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Abstract— Achieving stable bipedal robotic walking on de-
formable terrain is an open and challenging problem at
the intersection of robotics and physics. Ground deformation
introduces underactuation; uncertainty in terrain dynamics
further complicates dynamical modeling and control methods.
This work provides a stability criterion for flat-footed bipedal
locomotion and allows model-based control methods to function
on homogeneous deformable granular terrain (e.g. sand and
dirt). By characterizing static reaction forces from granular
materials, in conjunction with granular resistive force theory
(RFT), we model and validate a static stability region for the
center of mass (CoM) projection of a biped on a granular
surface. We show that this stability region approximates the
admissible Zero Moment Point (ZMP) region for walking,
rendering common Linear Inverted Pendulum Model (LIPM)
methods valid with our foot placement strategy. By interpreting
the stability region as the maximum reaction moment of the
terrain, we formulate walking as a hybrid dynamical system and
utilize the partial hybrid zero dynamics (PHZD) based method-
ology to generate walking gaits. Finally, we experimentally
validate both the ZMP and PHZD walking gaits on a planar
bipedal robot, showing that the stability region criterion permits
stable dynamic walking on homogeneous granular terrain.

I. INTRODUCTION

Legged robots, especially bipedal humanoids, have signif-
icant advantages over wheeled machines in locomoting both
through natural unpaved terrain and in artificial manmade
environments. Despite the broad potential applications of
bipedal locomotion, such as working in construction sites
and planetary exploration, researchers have mainly focused
on generating stable walking and running gaits on rigid flat
or uneven terrain [1], [2], in which rigid contact between
foot and terrain is assumed. Little is known about robotic
bipedal walking on deformable terrains such as sand, gravel,
and snow. Well-developed walking schemes such as Zero
Moment Point (ZMP) [3] and Hybrid Zero Dynamics (HZD)
[4], [5] have been successful in numerous robotic systems,
but do not apply once the rigid contact assumption becomes
invalid. In our effort to understand and enable bipedal
locomotion over deformable substrates, we present a study
of bipedal walking on homogeneous granular terrain (see
Fig. 1). Granular terrain (e.g. sand and dirt) is common on
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Fig. 1. Time-lapse photograph of a planar biped walking on a bed of poppy
seeds, an experimental surrogate for granular terrain. The robot walked at
10 cm/s. Photo credit: Rob Felt [9].

Earth and other planets, and can exhibit fluid- and solid-like
behavior, making it a representative and challenging substrate
for locomotion. We choose poppy seeds as our test granular
medium because they have been shown useful in several
robophysical locomotion studies (e.g. [6], [7] and [8]).

Unlike fluids, the flow of which is modeled by the Navier-
Stokes equations, a general model of granular media is not
yet available. A friction-based resistive force theory (RFT)
introduced in [6] was used in [10] and [11] to model the
reaction force of the granular media. It assumes linear su-
perposition of forces on infinitesimal partitions of the body in
the ‘frictional fluid’ regime where frictional forces dominate
material inertial forces. However, the frictional fluid regime
assumes movement and does not account for static reaction
forces; i.e., RFT predicts forces only when there is relative
movement between the body and the granular terrain. One
can think of it as a ‘kinetic’ friction-based model.

This paper posits that terrain reaction forces determine
the stability of a biped. To model the reaction forces during
the intrusion and stoppage of a robot’s foot, we conduct
systematic paused intrusion experiments, which facilitate a
static reaction model with a single empirically measured
quantity, overshoot ratio. This model further rationalizes a
static stability region criterion of the stability for an Inverted
Pendulum (IVP) on granular terrain. We demonstrate that
the stability region is the admissible ZMP region for the
Linear Inverted Pendulum Model (LIPM). With an additional
foot placement strategy, LIPM methods, e.g. ZMP preview
control [3], can be utilized to realize walking on granular
terrain. We also formulate a hybrid model of walking and
utilize partial hybrid zero dynamics (PHZD) [12] optimiza-
tion to generate stable walking gaits. Both ZMP and PHZD
walking gaits are experimentally validated on our planar
bipedal robot. The experiment video can be found in [13].
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Fig. 2. Paused intrusion experiment to measure static granular intrusion
forces. (a) shows the experiment setup. (b) compares the force vs. depth
for continuous intrusion and paused intrusion of a 3 cm square intruder. (c)
shows force overshoot magnitude ∆F (left) and ratio γ (right) vs. pausing
depth for 4 different intruders. The size and shape of each intruder is in
the subfigure (right); error bars indicate the standard deviations. For all
experiments, pausing time is 3 s. The intrusion speed before and after the
pause is 1 cm/s.

II. STATIC STABILITY REGION

In this section, we introduce our granular terrain model,
and formulate a stability region criterion for static stability
of a biped on granular terrain.

A. Granular Terrain Model

In the context of bipedal walking on granular terrain, the
foot-terrain contacts presumably result in kinetic and static
interactions. We use RFT [6] to model the resistive forces
of continuous interaction. To gain insight into a mechanism
which generates static reaction forces, we designed forced
vertical intrusion experiment as shown in Fig. 2(a). A force
sensor and a flat intruder were attached to the end-effector
of the robot arm. The robot arm was commanded to move
the intruder vertically into the bed of poppy seeds at a
constant speed. Between each experiment, the poppy seeds
were initially fluidized with constant air flow from below,
which was then turned off for a settling time (∼30 seconds).
The force sensor measured the reaction force from the terrain
on the intruder. For a continuous intrusion, the reaction force
increased monotonically as in [6]. Initiating a pause during
continuous intrusion (Paused Intrusion) at a certain depth,
i.e. pausing depth (dp), resulted in the reaction force which
initially decreased from F− and then increased beyond the
original magnitude to F+, as shown in Fig. 2(b). Since the
force overshoot occurs at the moment of transition from static
to kinetic contact, we model F+ as the maximum static
reaction force. Defining overshoot magnitude and overshoot

ratio respectively as,

∆F = F+ − F−, (1)

γ =
F+

F−
, (2)

we plot ∆F and γ at different dp for different intruder ge-
ometries in Fig. 2(c). For each tested intruder, ∆F increased
with dp near the surface and then saturated at deeper dp. At a
certain dp, ∆F increased with the intruder size. γ decreased
with dp but was insensitive to intruder size. Therefore, for
an arbitrary intruder at a certain dp, the maximum static
reaction force F+ can be calculated by γF−. Combining
this with RFT [6], we propose a mechanics model of the
vertical reaction force as follows:

Fz(dz) = σRFT
z A, if ḋz > 0, (3)

Fz(dz) ≤ γσRFT
z A, if ḋz = 0, (4)

where dz is the intrusion depth, σRFT
z is the granular stress

(N/cm2) [6], A is the intruder area, and Fz is the vertical
reaction force. Note that σRFT

z = αdz , where α1 is the
constant unit vertical stiffness (N/cm3), i.e. stress per unit
depth. One can intuitively understand (3) as a unidirectional
spring force condition, since the deformed terrain cannot
recover, and interpret (4) as a static friction condition (when
the external force is smaller than the maximum static reaction
force) that keeps the object stationary.

B. Statics of the Inverted Pendulum Model

A bipedal robot is usually simplified by an Inverted
Pendulum (IVP), a low dimensional representation of a biped
via a massless pendulum with a point mass attached to the
pendulum top. The IVP has proven useful for controlling
bipedal walking robots [3]. Here we use this model to
analyze the statics of a biped on granular terrain. The ankle
joint is at a fixed angle for each configuration. On hard
ground, the IVP remains statically upright instead of falling
when the Center of Mass (CoM) projection is located inside
the foot, i.e. the ‘support polygon.’ On granular terrain, we

1α = α(0, π/2) in RFT, and 0 and π/2 are the attack angle and intrusion
angle respectively [6].
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Fig. 3. Static equilibrium of the inverted pendulum on a granular surface
in 2D. (a) illustrates the initial equilibrium when the center of mass (CoM)
projection exactly locates on the center of the foot. (b) shows the quasi-
falling situation where the system is about to fall, yet still in equilibrium.
The bottom subfigures are the free body diagrams of the foot.



posit that there is also an enclosed region for the CoM
projection to keep the IVP statically upright. We define a
quasi-falling equilibrium as a state in which the projected
CoM is on the region boundary and has an infinitesimal
translational velocity directed away from the center.

To analyze the quasi-falling equilibrium, we first assume
the initial equilibrium, during which the CoM of the IVP
projects onto the foot center as shown in Fig. 3(a). The
equilibrium is a result of continuous intrusion, thus

mg = σRFT
z A, (5)

where mg is the gravitational force of IVP. The granular
reaction force is assumed to be uniformly distributed beneath
the foot. The penetration depth is therefore predicted as,

dp =
σRFT
z

α
=
mg

αA
. (6)

During quasi-falling, the IVP is to fall and pitch about
a pitching axis, as shown in Fig. 3(b). A part of the
foot penetrates into the terrain and this area is defined as
‘Effective Support Area’ (ESA). We assume that the reaction
forces reach the maximum static reaction force in the ESA.
Outside of the ESA, where the finite segments of the foot
are not penetrating, the reaction forces are zero. We also
assume that the reaction force under the ESA is uniform. As
the forces and moments are balanced,

AESAγσ
RFT
z = mg, (7)∫∫

ESA
γσRFT

z x dxdy = mgdc, (8)

where dc is the distance between the CoM projection to the
ankle joint. AESA is the ESA surface area. γ is the force
overshoot ratio, which is taken from the empirical paused
intrusion data based on the intrusion depth dp. Equation (7)
and (8) provide a solution for dc. In the planar case that the
foot is a line segment, the closed form solution can be found,

dc =
L

2
(1− 1

γ
), (9)

where L is the foot length.

C. Stability Region

The quasi-falling equilibrium identifies a boundary for
static equilibrium of the IVP, i.e. there exists an enclosed
‘Stability Region’ of the CoM projection. If the CoM pro-
jection is inside the stability region, d < dc, then the IVP
remains stably upright. Otherwise, the terrain yields and
the IVP falls. For the planar case in Fig. 3, the stability
region is the line segment [−dc, dc]. Consider a quasi-falling
equilibrium of the IVP in three dimensions in Fig. 4(a). The
assumptions remain the same on the pitching axis and the
reaction force beneath ESA. Equation (7) and (8) still hold
true. Additionally, the sum of moments about the y axis is
balanced, ∫∫

ESA

γσRFT
z y dxdy = 0. (10)

Note that the x axis aligns with the line between the ankle
and CoM projection; the y axis is perpendicular to the x axis.
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Fig. 4. The stability region of the Inverted Pendulum (IVP). (a) illustrates
the ‘quasi-falling’ equilibrium of a general 3D Single Support Phase (SSP).
(b) shows the predicted stability region for foot size of 9 cm x 7 cm at
depth 6 mm (red), 12 mm (green), 18 mm (cyan) and 24 mm (blue). (c)
illustrates the experiment of testing the stability region boundary using the
Foot-Table apparatus. (c).2 prepares initial equilibrium. (c).3 and (c).4 show
that different weight positions yield two different results. (d) overlays the
experimental result onto the prediction of the stability region at different
depths. (e) illustrates the quasi-falling equilibrium with double support. (f)
shows the stability region prediction of an IVP of weight 1.4 kg; the red
foot is the initial stance foot and blue foot is the nonstance foot. The foot
size is 9 cm x 7 cm in all figures.

For a given foot shape and size, (7), (8) and (10) determine
the pitching axis and thus dc. We use a grid method (see
Appendix) to discretize the foot into finite elements and
numerically calculate dc for the IVP with a rectangular foot.
Fig. 4(b) shows the stability region prediction for the IVP at
different depths. For the same foot size, the IVP has a smaller
stability region if it more deeply penetrates the terrain. One
can conclude that a larger foot leads to less penetration, and
therefore provides a larger stability region.

To validate our assumption and mechanics model, we
3D printed a Foot-Table apparatus, shown in Fig. 4(c), to
physically represent the IVP. Putting weights at different
locations on the table is equivalent to changing the CoM
projection of the IVP. A grid paper with 5 mm by 5 mm
meshes was glued on the table to measure the weights’
positions. Each experiment followed a procedure of resetting
the surface, initial settlement in Fig. 4(c).1 and (c).2 and
weight shifting in Fig. 4(c).3 or (c).4. Resetting the surface
was done by disturbing the poppy seeds and then sweeping



the surface evenly to create a homogeneously packed state2

of the granular terrain. For initial settlement and weight
shifting, the weights were moved carefully to reduce impact.
Each grid point was tested with multiple experiments. Grid
points that resulted in a stable equilibrium represent a stable
projection of the CoM. Fig. 4(d) shows the comparison be-
tween the experimental results and the numerical calculation
of the stability region, from which we conclude that our
calculation predicts the stability region well.

The stability criterion of the IVP on hard ground does
not necessarily differentiate the Double Support Phase (DSP)
from the Single Support Phase (SSP) of a biped, because in
DSP two feet becomes a single larger ‘foot’, i.e. the support
polygon. However, for DSP on granular terrain, two feet
should be considered individually; the contacts of two feet
can occur at different depths and have different maximum
reaction forces. We consider the quasi-falling equilibrium of
DSP in Fig. 4(e). The depth difference between two feet
is generally small compared to the height of a biped or its
CoM, so we assume that the contacts happen on the same
horizontal plane (where the pitching axis is in) relative to
the robot, but happen at different depths (to calculate reaction
force accurately) relative to the terrain surface. With the same
assumptions of the existence of the pitching axis and ESA,
(7), (8), and (10) hold. Similarly, we use our grid method to
calculate the stability boundary. Details are in the Appendix.
Fig. 4(f) shows the stability region prediction of DSP.

III. ZERO MOMENT POINT WALKING FORMULATION

A. Admissible ZMP region for dynamic stability
The stability region predicts the static stability of an IVP

and indicates the maximum static reaction moment from
the granular terrain. For a Linear Inverted Pendulum Model
(LIPM) with constant CoM height, the Zero Moment Point
(ZMP) position is calculated as [3]:

Pzmp =
τ

mg
, (11)

where τ is the ankle torque due to the gravitational force
and inertial force of the CoM. The foot remains static and
thus the terrain reaction moment balances the ankle torque.
The stability region determines the maximum ankle torque
and thus the admissible ZMP region,

mgdc = Mmax = τmax = mgPzmp. (12)

Therefore, the stability region is equivalent to the admissible
ZMP region for the LIPM’s dynamics. This is significant
because all walking schemes using the LIPM model to satisfy
the ZMP criterion can work on bipedal walking on granular
terrain by estimating the stability region.

B. ZMP walking synthesis on granular media
We apply the ZMP preview control in [3] to generate

walking patterns for a small biped shown in Fig. 5, and ex-

2The volume fraction (compactness of the poppy seeds) was not con-
trolled to be exactly same as that in the intrusion experiments because of
the lack of a large fluidized bed for robot walking experiments. However,
several paused intrusion experiments on similar manually prepared surface
indicate that the overshoot ratios are similar in magnitude.
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Fig. 5. Robophysical experimental system. (a) The 6 joint bipedal robot
(46cm tall, weight 1.4kg). (b) The planar walking experiment setup.

perimentally validate the ZMP admissible region. The ZMP
preview control method tracks a ZMP reference trajectory
and determines its CoM trajectory for the discretized linear
dynamical system of the ZMP equation (see (12) and (13) in
[3]). Based on the CoM trajectory and a designed swing
foot trajectory, actuation joint trajectories are calculated
by inverse kinematics. Then walking can be performed by
tracking the joint trajectories.

1) ZMP reference trajectory: The reference ZMP trajec-
tory should be designed so that the ZMP lies inside the
stability region for all time. An admissible ZMP trajectory
for 3D walking is shown in Fig. 6(a). For 2D walking, only
the x component of the trajectory is tracked.

2) Foot placement: It is important to accommodate ver-
tical foot placement with the terrain deformation. A biped
needs to put its swing foot on the terrain surface at the
end of the Single Support Phase (SSP) and to shift it down
gradually to the estimated depth during the Double Support
Phase (DSP). Since in the DSP the CoM moves forward
approximately in a linear fashion, the reaction force on the
front foot also increases linearly, which requires the front
foot to be simultaneously pushed down. Fig. 6(c) illustrates
the foot placement strategy. In our implementation, the swing
foot trajectories of SSP and DSP are designed separately by
cubic splines with zero initial and final velocities. The terrain
deformation is estimated by RFT based on the robot weight.

3) Inverse kinematics: Because of the small torso, we
use the true CoM of the robot instead of the hip joint
position to approximate the mass on the linear pendulum.
Inverse kinematics is used to calculate each joint angle given
the positions of the swing foot and the CoM. We use the
Newton-Raphson root-finding method to numerically solve
the inverse kinematics problem, usually defined by [14],
xd − f(θd) = 0, where θd is the vector of desired joint
angles. xd = [pnsf , pCoM ] is a vector of the desired positions
of the swing foot and the CoM. Thus the Jacobian matrix
∂f
∂θ is composed of the swing foot Jacobian and the CoM
Jacobian.

4) Experimental Validation: We designed the bipedal
robot using off-the-shelf servo motors (Robotis, MX-64) and
3D printed parts. The robot was planarized by a counter-
weighted boom. Each servo motor is individually controlled
by its internal MCU with high PD gains. Joint trajectories



(a)

M
o
ti

o
n

SSP DSP

Surface

(b)

(c) (d)

ZMP Traj.

Boundary(DSP)

Boundary(SSP) 𝑥

Stability 

Region

Fig. 6. Zero Moment Point walking on granular terrain. (a) shows
one admissible ZMP trajectory (blue) for 3D walking and stability region
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illustrate the foot placement strategy. The penetration depth is exaggerated
for illustration purposes. (d) plots the ZMP walking experiment result. The
step length is 10 cm and step duration is 2.5 s for all experiments. Subfigure
in (d) shows the predicted stability region in the foot.

were computed offline and then loaded onto the servo motors
to be executed at 100Hz. As the robot was planarized, we
mainly examined the admissible ZMP region in SSP by
testing candidate ZMP trajectories. Each candidate ZMP
trajectory was designed as a line segment with its center
located at the foot center. The lengths of the ZMP line
segments varied from 1 cm to 7 cm. Each ZMP trajectory
was tested with 3 walking trials. Each walking trial was
marked as a success if the biped walked across the poppy
seed bed (1.2 m track length), otherwise, it was counted
as a failure. Between each experiment, the poppies were
prepared similarly to the Foot-Table experiments. As the
mass distribution of the robot is not close to the LIPM, the
speed of the gaits was designed small (4 cm/s) to reduce
dynamic errors from the discrepancy of the mass distribution.
The experiment result is plotted in Fig. 6(d), suggesting that
the admissible ZMP region is well predicted by the stability
region.

IV. HYBRID ZERO DYNAMICS OF WALKING ON
GRANULAR TERRAIN

By constraining the dynamics of a biped to that of the
linear inverted pendulum, the stability region is the admissi-
ble ZMP region for walking. In this section, we interpret the
stability region boundary as the maximum terrain reaction
moment and incorporate it into partial hybrid zero dynamics
(PHZD) [5] optimization. Despite the fact that the mechanics
understanding of the reaction moment during continuous
penetration is missing, experimentally realized walking gaits
from optimization are shown to be stable and dynamic.

A. Hybrid System Model
Bipedal walking can be modeled as a periodic multi-

domain hybrid control dynamical system with a predeter-
mined ordering of domains, represented by a cyclic directed
graph. It is formally defined as a tuple,

H C = (Γ,D,U ,S,∆, FG). (13)

Detailed definitions can be found in [5]. A locomotion
behavior is mostly described by its domain structure, i.e. the
structure of the directed graph, Γ = (V,E). For instance,
the point foot walking of Mabel [2] can be modeled with a
single domain, whereas the human-like walking of AMBER2
[15] is represented by three ordered domains over one step.
Proposing a proper domain structure with corresponding
guards and constraints is important in configuring the desired
walking behavior. In the following, we describe our hybrid
model of flat-footed walking on granular terrain.

1) Domain Structure and Guards: For walking on granu-
lar terrain, we describe a step as three consecutive domains,
Sink, Pin, and Double Support, illustrated in Fig. 7(a). Sink
and Pin both are with a single support such that only one foot
contacts the terrain. In Sink, the stance foot penetrates into
the terrain. While in Pin, the stance foot stops penetrating
and becomes pinned, i.e. having no displacement. When the
nonstance foot lands on the terrain, the system switches into
Double Support. Switching from Double Support to Sink
occurs when the stance foot is about to lift up. All the foot-
terrain interactions displace only in the vertical direction.
In other words, the foot is not sliding horizontally during
contact, which ensures pure vertical foot penetration.

Based on this domain structure, we define the guard
condition of Seps , i.e. the transition from Sink to Pin, as
ṗz = 0, p̈z = 0, that of Sedp , i.e. the transition from Pin
to Double Support, as pnsfz = 0, and that of Sesd , i.e. the
transition from Double Support to Sink, as Fz = 0, where
all terms are illustrated in Fig. 7.

2) Continuous Dynamics, Holonomic Constraints, and
Contact Wrench Constraints: For each domain Dv , deriving
the equation of motion from the Euler-Lagrange equation
[14] yields,

D(q)q̈ +H(q, q̇) = Bu+ JT (q)F , (14)

where F is the vector of contact wrenches, i.e. forces and
moments of foot-terrain interactions. J is the Jacobian matrix
of the contact positions, defined as,

J =
∂Pc
∂q

, (15)

where Pc is the vector of contact positions.
For hard ground walking, all contacts introduce holonomic

constraints as the contacts are rigid, non-penetrable and have
no sliding. When the terrain is deformable, a portion of the
contacts can be nonholonomic. Let Ph denote the holonomic
contact positions: Ph ⊆ Pc, and Ph ≡ constant. Thus, the
first and second order differentiations of Ph must be zero:

Jh(q)q̇ = 0, (16)
Jh(q)q̈ + J̇h(q, q̇)q̇ = 0, (17)
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Fig. 7. (a) The directed graph of 3 domain walking on granular
terrain. Subscript and superscript s, p, d represent the domains Sink, Pin,
and Double Support respectively. (b) The coordinate parameterization.
sa, sk, sh, nsh, nsk, nsa represent the joints of ‘stance ankle’, ‘stance
knee’, ‘stance hip’, ‘non-stance hip’, ‘non-stance knee’ and ‘non-stance
ankle’ respectively. (c) The reaction forces on the feet.

where Jh(q) = ∂Ph

∂q . Since we enforce vertical flat-foot
penetration for all domains, px, φy ∈ Ph. In Pin, pz ∈ Ph
as the penetration stops. For Double Support, additional
holonomic constraints are pnsfx , φnsfy .

The contact wrench F is the reaction from the granular ter-
rain. During continuous penetration, i.e. ṗz < 0, the vertical
reaction force is determined by (3). When the penetration
stops, i.e. ṗz = 0, the vertical reaction force is limited in
magnitude as by (4). We interpolate γ at different depth
pz from experimental data in Fig. 2(c). The lateral force is
modeled by Coulomb’s friction model,

Fx(pz) ≤ µFz(pz), (18)

where µ is the friction coefficient. We measured it by putting
the foot on a tilted plane with a glued layer of poppy
seeds. The tilting angle when the foot starts to slip indicates
µ = 0.466. We interpret the stability region boundary as the
moment constraint about the foot center,

M(pz) ≤Mmax(pz) := mgdc(pz). (19)

Since the walking is planar, we calculate the stability region
boundary dc from (9). We apply the same force model for
the nonstance foot in Double Support. The contact wrench
constraints in each domain are summarized in Table I.

3) Discrete Dynamics and Reset Map: For each guard,
there is a reset map ∆ to switch the system states of the
current domain to the subsequent domain. As the foot-terrain
contact is non-rigid for walking on granular deformable
terrain, the impact is trivial. For transitions from Sink to Pin
and from Pin to Double Support, the reset map is an identity
matrix. For the transition from Double Support to Sink, the
reset map is the relabeling matrix, as there is a coordinate
change.

B. Partial Hybrid Zero Dynamics (PHZD) Optimization

With the hybrid model of walking on granular terrain, we
apply the prevalent PHZD framework with direct collocation
optimization [16] to generate stable walking gaits. [17] and

[15] have shown that with virtual constraints between state
variables, the full hybrid dynamics can be projected to
a lower dimensional dynamics, i.e. hybrid zero dynamics.
Formulating it as an optimization problem is to find local
optimal parameters in virtual constraints that result in hybrid
invariance while satisfying all the constraints.

1) Virtual Constraints and Partial Hybrid Zero Dynamics:
Virtual constraints, enforced by feedback control, are defined
as parameterized functions that modulate the movement of a
robot over a gait cycle [12], [17]. We follow the definition
of the virtual constraints in [12], for each domain v ∈
{s, p, d} assuming a constant desired velocity-modulating
output y1,v (relative degree RD = 1) and several param-
eterized position-modulating outputs y2,v (RD = 2),

y1,v = ẏa1,v(q, q̇)− yd1,v, (20)

y2,v = ya2,v(q)− yd2,v(αv, τ(q)), (21)

where yd1,v = vd ∈ R is the desired velocity, and
yd2,v(αv, τ(q)) is the vector of desired position-modulating
outputs. We choose the outputs in Table I and parameterize
them by Bézier polynomials [4], the coefficients of which
in each domain are represented by αv . τ(q) is the state-
based parameterization of time, which should monotonically
increase over a gait cycle [4]. For the hybrid model of
walking on granular terrain, we choose the linearized hip
position, δphip(q) = Ltθsa + (Lf + Lt)θsk, to parameterize
time and as the velocity-modulating output ya1,v(q) for all
domains [15]. Lt and Lf are the length of tibia and femur
link of the robot respectively. With the input/output feedback
linearization in [12], the virtual constraints are driven to 0
exponentially by rendering the output dynamics as,

ẏ1,v = −εy1,v, (22)
ÿ2,v = −2εẏ2,v − ε2y2,v. (23)

Thus the zero dynamics associated to each domain is invari-
ant. Only enforcing the RD = 2 outputs yields the partial
zero dynamics surface [12]:

PZv = {(q, q̇) ∈ Dv|y2,v = 0, ẏ2,v = 0},∀v ∈ V. (24)

If the set of parameters vd and {αv}v∈V results,

∆e(Se ∩ PZv) ∈ PZv+ , (25)

for each transition e ∈ E, the manifold PZ =
⋃
v∈V PZv

is hybrid invariant. The hybrid control system representing
walking has a partial hybrid zero dynamics (PHZD) if the
control law yields PZ to be hybrid invariant.

2) Optimization via Direct Collocation: Finding proper
sets of parameters vd and {αv}v∈V in the virtual constraints
has traditionally been done by solving the PHZD optimiza-
tion problem [2], [15], defined as,

argmin
vd,α

J(vd, α), (26)

s.t ∆e(Se ∩ PZv) ∈ PZv+ , (27)
Physical Constraints, (28)



TABLE I
THE HYBRID CONTROL MODEL

Domains Sink Pin Double Support

Contact Pc [px, pz , φy ] [px, pz , φy ] [px, pz , φy , p
nsf
x , pnsf

z , φnsf
y ]

Holonomic Ph [px, φy ] [px, pz , φy ] [px, pz , φy , p
nsf
x , φnsf

y ]

Guard Condition ṗx = 0, p̈x = 0 pnsf
z = 0 Fz = 0

Wrench Constraints
Fz = αApz ,
Fx ≤ µFz ,

Mz ≤Mmax(pz)

Fz ≤ γ(pz)αApz ,
Fx ≤ µFz ,

Mz ≤Mmax(pz)

Fz ≤ γ(pz)αApz , F
nsf
z = αApnsf

z ,

Fx ≤ µFz , F
nsf
x ≤ µFnsf

z ,

Mz ≤Mmax(pz),Mnsf
z ≤Mmax(pnsf

z )
Reset Map R Identity matrix Identity matrix Relabeling matrix
ẏa1,v(q, q̇) δṗhip(q) δṗhip(q) δṗhip(q)

ya2,v(q) [θsk, θTorso
3, θnsh, θnsk, θnsf

4] [θsk, θTorso, θnsh, θnsk, θnsf ] [θsk, θTorso, θnsh, θnsf ]

where J(vd, α) is the cost function and (27) is the hy-
brid invariant constraint. Physical constraints include guard
constraints, contact wrench constraints and etc. [16] intro-
duced a generalized framework that utilizes direct collocation
optimizing high dimensional dynamical systems through
discretization and approximation, to simplify expressions
of constraints and generate analytic Jacobian matrices. The
result is a fast and reliable method of solving the optimization
problem. We apply the same approach to solve the optimiza-
tion of walking on granular terrain to find the proper virtual
constraints. See more details in [16].

3θTorso := θsa + θsk + θsh.
4θnsf := −θsa − θsk − θsh + θnsa + θnsk + θnsh.

(a) (b)

(c)

(d)

Nonstance Stance

Fig. 8. Implemented walking from partial hybrid zero dynamics optimiza-
tion. (a) Position tracking of the gait on one leg during two steps. (b) The
limit cycles of three joints on one leg. In both (a) and (b), dashed lines
are simulation results; solid lines are experimental results from the encoder
readings. (c) and (d) are the snapshot comparison between simulation and
experiment over one step. Time between snapshots is ∼0.37 s. The torso
has trivial inertia and thus is bent backward in Sink and Pin (when one
leg swings forward) to keep its applied ankle torque (equivalent to ground
reaction moment) small.

C. Gait Generation and Experimental Results

We chose the mechanical cost of transport as our opti-
mization objective, and configured all constraints for walking
on poppy seeds. The formulated optimization problem was
solved using IPOPT [18] with linear solver ma57. The solved
virtual constraints were evaluated by simulating the full
dynamics model of the biped with our terrain model using
the MATLAB ode45 integrator. The exponential stability of
the periodic orbit is examined by checking that the maximum
magnitude of the eigenvalues of the Jacobian of the Poincaré
return map is less than one [17]. Numerically evaluation
found a maximum eigenvalue magnitude of 0.67, indicating
exponential stability. The stable gait with joint trajectories
was saved and tracked by joint motors to implement walking
with the biped. Fig. 8 shows the simulation and experiment
results. The walking is stable, as depicted in Fig. 8(d), even
in the presence of small terrain disturbances as shown in the
experiment video [13].

V. CONCLUSION AND FUTURE WORK

In this work, we integrated our measurement of granular
reaction forces with re-synthesized control schemes (e.g.
ZMP preview control and PHZD optimization), which first
allowed model-based control methods to yield dynamic
bipedal walking on a deformable terrain–dry granular media.
Although the underlying physics which generate the static
forces have not been identified, the empirically measured
overshoot ratios were useful in predicting the stability re-
gions. Stable walking can be achieved on granular terrain by
only estimating this region without exhaustive sensing. The
resultant walking is still flat-footed, and thus the foot-terrain
interaction is conservative due to the moment constraints.
Walking on non-flat deformable terrain or terrain with irreg-
ularities cannot be handled by our method. In the future, we
will study more aggressive foot-terrain contact (e.g. pivoting
during interaction), and aim to develop appropriate online
learning schemes with closed-loop control to achieve walking
on general deformable terrain.

APPENDIX
Numerical calculation of the stability region boundary:

The procedure is to find the Effective Support Area (ESA)
and pitching axis in the quasi-falling equilibrium and then
calculate dc. As the integration is difficult to calculate over a



rectangle area, we discretize the rectangle by small squares
and numerically find the number N of squares in ESA. We
assume that the pitch axis direction k is within a range of
y axis direction, and thus generate a vector K of candidate
pitching axis directions. Find the ki in K which results in the
minimum reaction moment Mx about the x axis, and then
use this as the pitch axis φk. Finally, calculate the reaction
moment My about the y axis and thus dc. The detailed
procedure is given in Algorithm 1.
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Fig. 9. Calculation illustration. Refer to Fig. 4(a) for SSP and (e) for DSP.

Algorithm 1 Stability Region Boundary for SSP
Input: mg,α(0, π)

1: σRFT
z , dp ← mg from (5) and (6), and γ ← dp

2: AESA ← mg, γ, σRFT
z from (7)

3: Foot Discretization, N ← AESA

4: for each β ∈ [0, 2π] do
5: Initialize K
6: for each ki in K do
7: Find φki ← N , and Mx(ki)← φki from (8)
8: end for
9: k, φk ← argmin

ki

Mx(ki), and My ← k, φk

10: dc ←My from (10)
11: end for
12: return dc(β)

We assume that DSP happens after SSP. The swing foot
starts at the terrain surface and sinks as the CoM shifts.
Assume that right foot was the stance foot during SSP. Thus
(FL, FR) = (0,mg) initially, where FL or FR is the sum of
reaction forces beneath the foot in magnitude. The detailed
procedure is given in Algorithm 2.
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