t = bodylength
v = 0.35cm

1.9cm/s ≈ 0.18 s

(See insets Fig. 9.11). The distribution of occupancy-times varied across experiments, yet all

exhibit power-law behavior in the tail of the distribution with an exponent of approximately

−3.

The non-exponential nature of the occupancy-time probability distribution function is
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Figure 9.11: Distribution of tunnel occupation durations. Tunnel size is denoted by drawing
in upper right hand corner. Inset shows linear-linear histogram of the peak.

of interest because all other observations of temporal statistics within the tunnel system

suggest that traffic flow is random, and thus we should expect exponential distributions.

However we observe non-exponential distributions of the occupancy time, suggesting a non-

poisson process which governs the time over which ants stay fixed in place within the tunnel.

Here we introduce a simple model of ant traffic flow within tunnels which illustrates how the

inclusion of a social-component to ant-interaction rules gives rise to a power-law distribution

in occupancy time.

In experimental observation ants move bi-directionally through the tunnel and stop only

upon encountering another ant (we ignore inactive ants, or ants that perform u-turns within

the tunnel in this simulation). Thus we may model the traffic of ants within the tunnel

using simple ant “agents” which walk at a constant speed until coming in contact with

another agent, at which point they pause for a certain delay time, after which they resume

moving again (See Fig. 9.12). Ants are defined to have length, L = 0.35 cm, and move

along a one-dimensional tunnel in the left or right direction with speed vi (where i is the i
th
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Figure 9.12: Overview of simulation of ant traffic. a) Space-time image from experiment.
b) Ants enter the tunnel from left (black) and right (purple). When two ant encounter
each other they pause (2), this can lead to multi-ant jams (3). After ants have paused for
time T = T0 + κρ (see text for details), they move past each other and continue along until
another collision occurs (4). c) Space-time image from simulation of traffic flow.

and) which is randomly drawn from a gaussian distribution with mean and variance equal

to the free-speed observations from section 9.4. When the center-center distance between

two ants becomes less than L, ants remain stationary for a time duration T = T0+κρ where

T0 is a constant lag-time, and κρ is a local density dependent lag-time. ρ is the number of

ants within a distance ±2L of the collision location, and κ is a constant which governs the

social-interaction time. After time T has passed, the two ants that collided swap places and

proceed again along the tunnel at their original speed vi (see Fig .9.12b (4)). We simulate

this traffic model along a tunnel of length 10 cm and for time durations comparable to

those of the experiment (40 s) to generate space-time observations, ρ(x, t), of the simulated

traffic flow (Fig. 9.12). Lastly, in the simulation we allow ants to enter at random with a

characteristic entrance rate comparable to that of the experimental observation.

We vary both the offset time, T0, and the social factor, κ, in simulation. We find that

when κ = 0 we observe occupancy-time distributions which are exponential with a time

constant that increases as T0 increases (See left panel of Fig. 9.13 and inset). Thus, constant

T0, with κ = 0 generates poisson occupancy-time statistics contradictory to what we observe

in experiment. The poisson statistics of the occupancy-time probability distribution for

κ = 0 are a result of the random nature of ant encounters within the tunnel as imposed by
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Figure 9.13: Occupancy-time distributions from simulation for T0 = 0.2s and various values
of κ. κ increases from left to right. In the case of κ = 0 (left) we fit an exponential to the
probability distribution, Aexp(− t

t0
), with A = 0.1 and t0 = 0.5 s (red dashed curve in left

plot). Exponential time constant for κ = 0 increases with increasing T0 as shown in inset
with T0 = 0.2 (green) and T0 = 0.5 (black). In the three plots on the right with κ ̸= 0 we
show a power-law curve, Atδ, with exponent δ = −3. Inset in right plot shows δ versus κ
from power-law fits to the distribution tail.

the random entry of ants in simulation (matching observation from experiment).

By including a non-zero κ term in the model for lag-time we find that the occupancy-

time probability distribution transitions to a power-law distribution (Fig. 9.13). Thus the

inclusion of the local-density dependent aggregation term, κ, results in a feedback in the

traffic flow in which ants in high-density situations pause for a longer time, leading to

traffic jams that persist for a longer duration than expected from a null model of ant-

interactions. We find that the power-law probability distribution exponents generated in

the simulation are consistent with those observed in experiment. Social-cohesion models

of animal encounters are typical in models of flocking and swarming animals ([24] and

section 2.2.2). The study of traffic flow in a simple model of collective ant motion presented

in this section has illustrated how non-poisson temporal dynamics in traffic flow may arise

from a simple social cohesion-process in ant-encounter behaviors.

9.5.4 Temporal correlations of traffic flow

Similar to the spatial autocorrelation function in the previous section, we now seek to

compute the temporal correlation function for traffic flow. We seek to quantify the mobility

of ants in the tunnels as a function of tunnel diameter and instantaneous density. The

temporal correlation function is a sensitive measurement of mobility that has been used
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Figure 9.14: Temporal correlation function and susceptibility as a function of ant density
within the four different tunnels (2,3,4,6 mm from left to right respectively). a) Temporal
correlation function, Qn(τ), as function of lag time τ . Curves of increasing ant-density
within the tunnel increase from left to right (as shown by arrow in top left). b) Susceptibility
of the temporal correlation function, χ4, versus lag time τ . Peaks of χ4(τ) correspond to
characteristic relaxation times of the systems.

extensively in passive soft matter studies [310]. As an example of the use of the temporal

correlation function, in general for a single ant of bodylength L moving at constant speed

v, the correlation will decay to 0 within a time L
v . If the correlation function does not decay

to 0 within this time period, this signifies a possible reduced mobility of the ants within the

tunnel and thus the likely presence of traffic jams.

We define the temporal correlation function as Qn(τ) = ⟨ρ(x, t)ρ(x, t + τ)⟩ where the

brackets represent the same ensemble average as described in the previous section. We show

curves of Qn(τ) for increasing number of ants in the tunnel in the four separate tunnels

experimentally tested (Fig. 9.14). Characteristic jam times can be extracted from Qn(τ)

by computing the dynamic susceptibility, χ4(τ) = nants
[
⟨Qn(τ)

2⟩ − ⟨Qn(τ)⟩2
]
. χ4(τ) was

originally developed for passive, soft-matter systems such as colloids [311], glass forming

liquids [312], and granular materials [313] and is a measure of the timescale associated with

the decay of correlated regions in time (in our case traffic jams). See [310] for a review of

χ4 in various soft matter systems.

χ4 is most easily understood as a measure which is proportional to the variance of Qn(τ)
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within the ensemble of constant n. For zero time delay there is a 100% correspondence in

the the temporal signal of ant density within the tunnel (i.e. Qn(0) = 1), and thus the

variance of Qn(0) is zero (χ4(0)). At large lag times, there is 0% correspondence between the

original ant configuration and the current configuration (Qn(∞) = 0) and correspondingly

the variance is zero (χ4(0)). However at some intermediate lag time, τ∗, some ant jams

will persist and give a high value of Qn(τ
∗) and some ant jams will have separated and

give a low value of Qn(τ
∗). Thus at this intermediate time τ∗ the variance in Qn(τ

∗), and

thus by definition χ4(τ
∗), will be maximum. The time-scale at which point χ4 is maximum

is known as the characteristic relaxation time, τ∗, of correlated regions of ants within the

tunnel. In our system these regions are stationary traffic jams.

In figure 9.14a we show plots of Qn(τ) and χ4(τ) for various conditions of ant density and

tunnel diameter. We observe that increasing nants increases the decay time of the temporal

correlation function. However, as with the spatial correlation function of section 9.5.2 the

effect is most prevalent in the 2 mm diameter tunnel. In figure 9.14b we show χ4(τ) which

for all values of nants shows a peak at different lag times, τ∗.

To check the validity of our interpretation of τ∗, which we have defined as a measure

of the characteristic time-scale that an ant density will spend at a location in space. we

examine τ∗ in the dilute limit (low nants). When there are very few ants within the tunnel

we expect that there will be no interaction among the ants (assuming they are distributed

randomly) and thus the characteristic decay time should be τ∗ = L
v where L is bodylength

and v the free-speed. From our previous observations, tunnel size does not have a significant

effect on v, and thus we predict that τ∗ in the dilute limit will be independent of tunnel

diameter. From our previous observations of free speed (v = 1.90 ± 0.58 cm/s) and ant

bodylength (L = 0.35±0.05), we predict that τ∗ = 0.18±0.06. Experimentally we find that

for n = 3, τ∗ varies between 0.22-0.27 among the different tunnel sizes and is independent

of tunnel diameter. The agreement between our expected and mesured τ∗ confirms our

hypothesis that τ∗ is a signature of the decay time of spatial-correlations within the tunnel

over time.

We plot τ∗ versus the number of ants within the tunnel for the four different tunnels in
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figure 9.15. Similar to the sensitivity of spatial correlations to nants and tunnel diameter

(see section 9.5.2), tunnels of 3,4,6 mm diameter display weak sensitivity of τ∗ to nants

compared to the case of the 2 mm tunnel in which τ∗ is substantially more sensitive to

number of ants. We interpret the steep slope, defined as ∆τ∗

nants
(Fig. 9.15b), as a measure

of the prevalence to form jams within the tunnel. We observe the similar dependence of

τ∗ on nants for the 3,4,6 mm diameter tunnels which suggests that the sensitivity to jam

formation within these tunnels is identical and low compared to the 2 mm tunnel.

Thus we have shown, in agreement with the spatial statistics of ant traffic, that ants in

a 2 mm tunnel exhibit a sensitive slowing down of the traffic dynamics as the density of

workers in the tunnel increases. Traffic dynamics also slow down in the larger tunnels with

increasing ant number, however the effect is not as significant. Furthermore we find that

the traffic dynamics in the 3, 4, and 6 mm tunnel are quantitatively similar suggesting that

ants are able to mitigate high traffic levels in these tunnels independence of confinement

effects.

9.6 Catastrophic jams

To understand the sensitivity of the τ∗ within the 2 mm tunnel we evaluated the traffic

flow within this tunnel at conditions of high traffic. In figure 9.16 we compare instances

of similar nants among the 2 mm and 6 mm tunnels. We see that in the 2 mm tunnel a
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large jam forms in the center of the space-time image and continues to grow in size as more

ants merge (figure 9.16a). Observation of the video for this situation indicates that this

jam forms because the tunnel diameter is small enough such that ants are no longer able to

pass each other (see images in figure 9.16a). Thus ants pile up in the center until eventually

one group advances forwards and the other backwards until they exit the tunnel. These

catastrophic jams are only observed in the 2 mm tunnels and this likely explains the acute

sensitivity of the relaxation time to ant number in the 2 mm tunnel.

For comparison in figure 9.16b we show a similar density of ants within a 6 mm tunnel.

We see that ants are able to negotiate the high traffic conditions by moving around each

other. We do not observe the formation of large catastrophic jams in tunnels above 2 mm

in size and this is likely because in tunnels of this size ants can effectively move around each

other.

9.7 Conclusion

In conclusion we have studied the individual and collective mobility of ants within confined

tunnel environments that simulate the natural foraging tunnels fire ants construct in nature.

We have employed statistical methods derived from the study of jamming in granular and

colloidal soft-matter systems to elucidate the characteristic temporal and spatial scales

associated with ant traffic jams that may occur in subterranean tunnels. We have shown

that traffic dynamics within confined tunnel environments are relatively insensitive to tunnel

size when the tunnel diameter is equal to 3 mm or greater. This is in the range of observed

tunnel diameters constructed in natural nests [138, 140, 139] and lab studies (chapter 8).

The remarkable ability of individual ants, and ant collectives, to maintain mobility within

the tunnel environment across a wide range of tunnel cross-sections (3-6 mm diameter)

beckons for further study to determine the interaction rules and traffic laws in this confined

environment.

We expect that the occurrence of catastrophic jams has significant disadvantages to the

mobility and transport of food items and brood along foraging tunnels and nest tunnels. In

our observation of ant tunneling we observed that less than 5% of tunnel diameters were
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Figure 9.16: Comparison of similar density situations in 2 mm (top) and 6 mm (bottom)
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that ants have difficulty passing each other rapidly and thus large spatio-temporal jams can
form. These jams persist for a long time period as the ants struggle to get past each other.
b) In similar density conditions in 6 mm tunnels ants have little trouble negotiating the
crowded environment.
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smaller than 2 mm in diameter. Thus we can understand the lower bound to the tunnel

diameters observed in x-ray CT as a function of collective mobility of workers within the

tunnel. Tunnel construction involves several trade-offs, in general smaller tunnels are more

rapidly constructed because they require less material excavation, yet making the tunnel

too small introduces significant time costs because of the high cost of traffic jams.
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CHAPTER X

CONCLUSION

10.1 Conclusion

10.1.1 General remarks

In this dissertation I have described a program of study to identify features of collective

motion of active and passive granular materials. The principle property of matter with

granularity is that “grains” fill space and interact through local contact forces. Thus

when a granular material, either active or passive, is set in motion the flow dynamics are

dominated by the local interactions of constituent grains. Flowing grains must move and

rearrange to accommodate the motion of their neighbors and this leads to the rich suite of

granular phenomena observed.

In chapters 3-5 we reported physics studies of passive granular materials which show

that the failure modes of granular material are sensitive to the initial volume fraction,

ϕ0. The formation of shear bands has been well known from previous granular materials

studies, however the stability and evolution of these shear bands under perturbation was

previously un-studied. Our studies of shear band formation and evolution in granular

materials highlight the importance of knowing and understanding the dilation transition (at

ϕc) for the prediction and modeling of granular failure modes. Follow up studies, inspired

by chapted 4, have since been performed by other granular materials researchers. Two

papers report similar dynamics in vertical penetration of granular materials [171, 150], one

of which extends the model presented in chapter 4.7 to the case of penetration experiments

[171].

Avalanches in granular materials have been of interest for many practical reasons. How-

ever the sensitivity of avalanche dynamics to ϕ have been largely unexplored. We reported

in chapter 5 that granular slope stability is very sensitive to ϕc and exhibits a similar bifur-

cation in flow response as ϕ increases above ϕc. By understanding the slope stability limits
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as a function of ϕ we may be able to future predict the flow response and perturbation

sensitivity of granular slopes to be traversed by vehicles or robots.

Stationary-state studies of granular materials are not sufficient to understand the com-

plex force and flow dynamics that occur when for instance a runners foot impacts a sandy

ground. The evolution of previously undisturbed granular material, subject to a localized

perturbation, is an area of research that is gaining in importance as it highlights features

of granular rheology we still don’t understand and has practical implications. The impor-

tance of initial ϕ, Reynolds dilatancy, and the granular critical state are highlighted by such

localized intruder experiments. Furthermore developing an understanding of how initial ϕ

controls failure modes under local forcing will aid in the development of control strategies

for legged locomotors on granular terrains.

Inspired by the self-assemblages observed among two different species of ants, in chap-

ter 6 we reported the first study of the stability of piles of non-convex granular materials.

Non-spherical, and in particular non-convex particles are found at all scales of particulate

systems (colloids to grains) and advances in colloidal synthesis are pushing the development

non-convex colloids. However ways in which these non-convex particles configure and en-

tangle was previously unknown. Through experiment on a model convex “u-particle” we

discovered an unexpected result, that particles of intermediate concavity resisted pertur-

bation for the longest time duration. Thus particles of intermediate concavity effectively

display the strongest “cohesion”. The cohesion we observe among u-particles is not due to

electrostatic charging or moisture and instead is mediated only by shape, and is the result of

steric interactions among mechanically entangled particles. Thus we have discovered a new

mode of granular cohesion in which cohesion interactions can be finely tuned by particle

shape.

In chapters 7-9 we turned our attention to an active particulate system—colonies of

the fire ant Solenopsis invicta. Active granular systems exhibit similar dynamics as passive

granular systems, such as collective jams of ant flow or mechanically jamming in tunnels.

We performed a series of experiments with fire ant colonies to understand the principles of

collective construction of, and motion within subterranean tunnels.
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In chapter 7 we presented experiments to study the role of ant body size in tunnel

construction. The worker distribution within a mature fire ant colony is skewed such that

most of the workers are smaller (headwith≈0.6 mm) while a smaller percentage of workers

are up to 3× larger (headwidth≈ 1.2 mm). An open question in the study of social insects is

if there is a functional significance to this worker polymorphism. In our studies we explicitly

tested the hypothesis that larger workers within a population will construct tunnels at a

faster rate than smaller workers. In digging experiments among workers of differing body

size, we found surprisingly that worker size did not have a significant influence on the speed

of tunnel construction. The lack of specialization among workers of different body size in

digging performance illustrates that fire ant colonies are robust to perturbations of colony

demography which is likely an important feature in the tumultuous environment of the

Amazon.

In chapters 8-9 we reported results from studying the jamming of individuals and groups

of ants within tunnels. We show in chapter 8 that jamming within a tunnel has important

beneficial effects on the locomotion of individual ants. When fire ants construct tunnels of an

appropriate size, approximately 1.3 times there body length, they are able to rapidly arrest

slips when climbing vertically. This rapid arrest due to animal-environment interaction

suggests that locomotion control can be embedded in the environment through suitable

tunnel construction. Such environmentally endowed stability could explain how ants are

capable of high-speed locomotion in their pitch black nest.

Lastly, in chapter 9 we studied how jamming can hinder the locomotion of many organ-

isms when they collectively aggregate within a confined tunnel. The traffic of ants within

tunnels is an example of an excluded volume transport process in which only a finite number

of ants may pass each other at a given time because of the tunnel size. We find that ants

display spatio-temporal dynamics which are largely insensitive to tunnel size when tunnel

diameter is equal to or greater than 3 mm. In 2 mm tunnels ants display large catastrophic

jams in which immobile groups of ants jam together within the tunnel. These results will

allow us to understand the shape and form of fire ant foraging tunnels in nature and suggest

that ants are actively engineering their tunnels to mediate traffic flow. This study along
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with providing insight into the fire-ant social biology will help in understand how collective

groups of robots navigate and coordinate in confined spaces, such as during search and

rescue operations.

10.1.2 Future directions

10.1.2.1 Passive granular materials

The importance of the dilation transition at ϕc on granular dynamics—force production

or material flow—has been greatly under-appreciated in physics based granular studies.

The majority of physics studies on granular materials study the phenomena of interest at

one particular ϕ. However we have shown that the flow response of granular materials is

sensitive to ϕ− ϕc and can display qualitatively different behavior in the different regimes

of loose (ϕ − ϕc < 0) and close pack (ϕ − ϕc > 0). Thus we advocate that a broader

understanding of granular materials must be developed through future study of force and

flow evolution across the spectrum of ϕ.

An exciting and nascent field of granular research is the application of granular materials

to soft robots. Soft robotics works off the dilation principle that a sheared, closely packed,

granular material must expand in volume. For application to soft robotics the volume

expansion of a closely packed granular material is inhibited by placing it in a latex bag

under vacuum. When an object is sheared across the latex surface this force is resisted by

the granular material. Thus objects can be picked up through friction.

One goal for soft-robotics is thus to design a granular material with a predefined rheology

for some functional application in a soft robot. However to the relationship between particle

shape and rheology cannot be directly inferred. For instance our study of the packing and

stability of non-convex particles explored how a simple change in particle shape can influence

the granular rheology in a non-trivial way. Thus a future goal of granular materials research

will be to develop a dictionary of particle shape influences on the relaxation and stability

mechanisms of granular material.

189



10.1.2.2 Active granular materials

In this dissertation we explored the role of worker size on tunnel construction among groups

of fire ants. We showed that the final nest size grew linearly with the number of workers

we observed participating in the digging process. On average only 20% of the workers

participated in the digging process indicating that a large number of workers remain inactive

while the others construct the nest. This leads to the question of whether the workers of

this digging minority are fixed throughout the experiment, or if workers from the sedentary

population take turns digging? We envision future experiments on tunnel construction will

employ means of ant identification among the population so as to whether the population

of digging works is fixed or flexible. Such experiments may use ant painting, adhered bar-

codes, or adhered radio-frequency id tags (RFID), to identify ant workers.

The study of nest construction among larger colonies (with queen and brood), digging

in larger three-dimensional arenas will be of great interest. The studies reported here

focused on somewhat limited digging environments, quasi two-dimensional arenas or smaller

three-dimensional arenas. However a goal of future research would be to observe the time

evolution of nest (and colony) growth from the first tunnel created by a newly mated queen.

Furthermore through the use of low-density hollow micro-spheres as digging substrate and

an iodine laced water supply it may be possible to observe the realtime motion of workers

below the surface in a three-dimensional geometry. The simultaneous observation of nest

growth and worker location in an unconfined, three-dimensional setting, is a goal of such

future study.
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[131] Jérôme Buhl, Jean Louis Deneubourg, Anne Grimal, and Guy Theraulaz. Self-
organized digging activity in ant colonies. Behavioral Ecology and Sociobiology, 58(1):
9–17, 2005.
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Barabási. Maximum angle of stability in wet and dry spherical granular media. Phys-
ical Review E, 56(6):6271–6274, 1997.

[182] HG Matuttis, S Luding, and HJ Herrmann. Discrete element simulations of dense
packings and heaps made of spherical and non-spherical particles. Powder technology,
109(1):278–292, 2000.

[183] Stephane Roux and Farhang Radjai. Texture-dependent rigid-plastic behavior. NATO
ASI Series E Applied Sciences-Advanced Study Institute, 350:229–236, 1998.

[184] Chu-heng Liu and Sidney R Nagel. Sound in sand. Physicsal Review Letters, 68(15):
2301–2304, 1992.
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[251] Vincent Fourcassié, Audrey Dussutour, and Jean-Louis Deneubourg. Ant traffic rules.
Journal of Experimental Biology, 213(14):2357–2363, 2010.

[252] Paul Bardunias and Nan-Yao Su. Opposing headings of excavating and depositing
termites facilitate branch formation in the formosan subterranean termite. Animal
Behaviour, 78(3):755–759, 2009.

206



[253] Paul M Bardunias and Nan-Yao Su. Queue size determines the width of tunnels in
the formosan subterranean termite (isoptera: Rhinotermitidae). Journal of insect
behavior, 23(3):189–204, 2010.

[254] Alberto Colorni, Marco Dorigo, Vittorio Maniezzo, et al. Distributed optimization by
ant colonies. In Proceedings of the first European conference on artificial life, volume
142, pages 134–142. Paris, France, 1991.

[255] TM Lejeune, PA Willems, and NC Heglund. Mechanics and energetics of human
locomotion on sand. Journal of Experimental Biology, 201(13):2071–2080, 1998.

[256] K Autumn, ST Hsieh, DM Dudek, J Chen, C Chitaphan, and RJ Full. Dynamics of
geckos running vertically. Journal of Experimental Biology, 209(2):260–272, 2006.

[257] K Jayaram, D Springthorpe, D Haldane, S McKinley, A Dicorcco, and RJ Full. Run-
ning in confined spaces by the american cockroach. SICB, 2013.

[258] R McNeill Alexander. Principles of animal locomotion. Princeton University Press,
2002.

[259] Daniel E Koditschek, Robert J Full, and Martin Buehler. Mechanical aspects of legged
locomotion control. Arthropod structure & development, 33(3):251–272, 2004.

[260] Kiisa Nishikawa, Andrew A Biewener, Peter Aerts, Anna N Ahn, Hillel J Chiel,
Monica A Daley, Thomas L Daniel, Robert J Full, Melina E Hale, Tyson L Hedrick,
et al. Neuromechanics: an integrative approach for understanding motor control.
Integrative and Comparative Biology, 47(1):16–54, 2007.

[261] GE Loeb. Control implications of musculoskeletal mechanics. In Engineering in
Medicine and Biology Society, 1995., IEEE 17th Annual Conference, volume 2, pages
1393–1394. IEEE, 1995.

[262] Monica A Daley and Andrew A Biewener. Running over rough terrain reveals limb
control for intrinsic stability. Proceedings of the National Academy of Sciences, 103
(42):15681–15686, 2006.

[263] Philip Holmes, Robert J Full, Dan Koditschek, and John Guckenheimer. The dy-
namics of legged locomotion: Models, analyses, and challenges. Siam Review, 48(2):
207–304, 2006.

[264] Robert J Full, Timothy Kubow, John Schmitt, Philip Holmes, and Daniel Koditschek.
Quantifying dynamic stability and maneuverability in legged locomotion. Integrative
and comparative biology, 42(1):149–157, 2002.

[265] Uluc Saranli, Martin Buehler, and Daniel E Koditschek. Rhex: A simple and highly
mobile hexapod robot. The International Journal of Robotics Research, 20(7):616–
631, 2001.

[266] McKee M. Mars rover spirit gets stuck as winter approaches. New Scientist, 2012.

[267] OJ Reichman and STAN C Smith. Burrows and burrowing behavior by mammals.
Current mammalogy, 2:197–244, 1990.

207



[268] Eviatar Nevo. Adaptive convergence and divergence of subterranean mammals. An-
nual Review of Ecology and Systematics, pages 269–308, 1979.

[269] Craig R White. The allometry of burrow geometry. Journal of Zoology, 265(04):
395–403, 2005.

[270] CR White. The energetics of burrow excavation by the inland robust scorpion, uro-
dacus yaschenkoi (birula, 1903). Australian journal of zoology, 49(6):663–674, 2001.

[271] BG Lovegrove. The cost of burrowing by the social mole rats (bathyergidae) cryptomys
damarensis and heterocephalus glaber: the role of soil moisture. Physiological Zoology,
pages 449–469, 1989.

[272] David Vleck. The energy cost of burrowing by the pocket gopher Thomomys bottae.
Physiological Zoology, pages 122–136, 1979.

[273] Luis A Ebensperger and Francisco Bozinovic. Energetics and burrowing behaviour in
the semifossorial degu octodon degus (rodentia: Octodontidae). Journal of Zoology,
252(2):179–186, 2006.

[274] Frans Sluyter, Abel Bult, Carol B Lynch, Geert A Oortmerssen, and Jaap MKoolhaas.
A comparison between house mouse lines selected for attack latency or nest-building:
evidence for a genetic basis of alternative behavioral strategies. Behavior genetics, 25
(3):247–252, 1995.

[275] Jesse N Weber, Brant K Peterson, and Hopi E Hoekstra. Discrete genetic modules
are responsible for complex burrow evolution in peromyscus mice. Nature, 493(7432):
402–405, 2013.

[276] Richard Dawkins. The extended phenotype: The long reach of the gene. Oxford
University Press, USA, 1999.

[277] Edward O Wilson. The organization of colony defense in the ant pheidole dentata
mayr (hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 1(1):63–81,
1976.

[278] Edward O Wilson. The organization of flood evacuation in the ant genuspheidole
(hymenoptera: Formicidae). Insectes sociaux, 33(4):458–469, 1986.

[279] Tali Kimchi and Joseph Terkel. Comparison of the role of somatosensory stimuli in
maze learning in a blind subterranean rodent and a sighted surface-dwelling rodent.
Behavioural brain research, 153(2):389–395, 2004.

[280] Audrey Dussutour, Vincent Fourcassié, Dirk Helbing, and Jean-Louis Deneubourg.
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